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ABSTRACT
In this experience report, we present experiences we have gained
in applying performance engineering techniques during the design
of a DVB-H enabled handheld device. The modelling methodol-
ogy we applied uses UML 2.0 to model the system following a
strict separation of architectural and behavioural aspects of the sys-
tems. From sequence diagrams and composite structure diagrams,
a queueing network is generated for the analysis of the system per-
formance. The configuration of the hardware resources and the
resource demands is done using the standard SPT-profile. We de-
scribe our implementation and its seamless integration into a UML
2.0 CASE tool. Finally, the paper outlines lessons learnt during the
design process which may be used to enhance the methodology.

Categories and Subject Descriptors
D.4 [Computer Systems Organization]: Performance of Systems—
Design studies; Modeling techniques; I.6.5 [Computing Method-
ologies]: Simulation and ModelingModel Development[Modeling
methodologies]

General Terms
Experimentation, Performance

Keywords
Performance Evaluation, UML, Queueing Networks

1. INTRODUCTION
When designing hardware platforms, inappropriate design deci-

sions have a strong impact on the development costs if they result
in the need to re-manufacture prototypes of the envisioned device.
A major cause for such re-designs is the discovery of performance
bottlenecks during product performance tests. In order to discover
these bottlenecks before actually building the prototype, perfor-
mance engineering is a commonly suggested means. A plethora of
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performance engineering approaches promise to eliminate the need
for costly product re-designs by integrating performance evalua-
tions to the front from the first design steps on.

In this report, we describe experiences we have gained from ap-
plying performance engineering methods during the development
of a DVB-H enabled handheld device. We outline the approach
taken to model and evaluate the system, provide some performance
results and summarise lessons learnt during that process. Our goal
was to design a general platform for a handheld device which is
able to decode terrestrial digital TV programme (DVB-H) and still
has sufficient computing resources that common applications such
as email, calendar synchronisation etc. may be run in parallel to
decoding the DVB-H MPEG-4 video and audio streams.

A major challenge was that building prototypes of such hand-
held devices is a costly task. Therefore, design decisions needed to
be justified carefully from the first design steps on. An important
decision with a major impact on the actual implementation was the
choice of the processor architecture. In essence, we had to evalu-
ate whether existing one chip mobile phone platforms were already
powerful enough to support this application or additional hardware
such as a DSP would be required. While further questions, e.g.
concerning the influence of the memory architecture, have been
studied, our report focuses on this processor issue.

There are many approaches to performance engineering in these
early phases of a development process. The majority of these pub-
lications propose UML as the modelling framework and suggest
to derive performance models from a performance annotated UML
system model. To evaluate the performance of the system, promi-
nent approaches such as [24] suggest the use of queueing network
models to detect performance bottlenecks in the earliest phases of
development when a detailed functional model is not yet avail-
able. This matched our challenge closely since a detailed functional
model depended on the decision for or against a DSP supported ar-
chitecture.

Consequently, for the DVB-H design we have assembled a UML
based performance engineering framework which relies on queue-
ing network analysis to disclose possible bottlenecks in the system
and to thereby substantiate early design decisions. The method-
ology builds upon work found in the literature and enhances the
applied methods where necessary to gain a practical modelling en-
vironment.

The rest of this paper is structured as follows. Section 2 reviews
related work and provides an overview of relevant existing perfor-
mance engineering approaches. Section 3 describes in detail the
performance scenario we have evaluated. Sections 4 details our
framework and outlines its application in the design of a DVB-H
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handheld device. Numerical results gained during the design pro-
cess are presented in section 5. Lessons learnt during the design
process are outlined in section 6. Finally, section 7 presents a sum-
mary and ideas for future work.

2. RELATED WORK
Williams and Smith introduced the usage of queueing networks

in the context of integrated performance analysis. In their Software
Performance Engineering (SPE) approach, UML diagrams are used
to specify the model from which a performance model is generated
for the analysis [24, 26]. Using UML diagrams for system and per-
formance scenario modelling has become the de-facto standard and
several authors presented methods[1, 4, 7, 8, 20, 13, 27, 12, 24, 6].
Since UML does not support the modelling of non-functional hard-
ware and software properties, often the UML Profile for Schedu-
lability, Performance, and Time Specification (SPT profile) [15] is
adopted [27, 2, 1, 11].

Methods to derive standard or extended queueing networks from
different kinds of UML diagrams are described in [1, 26, 24, 7, 12,
6, 11].

