

STO-MP-IST-111 2 - 1

Automatic Extraction of Domain Name Generation Algorithms from

Current Malware

Thomas Barabosch
1
, Andre Wichmann

1
, Felix Leder

2
, and Elmar Gerhards-Padilla

1

Fraunhofer FKIE

Friedrich-Ebert-Allee 144

53113 Bonn

GERMANY

Norman ASA

P.O. Box 43

N-1324 Lysaker

NORWAY

1 {Thomas.Barabosch, Andre.Wichmann, Elmar.Gerhards-Padilla}@fkie.fraunhofer.de

/ 2 Felix.Leder@norman.com

ABSTRACT

Botnets are a major threat to security on the Internet. Besides espionage and spamming, they are even

used for attacking whole countries with DDoS attacks. In the ongoing arms race between law enforcement

agencies and bot herders, the bot herders try to armour their botnets against takedowns with several

sophisticated techniques.

Many botnets employ a method called domain fluxing for resilience. This technique strengthens the

addressing layer of a botnet and allows a bot herder to dynamically provide command and control

servers. For the calculation of new domains, a domain name generation algorithm (DGA) is used. In

order to take actions against a domain fluxing botnet, the domain name generation algorithm has to be

known.

This paper systematically classifies the different classes of DGAs and presents a novel approach for

automatically extracting domain name generation algorithms from malware binaries for quickly initiating

countermeasures. The approach's feasibility is shown in two case studies on current malware that uses

domain fluxing.

1.0 INRODUCTION

Using the Internet has become a daily routine in many people's life. It becomes harder and harder not to be

part of it, when even governmental institutions encourage their citizens to do their tax assessments online.

On the one hand, the Internet comes with many benefits, like online shopping, online encyclopaedias, and

real time news. On the other hand, users are confronted with new threats almost every day. Security

played a subordinate role during the enormous expansion of the Internet during the past few years. This

lack of security has been noticed by criminals, who have used the Internet to form a whole new area of

business. This, among other things, yielded to a massive flood of malware. According to current statistics,

the size of the malware population increased exponentially during the last few years and reached its

historical high in 2011with 26 million newly created unique malware samples [1].

Large networks of infected machines, termed botnets, are formed by cyber criminals for financial gain and

espionage. Over the years, botnets have become one of the most severe threats on the Internet. Some

botnets have gathered several million members, called bots. For instance in 2007, the North European

state Estonia was attacked by several Distributed Denial of Service (DDoS) attacks performed by botnets.

Automatic Extraction of Domain Name Generation Algorithms from Current Malware

2 - 2 STO-MP-IST-111

Governmental institutions and critical business infrastructures were targeted. This led to an enormous

financial damage [2].

Botnets are commanded and controlled by persons termed bot herders. A botnet needs an addressing

mechanism to identify the command and control entity, termed command and control server (C&C-

server). Furthermore, it needs a communication channel to distribute commands to the bots [3]. Those two

parameters depend on the chosen topology. It can be distinguished between centralized (e.g. a small fixed

number of HTTP servers or an IRC server), decentralized (e.g. peer to peer networks where every bot can

be a C&C-server) or locomotive (e.g. the commanding and controlling entities are moving over time)

topologies.

It is very common for centralized or locomotive botnets to address the C&C-servers with the help of the

domain name system (DNS). In practice this is usually combined with the HTTP protocol for the

communication channel, but in principle any kind of protocol can be used.

In case of centralized botnets, there exist only a small, fixed number of C&C-servers. The addresses of

those servers are usually hardcoded into the bot's binary. In order to dismantle a centralized botnet, a

classical countermeasure is taking down the C&C-servers [3]. This is usually done by a cooperation of law

enforcement agencies and the Internet service providers (ISPs), where the C&C-servers are hosted. Once

the C&C-servers are taken down, the botnet is headless. Even though the bot machines are still infected,

the bot herder has lost his control over those machines and cannot command them anymore. Since it can

take some time until law enforcement agencies and ISPs agree on taking down the C&C-servers, network

administrators can also blacklist IP addresses or domain names belonging to such a botnet to prevent any

further communication of bots which are located in the network administrators' local networks with the

C&C-servers. In this case, the bot herder just looses a part of his botnet.

