
Using Infection Markers as a Vaccine against
Malware Attacks

Andre Wichmann
Fraunhofer FKIE

Friedrich-Ebert-Alle 144
53113 Bonn, Germany

Email: andre.wichmann@fkie.fraunhofer.de

Elmar Gerhards-Padilla
Fraunhofer FKIE

Friedrich-Ebert-Alle 144
53113 Bonn, Germany

Email: elmar.gerhards-padilla@fkie.fraunhofer.de

Abstract—Malware is used by criminals for financial gains,
espionage and sabotage, and their code and evasion techniques
become increasingly complex and sophisticated. This means it
takes longer for security researchers to analyse a malware and
develop detection and removal routines, increasing the danger of
critical systems becoming infected.

In order to prevent multiple infections of the same system,
malware often uses infection markers to mark a system as
already infected. In this paper, we introduce the concept of
using these markers to vaccinate systems against infections by
a specific malware family. We discuss the characteristics of
infection markers and develop a taxonomy of marker types.
Then, we present a framework capable of classifying the infection
marker used by a malware sample, and which can in most cases
automatically extract the marker and generate a vaccination
program. Evaluation with a large corpus of malware samples
shows that for almost all malware that uses an infection marker,
a vaccination program can be generated without the need of
a human expert. Two case studies with prominent malware
samples, Sality and Conficker, further show the potential of this
approach.

Index Terms—malware; intrusion prevention

I. INTRODUCTION

Malware, short for malicious software, is software that
performs malicious actions on computer systems without the
consent of their respective owners. While the first malware
families have been created mostly as a proof of concept or to
show off the author’s technical skills, in recent years malware
is created and spread by well-organized criminal gangs [1], [2],
[3]. These cyber criminals use malware to steal credentials,
send spam emails, conduct espionage, or sabotage computer
systems. Since embedded devices have become ubiquitous in
our modern society, these systems are vulnerable against these
kinds of attack as well [4].

Malware is nowadays developed by professional and knowl-
edgeable experts that go to great lengths to make it as difficult
as possible for security software to detect and remove their
product. Sophisticated stealth and obfuscation techniques are
used to limit the effectiveness of modern anti-virus products.
For example Stuxnet, a malware that was allegedly used to
sabotage nuclear facilities [5], contains a database of common
anti-virus products, and depending on the software that is
installed on the target computer, takes measures to evade
detection by that specific security product. Other malware

is polymorphic, i.e. its code mutates between infections in
order to evade signature-based detection. Even worse, on many
embedded devices no anti-virus products even exist that could
detect a malware attack.

Analyzing a new malware sample takes both time and expert
knowledge. While some parts of the analysis process can be
automated [6], [7], certain questions like how the malware
spreads, what malicious functionality it contains or how it
can be removed from an infected system are so open and
general in scope that a human expert is required. In the
case of Stuxnet it took several months before all infection
vectors and its full malicious capabilities were discovered [5].
This means that for defense, the time between discovery of
a malware and its analysis is critical. This is especially true
for critical infrastructure, systems that are suspected to be
targets of the malware, or environments where no anti-virus
products exist. Protecting these systems from infections until
reliable detection and removal procedures are developed is
highly important.

In this paper, we propose a novel technique to quickly and
reliably protect computer systems from infections by a known
malware family. We exploit the fact that malware usually
makes sure not to infect the same system twice by placing an
infection marker on that system during the first infection. By
injecting this infection marker into a clean system, it becomes
vaccinated against this specific malware family. When the
malware attacks the vaccinated computer, it will detect the
infection marker and aborts the attack, believing it has already
installed itself on that system.

This work makes the following contributions:
• The concept of infection markers is formally described

and their characteristics are presented. A taxonomy of
infection markers is developed, and the idea of using
infection markers to prevent malware infections is intro-
duced.

• A proof-of-concept framework for classifying and ex-
tracting infection markers from malware is presented.
This framework is capable of automatically generating
a vaccination software for protecting computers from
infections by that malware, with no expert knowledge
required.