More precisely, the authors of [1] propose the usage of multi-
class queueing networks derived from UML models using use case,
activity and deployment diagrams. Software and hardware aspects
can be modelled with these diagrams and are transformed into a
queueing network. In [11] multi-chain queueing networks are used,
in such a way that special features of sequence diagrams like alter-
natives and parallel execution can be modelled. UML 2.0 compo-
nent diagrams are used to model properties of components which
are to be transformed into queueing centers. This approach mainly
focuses on software aspects while hardware aspects of the system
are not considered.

In contrast to [1, 7, 6, 11], we use the new composite structure
diagram of UML 2.0 for hardware modelling. The advantage is that
the composite structure diagram supports a hierarchy of diagrams
such that an easy refinement of the model during the development
process becomes possible.

Moreover, we use sequence diagrams for modelling the behav-
ioural software aspects similar to [7, 6, 26, 27, 11] which use either
generic message sequence charts or also UML sequence diagrams.

The specification of the scenario with the help of use case di-
agrams by specifying the involved workloads is widely used and
also applied by [7, 6].

As mentioned above, in our approach the mapping of software
to hardware is done with the help of composite structure diagrams
by reusing the system components defined in class diagrams as de-
scribed in [21]. This way, the mapping may be performed graph-
ically in the UML model and developers have to change only one
diagram while the changes are automatically propagated to all re-
lated diagrams.

We implemented and applied a methodology that automatically
derives queueing networks from UML 2.0 diagrams annotated ac-
cording to the SPT profile. Ideas from different publications, namely
the generation of multi-class queueing networks from sequence,
class, and use case diagrams, are combined and extended by the us-
age of the composite structure diagram which can be used to model
different software to hardware mappings and enables a refinement
model.

3. THE EVALUATION SCENARIO
In this section we outline our task and give a brief introduction

into the techniques related to DVB-H.
Digital Broadcasting Video - Handheld (DVB-H) is part of the

emerging DVB family of standards [18] for the digital transmission
of broadcasts and thus, a successor to analogue TV. DVB-H was de-
signed to deliver TV like content to mobile handhelds and phones.
Generally, DVB-H content uses time division multiplexing to trans-
port several channels on the same radio frequency. By periodically
using the same time slot for the same channel, the receiving device
can reduce the activation of the receiver to these time slots only and
thus, reduce the necessary power consumption. The content itself
is encoded according to the MPEG-4 [10] standard (this includes
the video as well as audio data), but the actual algorithm may be
chosen by the content provider.

The Motion Picture Expert Group standard 4 (MPEG-4) is a
family of standards specifying the encoder and decoder (codec)
algorithm capabilities for video and audio compression, the con-
tainer format for transmission, multiplexing and synchronisation
of audio and video as well as several other standards like testing
procedures, reference hardware etc. The audio content is encoded
using Advanced Audio Coding (AAC) which is basically a succes-
sor of the widely used MP3 codec and builds on top of the modi-
fied discrete cosine transformation (MDCT). The video data is en-
coded by slicing the continuous video signal into discrete pictures
called frames in a determined frequency. Common frame frequen-
cies are 24, 25 or 30 frames/sec. Each frame is separated into so-
called Macro Blocks (MB) which are encoded individually per each
frame. MPEG-4 defines three frame types. Intra-coded frames
(I-frames) are standalone pictures and, similar to JPEG DCT en-
coded, quantised, and finally variable-length encoded. In forward
Predictive frames (P-frames) each MB is predicted by motion vec-
tors from preceding I- or P-frames. With Bi-directional predicted
frames (B-frames) each MB is predicted from both, a preceding I-
or P-frame and a succeeding I- or P-frame. The prediction errors
of B- and P-frames are encoded in the same way as I-frames. The
sequence of I-, P-, and B-frames is called Group of Pictures (GoP)
and can vary according to the user requirements.

Our task was to model a mobile device capable of decoding an
MPEG-4 video and audio stream while still supplying enough per-
formance reserves to allow additional working like writing emails
or reading text messages. We used UML 2.0 as the modelling lan-
guage as commonly suggested by the literature and because of its
wide spread use. In the beginning we set 3 requirements for our
modelling approach in order to allow for the practical application.
These requirements are (1) support of iterative system composi-
tion and non-invasive integration of a performance model into the
functional system model in order to enable developers to use their
modelling approaches and allows all non-performance engineers to
work unaffected without thinking of the performance model. (2)
coherent model which supports the reuse of already modelled parts
of the system (e.g. classes as objects/instances). (3) a strict separa-
tion of the architecture and behaviour of the system which allows
for an easy exchange or modification of the architecture without re-
modelling the behaviour and thus, enables an easy comparison of
different design alternatives.