Therefore, cyber criminals have started employing a technique called domain fluxing. This method

introduces a variable set of C&C-server domain names which prevents a naive blacklisting approach

employed by network administrators. In addition, it increases the flexibility of the addressing layer, and

thus the resilience, of domain fluxing botnets against takedowns. Domain fluxing bots generate a list of

domain names based on a predefined algorithm, called domain name generation algorithm (DGA). Each

domain name in this list is resolved by a DNS query until there is no domain name left in the list or a

domain name resolves to a C&C-server.

One side effect of (pseudo-) randomly computed domain names are collisions with existing ones. For

example, the Conficker.C botnet generates 50.000 domain names each day and queries 500 of them [4].

Given the enormous amount of generated domain names, this leads to collisions with around 150-200

existent domain names per day. This can lead to DDoS attacks on the existing domain names and thus,

possible result in loss of money.

The DGA of a domain fluxing botnet needs to be known in order to take countermeasures like for example

preregistering future domain names and sinkholing the botnet traffic [3]. In addition, victims of domain

name collisions can be notified early. However, malware is notorious for employing defensive techniques

like executable packing for complicating its analysis [5]. In general, the process of manually reverse

engineering a malware sample is tedious and time consuming. Therefore, this paper proposes an approach

for increasing the efficiency of the analysis of domain fluxing botnets. The proposed method enables the

malware analyst to automatically extract a DGA from a malware binary and use this knowledge in order to

take countermeasures.

Automatic Extraction of Domain Name Generation Algorithms from Current Malware

STO-MP-IST-111 2 - 3

In detail, this paper makes the following contributions.

 It systematically classifies the different classes of DGAs

 It formalizes the problem of extracting DGAs and proposes a solution based on dynamic and static

analysis techniques

 It presents the architecture of an automatic DGA extraction framework

 It demonstrates the feasibility of this approach in two case studies on current malware samples

The remainder of the paper is structured as follows. Section 2.0 presents a taxonomy of DGAs. Section 3.0

formalizes the DGA extraction problem and proposes a solution to it. Section 4.0 presents a DGA

extraction framework, and in section 5.0, this framework is evaluated. Section 6.0 lists related work.

Section 7.0 outlays future work and concludes this paper.

2.0 TAXONOMY OF DOMAIN NAME GENERATION ALGORITHMS

Domain fluxing malware uses domain name generation algorithms (DGA) for generating a set of possible

C&C-servers' domain names. In the last couple of years, there have been several domain fluxing botnets

like Kraken [6], Conficker.C [4] or Torpig [7]. There exist several approaches for generating domain

names. Therefore, this section systematically classifies the different classes of DGAs and introduces a

DGA naming convention.

It can be distinguished between four classes of DGAs. There are two possible parameters for a DGA,

which are time and causality. The first class is the deterministic and time independent DGA (TID-DGA).

Those DGAs generate the same set of domain names every time they are executed due to using a static

seed. The early versions of the Kraken botnet use a TID-DGA [6]. The next class of DGAs is the time

dependent and deterministic DGA (TDD-DGA). Here, the seed of the DGA is changing in a regular

fashion. However, the precomputation of the domain names is still easy because of its determinism. The

Conficker worm uses a TDD-DGA [4]. The third class of DGAs is the non deterministic and time

dependent DGA (TDN-DGA). The seed cannot be anticipated and thus precomputation is impossible. This

leads to a situation where neither law enforcement agencies nor the bot herder have got any advantage.

The Torpig botnet uses a TDN-DGA. It uses the popular trending topics of the social networking service

Twitter as a seed [7]. The fourth class is the time independent and non deterministic DGA (TIN-DGA).