• Using the infection marker taxonomy and applying the



above framework, an evaluation on a large corpus of mal-
ware samples is presented which provides an overview of
the types of markers deployed by current malware.

• The effectiveness of using infection markers to protect
systems against specific malware families is shown, both
by the data generated with the framework and by two
case studies with specific malware samples.

The rest of this paper is structured as follows. Section II
explains what infection markers are, what types of markers
exist, and how they can be used as a counter-measure against
malware. A framework for classifying and extracting infection
markers from malware is presented in section III, followed by
an evaluation and two case studies in section IV. An overview
of related work is given in section V, and a conclusion
including a discussion on future work can be found in section
VI.

II. MALWARE INFECTION MARKERS

From the point of view of a malware developer, it is very
desirable that a computer system gets infected only once by
that malware. Even if multiple variations of the same malware
get released, as it is common among malware authors to
evade signature-based detection [8], a system should not get
infected a second time by the same malware family. Reasons
for this are that multiple infections provide no advantage for
the performance of the malware, but instead might even be
dangerous to system stability of the attacked system because
malware often nests deep inside the operating system.

It follows that it is worthwhile for malware developers to
include a means to detect an already installed instance of
their malware on a system to avoid duplicate infections. If a
malware attacks a system and finds another instance of itself
already there, it usually aborts the infection process and just
exits. In order to achieve this, the first instance of the malware
sets some kind of infection marker in the system which other
instances can look for during infection. This infection marker
can be a mutex in memory, the presence of a specific file on a
storage device, a certain key in system registry or something
completely different.

A. Infection Marker Characteristics

In order to work properly, an infection marker has to exhibit
certain characteristics: It has to be persistent and deterministic.

Persistence in the context of infection markers means that
it actually has to be present on the system at the time another
instance of the same malware family tries to attack. This either
means is has to be on a permanent medium, for example on the
hard drive or the BIOS of a computer, or the malware has to
set the marker anew each time the system starts if it is located
in a temporary storage, for example in volatile memory.

Deterministic means that the location and the structure
of the infection marker can be determined and read by all
other instances of the malware during the infection process.
A malware cannot simply generate a random number only
known to itself as an infection marker, as a second instance
of the malware would have no way of generating that same

number to know what to look for. It can still be generated by
a deterministic algorithm however, if it is based on parameters
that will stay the same for all instances attacking a given
system.

Apart from these two necessary characteristics, an ideal
infection marker would also be unique in the space of malware
family infection markers so that it will not collide with markers
of other malware families. The presence of the marker from
one malware family on a given system should not prevent
another malware from successfully infecting that system. In
addition, an infection marker should be hidden on the system
so the user will not be alerted and does not notice the infection.

B. Using Infection Markers as a Defensive
Measure

The concept of infection markers can be exploited to protect
systems from getting infected by a specific malware. The
infection marker can be set on a computer that is not yet
infected, without installing the malware binary itself. When an
instance of the malware attacks that computer, it will detect the
infection marker and assumes the system is already infected
and will not install itself. The system is vaccinated against
that specific family of malware.

Using infection markers for vaccinating computer systems
can be a very effective protective measure against malware that
is otherwise good at evading detection by anti-virus solutions
or for environments where no such software exists. Regardless
of varying run-time packers [8] or polymorphism [9], by
definition the infection marker has to remain constant for
all versions of a malware family, thus becoming an invariant
among all polymorphic versions of a malware family.

In order to be able to use an infection marker as a vaccine, it
has to be determined how the marker looks like and where it
has to be set on the system. Typically, reverse engineering
has to be used to extract the infection marker. This is a
complex and time-consuming process where an expert first
has to remove all layers of protection from the malware before
trying to locate this information inside the binary. Even though
tools exist that can help an analyst [6], [7], reverse engineering
tasks are often hard to automate completely because of the
open nature of the problem. However, extracting infection
markers can be different in that regard. We show in section
IV that in practice the markers used by malware usually share
some common characteristics. First, regardless of the marker
type used, most of the time the marker is represented by a
name, e.g. a mutex or file. Second, the creation of and the
check for the infection marker usually goes through a confined,
well-defined programming interface offered by the operating
system. This makes it possible in many cases to fully automate
the process of identifying and extracting the infection marker
for a given malware sample, with no need for the labor or skill
of a malware analyst.