4. THE PERFORMANCE ENGINEERING
APPROACH

In this section, we present our system modelling approach (sec.
4.1) followed by the incorporation of performance aspects into this
model. Section 4.2 briefly presents the transformation algorithm
we used to generate multi-class queueing networks which are a
widely accepted performance estimation means. In order to keep
the model easily understandable, we only present high level dia-
grams. Apart from the configuration shown in this paper, our study
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also included components like memory, air interface, display etc.
as well as transmission error, a detailed MPEG decoding behaviour
et al. Details may be found in [21].

4.1 Modelling
The UML model of the MPEG-4 enabled mobile device is split

into two logical parts. First, the functional system aspects are de-
scribed in the system model (cf. sec. 4.1.1) and then, the perfor-
mance aspects are specified in the performance model (cf. sec.
4.1.2) using annotations in the system model. Section 4.1.3 de-
scribes how these models can be used to specify a specific perfor-
mance evaluation scenario.

4.1.1 System Modelling
Today’s handheld devices are often based on a combination of a

Multipurpose Processor Unit (MPU) and a Digital Signal Proces-
sor (DSP). A very popular incarnation of this system layout is the
Texas Instruments’ OMAP platform (OMAP). It combines an ARM
based MPU with a DSP. These two components are connected and
operate on the received data according to the decoding algorithm
driven by an operating system or application. To model such a
system, three steps are necessary. The components of the system,
their architectural layout, and the algorithms running in the system
have to be specified. This separation into component, architecture,
and behaviour modelling is also suggested in the literature and in
[9]. Figure 1 shows the system components of the current system
abstraction level. We used a class diagram to model these compo-
nents in UML. The MPU and the DSP classes specify the processing
hardware components. The System class corresponds to the op-
erating system and the application running the decoding process.
The video frame decoding and audio block decoding are modelled
by the VideoDecompression and AudioDecompression classes.
The DCT class is an abstraction of the MDCT and DCT used by the
video and audio decoder representing the most demanding part of
the decoding process. We also used the class diagram to specify the
public methods of all classes (see below).

Figure 1: Class diagram of handheld device components

The authors of [11] suggest to use the component diagram for
modelling the topology. We basically adapted their approach, but
employ the similar composite structure diagram, because it allows
us to semantically reuse classes as instances as its elements. An-
other benefit of the composite structure diagram is its ability to
decompose classes into its internal parts. By specifying the in-
ternal structure of a class which is part of a composite structure
diagram using another composite structure diagram, a hierarchy of
composite structure diagram evolves. This approach can be used to

iteratively refine the system model towards a sophisticated model.
Figures 2 and 3 show the internal structure of the handheld device
and the MPU component. The connection between the MPU and DSP
classes in figure 2 enables both to exchange data. In order to anal-
yse the impact of the DCT running either on the MPU or DSP it is only
necessary to use another composite structure diagrams refining ei-
ther the MPU or the DSP by the DCT (as figure 3 depicts for the MPU
case).

Figure 2: Root CSD of handheld device

Figure 3: Composite Structure Diagram of MPU

Figure 4 presents a tree showing the composite structure diagram
hierarchy. The top level diagram (Handheld CSD in this case) we
call the root composite structure diagram (root CSD). From the
root CSD all other composite structure diagram are reachable in
the hierarchy.

Figure 4: Composite Structure Diagram hierarchy

The final part of the system model, the dynamic behaviour, is
modelled using sequence diagrams. Again, the class definitions
of the system components may be reused as class instances ex-
changing messages in this diagram type. The messages are directly
related to the public methods of the particular classes. Figure 5
presents a simplified sequence diagram corresponding to the video
decoding process. Depending on the frame type (cf. sec. 3) the
DCT is run with different performance demands (cf. sec. 4.1.2). A
similar diagram may be shown for audio decoding.

4.1.2 Performance Modelling
This section shows how to incorporate performance aspects, i.e.

performance demands and performance capacities, into the sys-
tem model in a non-invasive manner such that the system model
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Figure 5: Sequence Diagram of Video Decompression

remains usable without the performance model (see the require-
ments in sec. 3). As widely proposed, we use the ”UML profile
for Schedulability, performance, and time” (SPT-Profile) for per-
formance annotation. Even though this profile was designed for
UML 1.x, it can be easily used in UML 2.0 as well or easily modi-
fied to fit our needs.