Malware employing TIN-DGAs has not been seen in the wild yet. This might work for small domain

names but the probability of meeting a C&C-server, drastically decreases with the increase of the domain

name length. Table 1 summarizes the four classes of DGAs.

type time dependent deterministic example

TID no yes Kraken

TDD yes yes Conficker

TDN yes no Torpig

TIN no no Not yet seen

Table 1: The four different DGA types

3.0 METHODOLOGY

The previous sections introduced domain fluxing botnets. Before countermeasures like traffic sinkholing

can be carried out against a domain fluxing botnet, the addresses of its C&C-servers have to be known.

Automatic Extraction of Domain Name Generation Algorithms from Current Malware

2 - 4 STO-MP-IST-111

Thus, the DGA of the botnet, which is compiled into every bot, has to be understood. The manual

extraction of a DGA from a bot's binary through reverse engineering is a tedious and time consuming task.

Therefore, this section presents a novel approach for automatically extracting DGAs from malware

binaries.

At first the DGA extraction problem is defined in section 3.1. Given a domain fluxing program, the DGA

extraction problem is to correctly extract the underlying DGA. This is followed by the presentation of a

novel approach for solving this problem in section 3.2.

3.1 The DGA extraction problem

This section formalizes the problem of extracting DGAs from (malicious) binaries. It is called the DGA

extraction problem. At first, important notions are introduced. This is followed by the definition of the

DGA extraction problem. Finally, assumptions regarding this problem are discussed.

In the following, an algorithm is assumed to consist of a non empty list of instructions, denoted by

, where the processor's instruction set is denoted by . An algorithm has one entry point and it can

have several possible exit points. The set of all algorithms is denoted by . Of course for every

DGA .

Definition 1:

Given a program p consisting of a list of instructions . Given that p uses domain fluxing.

Problem:

Determine the following three unknowns of the DGA , given the above information.

 The call to a suspicious network related API

 The starting point of

 The list of instructions contained in all possible execution paths

starting at 's starting point and ending at .

Three unknowns of a DGA must be determined in order to properly extract it from a program p.

Those three unknowns set the limits of the DGA (and) and define its functionality().

First, the precise determination of the starting point of is very important for the extraction. The

instruction of the starting point is denoted by . Usually the first action taken by a DGA is to query some

kind of source for an initial value. Based on this value, the computation of the domain name is done. The

initial value can be, for example, an immediate value, the current time or the current trending topic on

Twitter. The instruction querying a source is denoted by , where the set of all sources is denoted

by .

Second, the exit point of the algorithm needs to be found. It is assumed that at one point in time the

malware uses a network related API provided by the operating system in order to connect to the C&C-

servers. This instruction is denoted by .

Third, the precise extraction of 's instructions has to be performed. As stated in the definition, those

are all instructions that are included in every execution path starting at and ending at .

Note that it is possible for a DGA to have multiple sources on which the computation can be based.

Therefore, the first source asked for a value is assumed to be the primary source s. All other sources are

called secondary sources and are denoted by a subscripted number. For example, the third secondary

Automatic Extraction of Domain Name Generation Algorithms from Current Malware

STO-MP-IST-111 2 - 5

source is denoted by . In case of multiple sources, it is assumed that the variable returned by the primary

source s is used for holding the domain name and the values of the secondary sources are merged with this

variable during the computations. This is illustrated in figure 1.

In this illustration a DGA is sketched which has two sources. First, it queries its primary source for an

initial value. Based on this value, the domain name is computed. This happens on the path presented by

the long dotted arrow, which connects the primary source with the network related API. During the

computation, a secondary source is queried for a value. This value is used for the domain name generation

as well. Finally, the domain name is used in order to contact a C&C-server. Therefore, it is necessary to

identify the first source of a DGA in order to extract it completely.

Figure 1: Illustration of a DGA with multiple sources

3.2 Automatic extraction of DGAs

Based on the definition of the DGA extraction problem in the previous section, this section proposes a

novel approach for automatically extracting DGAs. At first its fundamental techniques are discussed. Then

the approach is explained step by step.