C. Taxonomy of Infection Markers

Each type of infection marker has unique characteristics,
which in turn has consequences for their use as a vaccine.



Because of this, we have developed a taxonomy of infection
marker types that allows to classify malware based on different
criteria.

1) Marker Location and Lifetime: There are different lo-
cations a malware can store its infection marker. Basically,
any location that can be accessed by a program can be used:
memory, the file system, or even the BIOS of the computer.
The only limit is that an attacking instance of the malware
has to be able to read from this location in order to detect the
marker.

Marker locations can be characterized by the lifetime they
offer: Permanent or volatile. An infection marker on a storage
device or the BIOS can be considered permanent, while a
marker in memory is volatile and will be gone when the system
gets shut down. In the latter case, the malware will have to
set it again when the computer starts the next time.

Common volatile infection markers on Windows are mu-
texes, named pipes or semaphores, but they could also be
function hooks or bound network sockets.

2) Marker Type: As described in section II-A, an important
property of an infection marker is that is has to be determin-
istic. Both static and dynamic markers fulfill this requirement.

A static infection marker means every instance of the mal-
ware uses the same marker for every computer it infects. On
the other hand, a dynamic infection marker is computed on a
per-system basis and will be different for each infected system.
To satisfy the determinism property, an algorithm based on
distinctive but permanent features of the infected computer is
used to generate the infection marker. For example, Conficker
uses the computer name as the base for an algorithm to derive
a name for a mutex to use as its infection marker. To extract
dynamic markers, the generating algorithm has to be reverse-
engineered.

3) Coupling of the Marker with Malicious Functionality:
An infection marker can be part of the functionality of the
malware, or it can be something that is not related to how
the malware works. Depending on how much the marker is
coupled with the malware’s functionality, using it as a vaccine
can have side-effects which have to be dealt with.

Common infection markers like mutexes are not directly
related to the malware’s behavior. A vaccination program can
easily create the mutex to protect a system against an infection.
However, a malware could also use changes it makes to an
infected system that have a direct impact on its malicious
activities as an infection marker. For example, malware can
hook into system API calls to modify the behavior of the
operating system. If the malware used the presence of this
hook as an infection marker, a vaccine would have to make
sure that this hook does not lead to unwanted, malicious
behavior.

4) Time of Marker Check: An infection marker’s purpose is
to prevent a second instance of a given malware from installing
itself on a target machine. That means in principle it would be
sufficient for the malware to check for the infection marker at
the time of attack. In reality though, malware sometimes also
checks for the marker each time it starts, for example because

the marker is volatile like a mutex in memory and has to be
set each time anew.

In this case, a vaccine can provide additional features. It
then not only protects clean systems from becoming infected,
it might also force the malware on an already infected machine
to cease its malicious actions and become dormant. If at
system startup the vaccination program manages to set the
infection marker before the malware can, and if the malware
checks for the marker each time it gets started, it will cease
operation and become harmless. The W32.Chydo worm is an
example for a case where this is possible. The system is still
infected however, but this can be useful for example if there
is no known reliable way yet to cleanly uninstall the malware.

Stuxnet would be a counter-example, as it uses a permanent
registry key as its infection marker and only checks for it at
the time of installation [5]. Only a vaccine for not yet infected
machines would be possible.

5) Location of Marker Check: A malware infection of
a computer system can involve several stages and several
different programs, and thus the check for the infection marker
can happen in any of these binaries. If the user gets tricked
into deliberately running the malware via social engineering
or in the case of trojans, the main malware binary will be
installed on the attacked computer immediately. However,
in cases like self-propagating worms or attacks via drive-by
downloads, shellcode or a dropper might get executed first that
then downloads the main malware binary over the network
to install it. Once the malware has successfully infected the
machine, it might download other, additional modules from its
command-and-control server.