Two step are necessary to describe the performance aspects of
a system. First, each component’s capacity has to be modelled.
Second, the resource demand of the dynamic behaviour has to be
specified.

To model the component capacities, the SPT-Profile tagged value
PArate is used as part of the <<PAhost>> annotation as a relative
speed value. In case of a PArate=1 the annotation may be omit-
ted. Due to the fact that the capacity is not a functional aspect of
a component, we use the composite structure diagram for capac-
ity annotations rather than the class diagram. Thus, it is possible
to not only change the system components topology, but also the
performance of its components by exchanging the particular com-
posite structure diagram as described in section 4.1.1. Thus, the
whole architecture (topology and performance capacities) can be
exchanged at once allowing for an easy evaluation of design alter-
natives. Note, that using the composite structure diagram for the
capacity modelling violates requirement (3) (cf. sec. 3 and sec. 6).

This annotation can be seen in figure 2. If modifying the rela-
tive speed of the MPU, it is sensible that as a consequence the refin-
ing components (e.g. the DCT) should result in a speed up as well.
Therefore, a modification of a single component’s capacity should
automatically propagate to its sub-components. In order to obtain
absolute speeds for each component in the context of the whole sys-
tem, the PArate values are multiplied along their path through the
composite structure diagram hierarchy. Additionally, the schedul-
ing policy can be specified with the PAschdPolicy tagged value
and is set to FIFO by default.

During the second step of the performance modelling, each mes-
sage exchange representing the execution of an action in the receiv-
ing object is annotated with the SPT-profile PAdemand tagged value
as part of the PAstep annotation. Figure 5 depicts this annotation.

4.1.3 Performance Scenario
The engineer’s perspective on the model changes during the de-

velopment process due to different aspects of the system to anal-
yse. Therefore, it is crucial to allow the developer to focus on and
to analyse only certain parts of the system. This includes architec-
tural as well as behavioural aspect.

A performance scenario is a set of use cases and correspond-
ing architectural system parts. Each use case is represented by

a sequence diagram. Architectural system parts are described by
composite structure diagrams hosting the participating components
(cf. sec. 4.1). Additionally, the performance scenario contains the
workload definition for each use case. These workloads are de-
fined by the <<PAopenLoad>> or <<PAclosedLoad>> annotation
as suggested by the SPT-Profile. Since these two workloads annota-
tions only specify stochastic distributions, we introduce a third, non
SPT-Profile conform workload definition called <<PAtraceLoad>>
which allows us to specify a trace file as workload that triggers the
arrival of jobs according to a time table gathered from simulations
or measurements. In this way, we can easily switch from assumed
to realistic arrival rates without modifying the system (cf. sec. 4.2).

Figure 6 shows a use case diagram with two use cases (Audio-
Decompression, VideoDecompression) and their workloads. Each
use case is described by a sequence diagram, e.g. see figure 5 for
the VideoDecompression use case.

Figure 6: Use Case Diagram of Performance Scenario

The architecture is described by composite structure diagrams
in a sub-tree of the hierarchy that contains all participating com-
ponents. The processing composite structure diagram (processing
CSD) is the root node of this sub-tree to which all components are
mapped during the queueing network generation (cf. sec. 4.2). For
example, if the engineers are only interested in the performance
of the algorithm parts running on the MPU they choose the MPU
composite structure diagram as the corresponding processing CSD.

4.2 Transformation to Queueing Networks
In this section, we briefly present the algorithm that combines

the system and performance model with the performance scenario
and generates a multi-class queueing network representing the use
cases of the particular performance scenario. This queueing net-
work may be evaluated analytical or by simulation depending on
its characteristics. If the queueing network is in product form and
thus, fulfils the BCMP rules[3], an analytical evaluation is possible.
Otherwise, a simulative evaluation must be employed. In [21], we
presented a detailed description of the transformation algorithm.

The transformation algorithm works in 4 steps as depicted in fig-
ure 7. The first three steps are performed for each sequence diagram
specifying a single use case in the performance scenario while step
4 combines the results to the final queueing network.