Dynamic and static analysis techniques are used for extracting the DGA. Each type of analysis has its

strengths and weaknesses. On the one hand, static analysis techniques can examine the whole code and

thus peak into every detail of it. But they are not able to correctly handle programs using dynamic code,

Automatic Extraction of Domain Name Generation Algorithms from Current Malware

2 - 6 STO-MP-IST-111

like executable packers. Executable packing is heavily used by current malware and as stated in [5], at

least around 80% of all malware samples employ this obfuscation technique. On the other hand, dynamic

analysis techniques are able to handle dynamic code. But one major drawback is that during dynamic

analysis, only one execution path can be examined [8]. Therefore, both techniques are combined in this

approach to benefit from their strengths and eliminate their weaknesses.

Given a program p and the knowledge that p uses domain fluxing, the three unknowns from Definition 1,

the network related API , the DGA's starting point and the DGA's list of instructions , need to

be determined. Since the query for an initial value is the first action taken by a DGA, the domain name

used by must be followed back to the request of the initial value at .

In figure 2 the extraction approach is illustrated. Each step is explained in detail in the following. Note that

the blue annotations next to each step summarize which of the above mentioned unknowns are resolved by

it.

At first the program p is run until a call to a suspicious network related API is encountered. Then p is

stopped. Under the assumption that an executable packer unpacks p before its main logic is entered, p

should be unpacked by now. As stated above, the vast majority of malware samples are packed by

executable packers. An executable packer unpacks a packed binary into memory, and then jumps to the

unpacked code. For this, it does not need network functionality. Therefore, once such a suspicious network

related API is called, it is most likely called by the main logic of the unpacked program p.

Figure 2: Control flow of the DGA extraction

Given the unpacked version of p and the end of the DGA , the static analysis of p begins. The static

Automatic Extraction of Domain Name Generation Algorithms from Current Malware

STO-MP-IST-111 2 - 7

analysis is based on data flow analysis. Data flow analysis can be used in order to derive knowledge about

the data's flow within a program without executing it.

It is assumed that on the execution paths from the main source to , the domain name is used and

defined. Therefore, a reaching definitions analysis is done. This data flow analysis computes the

definitions which can possibly reach a point in a program [9]. With the help of this data flow analysis, it is

possible to compute Use-Definition and Definition-Use chains. A Use-Definition chain of a variable x

consists of a use of this variable and all its definitions, which can reach this use without any redefinition in

between. A Definition-Use chain of a variable x consists of a definition of this variable and all its usages,

which can be reached by this definition without any redefinition in between [9]. Those two data structures

are used during the later extraction of the DGA's instructions.

The starting point of the data flow analysis is . This is the final use of the domain name before

the C&C-server is contacted. The analysis direction is backwards since the domain name has been

generated before the C&C-server is contacted. Since a DGA can be split into several low level functions,

an interprocedural data flow analysis is performed.

Once the data flow analysis is finished, the primary source of the DGA is determined. Based on the

computed Use-Definition and Definition-Use chains, the instructions of the functions in which the domain

name has been either used or defined are extracted.

In figure 3 the extraction process is illustrated. This figure shows a call graph of six functions

interconnected by black arrows. The data flow analysis starts in the function on the bottom left. Its

analysis progress is sketched by the red dotted arrows. The named boxes contain crucial parts of the DGA.

The usages or definitions of the domain name in those functions are detected by the data flow analysis.

Therefore, those functions are extracted. This is illustrated by the big dotted orange box.

Figure 3: Illustration of the extraction process

Automatic Extraction of Domain Name Generation Algorithms from Current Malware

2 - 8 STO-MP-IST-111

4.0 A FRAMEWORK FOR EXTRACTING DGAs FROM MALWARE

BINARIES

This section presents a framework for extracting DGAs from malware binaries, which implements the

approach described in the previous section. Its general architecture is depicted in figure 4.

Figure 4: The extraction framework for DGAs

The extraction process consists of two phases, a dynamic analysis phase and a static analysis phase. The

dynamic analysis phase prepares the malware binary for the later extraction of the DGA. It is called

preparation phase. During this phase the malware binary is run in a safe environment and a memory dump

is created as soon as a suspicious network related API is called. Based on this memory dump, the DGA is

extracted. This is done during the static analysis phase, termed extraction phase. This phase carries out the

data flow analysis and outputs the extracted DGA. The framework is implemented in IDApython, which is

a scripting interface provided by the disassembler IDA Pro [10].