The fact that the check for the infection marker can happen
in any of the involved binaries has direct consequences on the
task of extracting the marker. It can be easier to get access to a
specific piece of malware than to get hold of its dropper that
might have deleted itself already. If the infection marker is
checked in the dropper binary during the time of installation,
the main malware binary will not contain information about
the marker and thus it cannot be extracted from there for use
as a vaccine.

III. MARKER CLASSIFICATION AND EXTRACTION
FRAMEWORK

In order to find out if a given malware uses an infection
marker and to classify its type, we have created a framework
that processes malware samples and in most cases is capable
of automatically generating a vaccination program that can be
used to protect computers against that malware. This is a proof
of concept for Microsoft Windows malware, but the underlying
concept can be adapted to other architectures as well.

A. Architecture

The analysis framework consists of several components. The
Process Observer is a program that monitors the malware
process and its activities, capable of following the malware
code into other processes it might inject itself into. It logs
all user-level API calls related to mutexes, files, registry



keys, named pipes, and mailslots, as they could be possible
candidates for setting and reading infection markers. Each time
such a function gets called, the name and parameters of the
accessed object is logged.

The Controller processes a database of malware samples
and uses four virtual machines running Windows XP with the
Process Observer component installed. Two runs are needed
to decide if an infection marker is used, and another two
runs to detect the type and test if the malware is susceptible
against vaccination. This vaccination test is performed using
the Marker Injector, which is capable of creating mutexes,
files, named pipes, mailslots, and registry keys. Figure 1
depicts the workflow of a malware sample analysis run.

Run #1

Run #4

Run #2

Run #3

Controller

Process Observer

Malware Sample

Marker Injector

ti
m

e

Fig. 1. Workflow of testing the presence and type of infection markers

For each malware sample, four analysis runs are conducted.

• Run 1: The malware gets observed for two minutes. The
output of this run is used as a reference for the other
runs.

• Run 2: The malware gets started normally, without ob-
serving its behavior. After 30 seconds, a second instance
of the malware gets started under control of the Process
Observer. If the malware uses an infection marker to
prevent multiple installations, the events observed during
this run should be different from those of run 1. In
particular, the number of logged events and the running
time of the malware program should be much lower,
as the malware will exit after detecting that the first
instance has already infected the machine. If the use of
an infection marker is detected, run 3 and 4 are initiated.

• Run 3: The setup for run 3 is similar to that of run 2,
only that several parameters of the system environment
are configured differently. The goal of this is to determine
if the infection marker is static or dynamic. To this end,
many parameters that might be used in the generation
of dynamic infection markers are changed: the computer
name, the user’s name, the MAC address of the network
interface, the ID of the hard drive, the serial number of the
installed operating system, the language, and the locale. If
the infection marker differs from run 2, it is assumed the
marker is dynamic, otherwise it is likely a static marker.

• Run 4: From comparing the results of run 1 and run 2,

candidates for possible infection markers are generated by
looking at the last API calls the malware has made before
exiting in run 2. For run 4, the Marker Injector component
is used to set the candidate infection markers. Then,
the malware is run under surveillance of the Process
Observer. If the candidates are the real infection markers,
the number of observed events and the running time of
the sample should be similar to that of the second sample
in run 2. If the candidates did not contain the correct
infection markers, the log should be similar to that of
run 1 instead.

B. Limitations of the Framework

Even though the framework is capable of checking for the
use of infection markers in malware and can even extract the
used marker in most cases, it has some limitations, some of
them inherent in the technology used.

First, at the heart of the framework lies the technique of
dynamic analysis, i.e. the malware gets executed and moni-
tored in a secured and controlled environment. Malware can
detect this environment [10] and behave differently, or thwart
the analysis by going into a state of inactivity for some time
during startup. However, this is a problem all dynamic analysis
techniques have to face.

Second, the heuristics used in the framework are not guar-
anteed to produce accurate results. The heuristic to distinguish
between static and dynamic markers might fail if the malware
uses a characteristic which is not different between the ma-
chines of run 2 and 3. In addition, only markers that use the
APIs mentioned above can be identified. If malware deploys
more low-level techniques that bypass these API calls, the
framework will fail to detect the type of infection marker even
though it will still be able to detect that a marker is used.