In step 1, the chain of actions is derived from the actions initi-
ated by a message reception in a sequence diagram. Thus, the flow
of messages and their receiving objects define the chain of actions.
Note that interaction frames need a separate processing. The algo-
rithm only evaluates the alt and loop interaction frames, because
they influence the flow of actions and are compatible with queue-
ing networks. The opt interaction frame can be modelled with an
alt frame with only one branch. The par interaction frame cannot
be transformed into a queueing network equivalent representation,
because queueing networks do not support forks or joins of jobs.
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Figure 7: The four steps of the transformation algorithm

They are necessary to simulate the semantic meaning of the par
interaction frame. The remaining interaction frame types do not
influence the execution logic. Since the processing of interaction
frames is delegated to step 3 (see below), the chain of actions also
contains representations for alt and loop interaction frames.

In step 2, the components that perform the actions as identified
by step 1 are mapped to the processing CSD according to the archi-
tectural hierarchy. The components of the processing CSD are the
components executing the action in the current view of the system.
During this step, the performance capacities of the components are
calculated as described in section 4.1. As a result of step 2, the
chain of actions now only consists of processing resources in the
same sequence as the messages flow in the underlining sequence
diagram. Each step is assigned the resource demand associated
with the corresponding message.

Step 3 transforms this chain of actions into a single queueing net-
work representing the use case. This includes the definition of the
workload and the queueing centers as well as unfolding the flow
of actions together with the alt and loop interaction frame rep-
resentations specified in the chain of actions. Due to the mapping
of message receivers to processing CSD components, different re-
ceivers might be mapped to the same component and thus, to the
same queueing center. This leads to an implicit loop, because the
jobs have to revisit the corresponding queueing center. Together
with explicit loops (defined by the loop interaction frame) and al-
ternatives (alt interaction frame) multiple job classes are used to
distinguish between revisits. After a job of a specific class was
processed, its job class is modified according to the next queueing
center in the network to visit.

Steps 1-3 are repeated for each use case and its sequence dia-
gram. Finally, step 4 combines all single queueing networks to the
resulting queueing network which may be further analysed. This
queueing network operates with multiple workloads (one for each
use case) and several job classes to distinguish between revisits.
This is necessary, in order that the queueing centers can differen-
tiate between the use cases and process the incoming jobs of dif-
ferent workloads with the according service times. Therefore, the
job classes assigned in step 3 are mapped to unique job classes
of the resulting queueing network. Figure 8 depicts the resulting
queueing network for the MPEG decoding scenario incorporating
the AudioDecompression and VideoDecompression use case.

4.3 Implementation
This section gives a brief overview of the implementation of the

Figure 8: Resulting queueing network for Audio and Video use
cases

transformation algorithm and its integration into the Tau G2 UML
2.0 CASE-tool. Figure 9 depicts the tool structure.

Figure 9: U2Q-Tool overview

The UML diagrams are modelled in Telelogic Tau G2 [25] which
stores its data in XML files. These file are read into a proprietary
Java class hierarchy by a XML-parser. Our UML to Queueing Net-
works (U2Q) tool operates only on this class hierarchy and thus,
enables an easy adaption for other CASE tools by simply replacing
the XML-parser. The transformation algorithm supports analyti-
cal as well as simulative evaluation. Currently, our tool generates
input for the analytical tool PDQ[19] and the general purpose sim-
ulator Omnet++[16]. Both tools were enhanced where necessary.
By separating the queueing network transformation from the actual
evaluation tool input generation, it is easy to extend U2Q by new
evaluation tools.

The transformation process can be configured and started by an
add-in directly from Telelogic Tau. This allows the developers to
run the evaluation without changing the application. In a configu-
ration profile the use cases and composite structure diagrams, the
intended queueing network evaluation tool, and the output direc-
tory can be specified. Moreover, this add-in is able to analyse the
evaluation output and to write it back into the diagrams. For exam-
ple, the utilisation of a hardware component and the mean residence
time are presented as a comment of the corresponding object in the
composite structure diagram. Detailed simulation results can be
viewed in a separate window and are saved in a HTML file. Figure
10 shows the profile configuration dialogue as an example of the
add-in.

5. PERFORMANCE ANALYSIS
In this section, we show the performance analysis steps taken
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Figure 10: Screen shot of the TAU G2 Add-In

for the described scenario (cf. sec. 3). We considered two ar-
chitectures. Architecture (1) consists only of an MPU running all
parts of the decoding algorithm. In architecture (2) we add a DSP
component which was assigned the computing intensive algorithm
parts. Both architectures were evaluated by simulation with arrival
and service times modelled stochastically. Additionally, we ran the
simulation of architecture (2) in the trace based mode as well in
order to compare the stochastic model with real world values.