Each phase is described in detail in sections 4.1 and 4.2. This is followed by current limitations of the

framework in section 4.3.

4.1 Preparation phase: Creation of the memory dump

The goal of this phase is to prepare the sample for the later extraction of the DGA. The extraction phase

expects two parameters as input. First, it expects an unpacked malware sample. Thus, this phase

implements a simple unpacking step. The underlying assumption is that once a network related API is

called, the sample resides unpacked in memory (see section 3.2).

Second, the extraction phase expects the address of the call to a suspicious network related API. Such a

suspicious network related API can be, for example, URLDownloadToFile. URLDownloadToFile

downloads a given URL to a local file [11]. Other examples are InternetOpen or InternetOpenUrl.

The preparation phase has to be performed within a safe environment. Because the analyzed malware

sample is executed, it could potentially infect the environment before its DGA is executed. The execution

of the sample is monitored and a dumping heuristic decides before suspicious network related APIs,

whether to continue execution of the sample or to create a memory dump of it. The dumping heuristic

follows a naive approach. It checks whether the suspicious network related API is called from the main

image of the program or one of the process space's heaps. For efficiency reasons, it just dumps the main

image or the heap section from which the call to has been initiated. Once a memory dump is created,

this memory dump and the last instruction pointer are passed to the Extraction phase.

Today’s malware uses several stealth techniques in order to evade its detection [12]. One of these

techniques is the injection and execution of code into another process space and is called remote code

injection. Malware can potentially escape to another process space during the analysis when using this

technique. Thus, the preparation phase implements a handling of remote code injection. It monitors the

API calls needed for the most common way of remote process injection, WriteProcessMemory and

CreateRemoteThread. WriteProcessMemory is used for writing code to the foreign process space. Then a

Automatic Extraction of Domain Name Generation Algorithms from Current Malware

STO-MP-IST-111 2 - 9

new thread within the foreign process space is created with CreateRemoteThread.

Once this kind of remote process injection is detected, the preparation phase suspends the current process

and attaches itself to the process space, where the malware has injected its payload into. This enables it to

monitor the newly created thread in the other process space.

4.2 Extraction phase: DGA extraction

The goal of the extraction phase is to extract the DGA from the provided memory dump. The extraction

phase expects as input an unpacked malware sample and the address of . It applies a data flow analysis

in order to detect . Then the instructions of the DGA are extracted on function granularity.

Before the data flow analysis can be carried out, the variable which holds the generated domain name

must be determined. On the Windows NT platform the parameters of an API call are passed via the stack.

Therefore, a database is used which holds for every suspicious network related API the stack offset to the

generated domain name. Given this offset, the variable which should be used as a starting point of the data

flow analysis can be easily determined. Once this variable is determined, the data flow analysis is carried

out.

During the data flow analysis, encountered calls to APIs are approximated for efficiency. Every time an

API is encountered during the data flow analysis, the influence of this API on the currently tracked

variable is approximated with the help of rules stored in a database. Once an API is encountered, the

database is queried. In case the database contains knowledge associated with the encountered API, it is

applied to the currently tracked variable.

This is illustrated by the following example of the Windows API lpstrcpy. lpstrcpy takes two variables

lpString1 and lpString2 as input and copies lpString2 to lpString1 [11]. Suppose the domain name is

tracked in backwards direction and the API lpstrcpy is encountered. Furthermore, suppose that lpString2

points to the domain name. In this case, the database is queried for this API. Since the database contains

knowledge associated with this API, it returns that lpString2 is defined by lpstrcpy. Since lpString1 is

copied to lpString2 this is not assumed as a final definition. Therefore, the data flow analysis continues

with lpString1.

Once the data flow analysis is finished, the DGA is extracted on function granularity. Given the extracted

DGA, a malware analyst can use this knowledge in order to initiate countermeasures or notify owners of

colliding domain names.

4.3 Current limitations

In the following, limitations of the current implementation are described.