IV. EVALUATION

To evaluate the concept of using infection markers as a
counter-measure against malware, two different questions have
to be examined. The first is how many malware samples use
infection markers and what types, and the second is how many
of the samples that use infection markers are susceptible to
vaccination. To answer these questions, a corpus of current
malware samples was evaluated using the framework presented
in section III, and two high-profile malware samples were
examined as case studies.

A. Malware Corpus

A corpus of 1496 randomly selected malware samples that
have been collected over the course of two years between
September 2009 and September 2011 by honeypots, spam
traps and user submissions was used in the evaluation. As
it turned out, 889 (59.4%) of all samples use some kind of
infection marker (c.f. table I). No statement can be made about
the other 40.6% that did not exhibit this behavior. It is not
clear if they really do not use an infection marker or if they
detected the analysis environment, were not compatible with



Total number of samples 1496
Samples using an infection marker 889 (59.4%)
Correctly identified markers 847 (95.2%)

TABLE I
USE OF INFECTION MARKERS

it, or checked for the marker only after the analysis time of
two minutes.

At first glance, 59.4% seems a low value for the percentage
of malware that prevents multiple infections. However, this
can be put into perspective by the fact that malware often
comprises more than one binary and that the marker check can
happen in any of them (c.f. section II-C5). The malware corpus
contains droppers and malicious helper modules downloaded
by the main malware samples, and an infection marker is
only used in one of the multiple binaries related to a specific
malware. Analysis of a few random samples from the set of
malware that does not seem to use infection markers supports
this hypothesis. Unfortunately, it is not practical to reverse-
engineer all samples, so we cannot say for sure and this
question remains open for future research.

Still, the majority of samples indeed use some kind of
infection marker and are susceptible to a vaccination counter-
measure. From all these 889 samples, for 847 samples (95.2%)
the analysis framework was able to detect and extract the
infection marker correctly. Only for 42 out of 889 samples
it was not possible to draw any conclusions about the type
of infection marker used. Either a type not covered by the
analysis framework was used, or the check for the marker
happened not as one of the last actions before exiting, for
example because the malware modified some files or registry
keys after the check.

Table II shows the number of static and dynamic markers
used for the samples where the marker could be correctly
identified.

Samples using a known infection marker 847
Static markers 842 (99.4%)
Dynamic markers 5 (0.6%)

TABLE II
STATIC VS. DYNAMIC MARKERS

The overwhelming majority of samples, over 99%, seem to
use a static infection marker. The dynamic markers detected
were a named pipe and two mutexes that included varying
numerical values. The distribution of the marker types among
all the successfully identified markers is listed in table III.

Samples using a known infection marker 847
Mutexes 834 (98.4%)
Registry keys 9 (1.0%)
Named pipes 3 (0.3%)
Files 1 (0.1%)
Mailslots 0 (0.0%)

TABLE III
MARKER TYPES

What can be seen is that with 98.4%, the vast majority of
infection markers are mutexes. Only a very small number of

registry keys (9), named pipes (3) or files (1) and no mailslots
are used. That means that in almost all cases, the infection
marker can be used as a vaccine without any side-effects (c.f.
section II).

B. Case Studies
While a quantitative evaluation of a large corpus of malware

is insightful with regards to what portion of the general
malware population is susceptible to vaccination and what
types of infection markers are used, it is also interesting
to examine some well-known, sophisticated malware families
which are considered to be above-average dangerous. To this
end, we have evaluated two additional malware samples which
rank 2nd and 3rd on the list of malware most seen in the wild
in the Symantec Intelligence Report February 2012 [11] (the
first rank is occupied by a generic detection heuristic): Sality,
and Conficker.