The framework's architecture is based on a third-party disassembler. Currently, IDA Pro is used. It is

assumed that the underlying disassembler correctly disassembles the code and recognizes all functions. If

these assumptions do not hold, the DGA extraction is not possible. It has been shown that even state of the

art disassembler can be fooled using simple techniques and creating a precise disassembly can be a severe

problem on architectures with variable instruction length like the x86 architecture [13].

Another limitation is a consequence of the preparation phase. Since the malware sample is dynamically

analyzed in a safe analysis environment like a virtual machine, it is possible that the sample detects either

the analysis software or the analysis environment. Once the malware has detected that it is analyzed, it

might execute a non malicious control flow path or attack the analysis environment.

The support for process injecting malware is at the moment limited. Currently, the framework only

Automatic Extraction of Domain Name Generation Algorithms from Current Malware

2 - 10 STO-MP-IST-111

handles the WriteProcessMemory/CreateRemoteThread technique. However, the vast majority of

processes injecting malware samples use the WriteProcessMemory/CreateRemoteThread technique.

Note that the limitations described above apply for any static and dynamic analysis techniques in general,

and are not limited to the DGA extraction framework presented here.

5.0 EVALUATION

In the following the proposed approach's feasibility is shown by two case studies of current malware

samples. The first case study in section 5.1 discusses the Conficker.B worm. This is followed by the

second case study in section 5.2 which focuses on the file infector LICAT.A. The MD5 sums of the case

studies' samples can be found in appendix A.1.

5.1 Conficker.B

Conficker is a computer worm. The botnet's first appearance was in mid 2008 and it is still very active.

According to [14], in March 2012 there are still around three million machines infected by Conficker on

the Internet. Conficker uses a TDD-DGA. A discussion of its DGA can be found in [4].

At first the Conficker.B sample is inputted into the framework. The dumping heuristic detects the use of

the suspicious network related API InternetOpenUrlA. This API opens a URL on the Windows NT

platform [11]. After the detection, the preparation phase finishes its work and passes the resulting memory

dump to the extraction phase.

The extraction phase starts its analysis at . It determines the variable that holds the URL on the stack.

Given the correct variable, the data flow analysis is carried out. The framework is able to find Conficker's

DGA and successfully extracts it. By manually reverse engineering the sample, the framework's output has

been verified.

5.2 LICAT.A

LICAT.A is a file infector which contains a download-and-execute routine for which it uses a TDD-DGA.

Its DGA generates 1020 different domain names each day. For each domain name, the corresponding

server is contacted. In case a server is successfully contacted, the offered file is downloaded and executed.

Even though 1020 domain names are generated, it only tries to contact up to 800 of them. A detailed

description of its DGA can be found in [15]
1
. It has been stated that LICAT.A was used in a spreading

campaign for the banking Trojan Zeus [16].

The sample is inputted into the framework and executed by the preparation phase. The suspicious network

related API URLDownloadToFile is encountered and a memory dump is created. The memory dump is

passed to the extraction phase. Thereafter, the extraction phase is started. First, the variable which contains

the generated URL is determined. Then the data flow analysis is carried out. It encounters LICAT.A

DGA's source and successfully extracts the DGA. The validity of the output has been verified by manually

reverse engineering the sample.

6.0 Related work

This section presents related work. It covers three areas to which the work in this paper is related. At first

related work in the field of algorithm extraction is described in section 6.1. This is followed by work in the

field of domain fluxing malware in section 6.2. Finally related work in the field of data flow analysis is

presented in section 6.3.

1 Please note that LICAT.A is also labelled as Murofet.A by some antivirus companies.

Automatic Extraction of Domain Name Generation Algorithms from Current Malware

STO-MP-IST-111 2 - 11

6.1 Automatic extraction of algorithm from malware binaries

In [17] an approach for algorithm extraction from malware binaries is presented. The presented framework

is able to extract proprietary algorithms, which are linked to certain activities of a binary. This includes,

for example, domain name generation algorithms or update procedures. The authors of [17] base their

framework on dynamic taint tracking for algorithm detection. When using only dynamic analysis

techniques like in [17], it is only possible to capture the instructions of one single execution path at a time.

This drawback is overcome in this paper by the use of a static analysis technique during the extraction

step.

The authors of [18] propose a technique for extracting binary functions. They use a combination of

dynamic and static analysis techniques.The approach presented in this paper does not only extract one

single binary function, it can extract a whole algorithm which can consist of several binary functions.

6.2 Identifying generated domain names

There has been some work on detecting algorithmically generated malicious domain names in network

traffic ([19], [20], [21]). In [19] the authors propose an approach for detecting generated domain names

while monitoring DNS traffic. Thus, the presence of domain fluxing bots in a network is detected. While

this technique allows the detection of possible infected machines in a network, it does not allow

anticipating future malicious domain names for taking global countermeasures against the botnet.

6.3 Data flow analysis

Data flow analysis has been intensively researched during the last decades. It is mainly used during the

code optimization step of compilers.

The general technique of data flow analysis has been formulated in 1973 [22].The presented approach for

extracting DGAs is based on reaching definitions analysis. There exist several ways to do such an

analysis. In [23] those approaches are presented. The paper's approach for extracting DGAs has to find the

true origin, termed source, of the generated domain name. Therefore, it uses interprocedural data flow

analysis in order to analyze a program on a global scale. Interprocedural data flow analysis is discussed in

[24].

7.0 OUTLOOK AND CONCLUSION

This section outlays future work on domain name generation algorithms in section 7.1 and draws

conclusions in section 7.2.

7.1 Future work

This section briefly summarizes ideas for future work. At first it addresses questions that are fundamental

for future DGA research. This is followed by a summary of future work on the proposed method and

framework.

The domain names of non deterministic and time dependent TDN-DGAs cannot be precomputed. The

Torpig botnet can be named as an example. In Torpig's case, the popular trending topics of the social

networking service Twitter are used in order to introduce non determinism. Even though those trending

topics can not be a priori anticipated, it might be possible to take educated guesses since they are not

completely random. In 2012, several big events are scheduled. This includes the Olympic Games in

London or the United States presidential election. Those events will most likely influence the trending

topics on social networking services like Twitter. Thus, at least for special days it might be possible to

anticipate malicious domain names. Consequently this aspect must be researched.

As seen in section 3.2, the proposed approach extracts low level functions. Future work will focus on the

Automatic Extraction of Domain Name Generation Algorithms from Current Malware

2 - 12 STO-MP-IST-111

integration of slicing [25] for increasing the extraction precision.

7.2 Conclusion

This paper focuses on domain fluxing malware. This kind of malware employs domain name generation

algorithms (DGAs) for generating domain names of possible C&C-servers. Bot herders can make their

botnets more robust against takedowns with the help of this technique. In order to take countermeasures

against a botnet of this kind, the underlying DGA has to be known.

At first a systematically classification of DGAs is discussed. It can be distinguished between four classes

of DGAs. There are two parameters used for the classification of a DGA, namely time and causality.

Therefore, a DGA can be either time dependent or time independent and either deterministic or non

deterministic.

Furthermore, this paper presents a novel approach for automatically extracting DGAs from malware

binaries. At first the DGA extraction problem is formulated and an approach for solving this problem is

proposed.

The proposed technique is based on a combination of dynamic and static analysis techniques in order to

overcome drawbacks of similar frameworks. An implementation of this approach is presented and its

feasibility is shown in two case studies on current malware samples. The proposed approach helps to

quickly extract the DGA of a domain fluxing malware sample without any tedious and time consuming

reverse engineering. This decreases the time needed to analyze and react to malware. Given todays'

amount of malware, this is a crucial step to counter the threat posed by malware.

APPENDIX 1 MD5 SUMS OF THE EVALUATION DATA

The following table contains the MD5 sums of the case studie's samples.

Sample MD5 sum

Conficker 2A6938B042A7A0FD252531D77E409844

LICAT.A 531E84B0894A7496479D186712ACD7D2

 Table 2: Samples’ MD5 sums

REFERENCES

[1] Panda Security, “Pandalabs annual Report- 2011 summary,” 2012.