Conficker is a highly sophisticated worm using several
different attack vectors for infecting computer systems. Even
though the command channel has been disrupted for years
now, millions of systems are still infected. Our framework
correctly determines that it uses a mutex as an infection
marker, and that it is susceptible to using a vaccine to protect
clean computers. It also correctly identifies that the mutex
is dynamic, which means it cannot automatically generate a
vaccination program. However, the information revealed by
the framework gives an excellent starting point to speed up
the reverse engineering process for extracting the algorithm
for the dynamic mutex.

Sality is a file-infecting virus which incorporates a com-
plicated polymorphic engine that mutates its code and makes
each infection look differently [12]. Our framework correctly
determines that the infection marker is a static mutex. This
allows it to automatically generate a vaccination program that
can be used to protect not yet infected systems.

V. RELATED WORK

Almost no scientific literature on malware mentions infec-
tion markers. [13] discusses different mitigation techniques for
the Conficker worm, focusing on providing network detection
signatures and ways to remove the worm. They also present
the idea of using the infection marker as a counter-measure.
However, no generalization of the concept is provided, no
investigation of different types of markers is done, and all
the findings are made by using manual reverse engineering
with no automation.

Most methods to prevent infections on the host rely upon
detecting the malware first in order to prevent or undo an
infection. The first techniques for malware detection used byte
signatures [14], [15]. However, mutating the data of malware
binaries via packing [8] or polymorphism [9] makes these
methods less effective. In contrast, our approach utilizes an
invariant that has to be stored persistently on an infected
system and which cannot be mutated by the malware.

Later approaches use static analysis of code which incor-
porates the semantics of the program [16], [17], [9]. Un-
fortunately, these techniques assume that the relevant binary



code can be accessed and disassembled correctly. Runtime
packing, self-modifying code and using techniques like opaque
constants can effectively thwart static analysis [18].

Because of the limits of static analysis, other research
focuses on employing dynamic analysis to detect and prevent
malware infections on the host. In [19], a malware’s behavior
is monitored in a sandbox during a preparation phase, and a
behavior graph is generated which models relations between
system calls together with their parameters. Then, on the host
to be protected, running processes are monitored and their
behavior is matched against the generated signature graphs to
decide if a process is malicious or not. Similar approaches can
be found in [20] and [21].

Besides possible false negatives and the extra runtime over-
head, these approaches rely on the problematic assumption that
the process under observation does neither detect nor escape
the analysis. In addition, until it is declared malicious, the
process might already have caused harm which cannot easily
be undone, like sending data over the network. In contrast, the
concept of using infection markers as a vaccine is a purely
passive approach. While the Process Observer in our proof of
concept framework can be evaded by malware as well, more
sophisticated sandbox technologies like [6] could be employed
to improve resilience, something that cannot be done with
behavior analysis frameworks on the end host without adding
even more overhead.

VI. CONCLUSION

In this paper, we have introduced the concept of using
infection markers, which get used by malware to prevent
multiple infections of the same computer, to protect clean
systems from getting infected. The advantage is that infection
markers are not affected by traditional evasion techniques like
code obfuscation or polymorphism, and that in most cases
the extraction process can be fully automated. This makes it a
promising approach for a first line of defense after discovering
a new piece of malware and for protecting critical systems
against specific malicious threats, especially for environments
where no security software exists yet.

A proof-of-concept framework has been presented that can
determine the type of marker used by a given malware, and
in most cases is even capable of automatically extracting it.
Evaluation with a corpus of current malware and with two
case studies of well-known malware families shows that for
malware binaries that make use of infection markers, the
overwhelming majority use static mutexes which can easily
be extracted and used as a vaccine without any side-effects.

To further the understanding of how and where malware
uses infection markers, more research on the relationship
between different binaries of a malware is needed. In addition,
dynamic markers, even though they seem to be rare at the
moment, can only be detected, but not yet automatically
extracted. Combining a less invasive analysis environment
like [6] with approaches that are capable of extracting whole
algorithms from binaries [22] could make vaccination more
applicable to an even wide range of malware.

REFERENCES

[1] T. Holz, M. Engelberth, and F. Freiling, “Learning more about the
underground economy: A case-study of keyloggers and dropzones,”
Computer Security–ESORICS 2009, pp. 1–18, 2009.