[2] M. Lesk, “The new front line: Estonia under cyberassault,” Security Privacy, no. july-aug, p. 76 –79,

2007.

[3] F. Leder, T. Werner and P. Martini, “Proactive Botnet Countermeasures: An Offensive Approach,”

2009.

[4] F. Leder and T. Werner, “Know your enemy: Containing conficker,” The Honeynet Project, 2009.

[5] F. Guo, P. Ferrie and T.-c. Chiueh, “A study of the packer problem and its solutions,” Recent

Advances in Intrusion Detection, p. 98–115, 2007.

[6] P. Royal, “On the Kraken and Bobax botnets,” 2008. [Online]. Available:

www.damballa.com/downloads/press/Kraken Response.pdf. [Accessed 06 08 2012].

Automatic Extraction of Domain Name Generation Algorithms from Current Malware

STO-MP-IST-111 2 - 13

[7] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kemmerer, C. Kruegel and G.

Vigna, “Your Botnet is My Botnet: Analysis of a Botnet Takeover,” Security, p. 635–647, 2009.

[8] A. Moser, C. Kruegel and E. Kirda, “Limits of static analysis for malware detection,” Computer

Security Applications Conference, p. 421 –430, 2007.

[9] U. P. Khedker, B. Karkare and A. Sanyal, Data Flow Analysis: Theory and Practice, CRC Press,

2009.

[10] “IDA Pro Disassembler,” Hex-Rays, 2012. [Online]. Available: http://www.hex-rays.com. [Accessed

06 08 2012].

[11] “MSDN,” Microsoft, 2012. [Online]. Available: http://msdn.microsoft.com. [Accessed 06 08 2012].

[12] N. Harbour, “Stealth secrets of the malware ninjas,” in Black Hat USA, 2007.

[13] C. Linn and S. K. Debray, “Obfuscation of executable code to improve,” Conference on Computer

and Communications, p. 290–299, 2003.

[14] “Conficker Working Group,” 2012. [Online]. Available: http://www.confickerworkinggroup.org.

[Accessed 06 08 2012].

[15] ThreatExpert Blog, “Domain name generator for murofet,” 2010. [Online]. Available:

http://blog.threatexpert.com/2010/10/domain-name-generator-for-murofet.html. [Accessed 06 08

2012].

[16] Trend Micro - Trendlabs Malware Blog, “Zeus ups the ante with licat,” 2010. [Online]. Available:

http://blog.trendmicro.com/links-between-pe licat-and-zeus-confirmed. [Accessed 06 08 2012].

[17] C. Kolbitsch, T. Holz, C. Kruegel and E. Kirda, “Inspector Gadget: Automated extraction of

proprietary gadgets from malware binaries,” Security and Privacy, no. 29–44, 2010.

[18] J. Caballero, N. M. Johnson, S. Mccamant and D. Song, “Binary code extraction and interface

identification for security applications,” Electrical Engineering, 2009.

[19] S. Yadav, A. Reddy and A. Reddy, “Detecting algorithmically generated malicious domain names,”

in IMC’10, 2010.

[20] L. Bilge, E. Kirda, C. Kruegel, M. Balduzzi and S. Antipolis, “Exposure : Finding malicious domains

using passive DNS analysis,” 18th Annual Network & Distributed System Security Symposium, p. 1–

17, 2011.

[21] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee and N. Feam-, “Building a dynamic reputation

system for DNS,” Proceedings of the 19th conference on Security, USENIX Security’10, p. 18–18,

2010.

[22] G. A. Kildall, “A unified approach to global program optimization,” Proceedings of the 1st annual

ACM SIGACT-SIGPLAN symposium on Principles of programming languages, p. 194–206, 1973.

[23] J.-F. Collard and J. Knoop, “A comparative study of reaching-definitions analyses,” 1998.

[24] F. E. Allen, “Interprocedural Data Flow Analysis,” World Computer Congress, p. 398–402, 1974.

[25] F. Tip, “A Survey of Program Slicing Techniques,” Journal of Programming Languages, p. 1–65,

1995.