[2] B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna, “The underground
economy of spam: A botmasters perspective of coordinating large-scale
spam campaigns,” in USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET), 2011.

[3] B. Chu, T. Holt, and G. Ahn, “Examining the creation, distribution, and
function of malware on-line,” Technical Report for National Institute of
Justice. NIJ Grant, Tech. Rep., 2010.

[4] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., “Experimental
security analysis of a modern automobile,” in Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 2010, pp. 447–462.

[5] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet dossier,”
Symantic Security Response, Tech. Rep., Oct. 2010.

[6] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis
via hardware virtualization extensions,” in Proceedings of the 15th ACM
conference on Computer and communications security. ACM, 2008,
pp. 51–62.

[7] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, “A view
on current malware behaviors,” in Proceedings of the 2nd USENIX con-
ference on Large-scale exploits and emergent threats: botnets, spyware,
worms, and more. USENIX Association, 2009, pp. 8–8.

[8] F. Guo, P. Ferrie, and T. Chiueh, “A study of the packer problem and its
solutions,” in Recent Advances in Intrusion Detection. Springer, 2008,
pp. 98–115.

[9] F. Leder, B. Steinbock, and P. Martini, “Classification and detection
of metamorphic malware using value set analysis,” in Malicious and
Unwanted Software (MALWARE), 2009 4th International Conference
on. IEEE, 2009, pp. 39–46.

[10] X. Chen, J. Andersen, Z. Mao, M. Bailey, and J. Nazario, “Towards
an understanding of anti-virtualization and anti-debugging behavior in
modern malware,” in Dependable Systems and Networks With FTCS and
DCC, 2008. DSN 2008. IEEE International Conference on. Ieee, 2008,
pp. 177–186.

[11] Symantec, “Symantec intelligence report: February 2012,” Symantec,
Tech. Rep., 2012.

[12] N. Falliere, “Sality: Story of a peer-to-peer viral network,” Symantic
Security Response, Tech. Rep., Jul. 2011.

[13] F. Leder and T. Werner, “Know Your Enemy: Containing Conficker,
To Tame a Malware,” The Honeynet Project, http://honeynet.org, Tech.
Rep., Apr. 2009.

[14] P. Szor, The Art of Computer Virus Research and Defense. Addison-
Wesley Professional, 2005.

[15] A. Sung, J. Xu, P. Chavez, and S. Mukkamala, “Static analyzer of vicious
executables (save),” in Computer Security Applications Conference,
2004. 20th Annual. IEEE, 2004, pp. 326–334.

[16] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant,
“Semantics-aware malware detection,” in Security and Privacy, 2005
IEEE Symposium on. IEEE, 2005, pp. 32–46.

[17] C. Kruegel, W. Robertson, and G. Vigna, “Detecting kernel-level rootkits
through binary analysis,” in Computer Security Applications Conference,
2004. 20th Annual. IEEE, 2004, pp. 91–100.

[18] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for
malware detection,” in Computer Security Applications Conference,
2007. ACSAC 2007. Twenty-Third Annual. IEEE, 2007, pp. 421–430.

[19] C. Kolbitsch, P. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and
X. Wang, “Effective and efficient malware detection at the end host,”
in Proceedings of the 18th conference on USENIX security symposium.
USENIX Association, 2009, pp. 351–366.

[20] B. Rozenberg, E. Gudes, Y. Elovici, and Y. Fledel, “A method for
detecting unknown malicious executables,” in Trust, Security and Pri-
vacy in Computing and Communications (TrustCom), 2011 IEEE 10th
International Conference on. IEEE, 2011, pp. 190–196.

[21] T. Nykodym, V. Skormin, A. Dolgikh, and J. Antonakos, “Automatic
functionality detection in behavior-based ids,” in MILITARY COMMU-
NICATIONS CONFERENCE, 2011-MILCOM 2011. IEEE, 2011, pp.
1302–1307.

[22] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda, “Inspector gadget:
Automated extraction of proprietary gadgets from malware binaries,” in
IEEE Symposium on Security and Privacy, 2010, pp. 29–44.