Section 5.1 describes how we obtained the necessary performance
figures for specifying the performance model. In section 5.2 we
present the results of our simulations.

5.1 Input Values
In order to gain reasonable performance values, it is necessary to

use appropriate figures for the resource capacities and the resource
demands. The goal of our analysis was to gather information about
the resource demand of an MPEG decoder running on an OMAP
platform. As mentioned in section 3, one goal of our analysis was
to decide whether the MPU offers sufficient computing resources or
whether the DSP functionality would be needed. Therefore, it was
sensible to estimate the resource demands of the decoding process
running on an ARM MPU only, first.

For this purpose, we measured the resource demands of decod-
ing an MPEG stream on a real ARM9TDMI. First, we recorded a
DVB-T stream (using MPEG-2 for video and AAC for audio) of
approx. 30 min and transcoded it into an H.264 encoded video
stream with PAL QCIF resolution (176x144 pixels) and the GoP
”IBBPBBPBBPBBP” (cf. sec. 3). The audio stream was kept
the same as in the original DVB-T stream. In a second step, we
modified the open-source video playback tool mplayer[14] used by
the OpenZaurus[17] project, a FreeBSD distribution for the ARM
based Sharp Zaurus device. We extended mplayer to support mea-
surements for the decoding times of each I-, P-, and B-frame as
well as for each audio packet. Table 1 shows a summary of the
measurement figures. The values for the audio and video decod-
ing were measured independently. For this purpose, we configured
mplayer to only decode one of the streams and to ignore the second.
The measured values show a significant higher processing time for
audio packets. This is due to the fact that the audio stream was kept
in the original quality while the video quality was reduced.

Min. Median Mean 0.975 Qu. Max.
Audio 2272 73794 85274 237768.4 712103
Video 14610 35294.5 37510 67996.12 218800

Table 1: Measured performance figures for decoding video and
audio on ARM in usec

From our measurements we observed several very large decod-
ing times for both, video and audio frames. These values are likely
due to operating systems tasks running in parallel. Therefore, for
our analysis we considered the top 2.5% of the decoding times as
outliers.

For modelling the queueing centers we analysed the distribution
of the decoding times. Using a maximum-likelihood-fitting, we
concluded that the decoding times are roughly lognormally dis-
tributed. Figure 11 depicts the pdf of the video frame decoding
times and a fitted lognormal distribution with the parameters µ =
10.45,σ = 0.31. The decoding times of the different frame types
can well be distinguished by the three peaks in the sample pdf.
Nevertheless, the lognormal distribution provides a good approx-
imation of the distribution. Similar graphs may be drawn for the
distributions of the single frame types as well as the audio packets.
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Figure 11: Density of frame decoding times and fitted lognor-
mal

Table 2 presents all distribution parameters used for the stochas-
tic evaluation.

Mean StdDev
I-Frame 10.41 0.31
P-Frame 10.52 0.36
B-Frame 10.41 0.26
Audio 11.06 0.74

Table 2: Parameters for service time modelling using log.norm.
distributions

For the DSP, an implementation of the MPEG decoding algo-
rithm was not available. Since the goal of the methodology was
to gain performance estimates early, but without starting actual im-
plementational work, we estimated the execution time of DSP code
from figures found in the literature. The authors of [5] break down
the MPEG decoding algorithm into 5 major functional parts and
provide an analysis of how much time is spent in each functional
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part. We used this analysis to determine the fraction of time spent
in those functional parts in order to delegate their computation to
the DSP. For example, DCT accounts for 59% of the computational
complexity, interpolation 12%, and motion estimation is performed
10% of the time.

In [23], figures are presented for the speed-up in execution time
that a DSP optimised implementation may be expected to achieve
compared to a pure implementation on the MPU. According to
these figures, DCT may be expected to execute 4.1 times faster, in-
terpolation 7.3 times faster and motion estimation may be expected
to accelerate by a factor of 5.2.

5.2 Performance Results
As mentioned before, the video and audio stream decoding times

were measured separately, because the OMAP MPU is not capable
to decode both streams in real time. The same result was given by
our simulation of architecture (1) as expected.

The second architecture incorporated a DSP and thus, allowed us
to distribute parts of the decoding algorithm to this special purpose
processor. This has two advantages. First, the MPU is relieved
and second, the optimised signal processing routines leads to sig-
nificant decrease of computation times. According to the results
of [23] we moved the complex decoding parts to the DSP step-by-
step. We started with the inverse DCT (59% of computation time)
for the audio and video decoding which still led to an overload of
the MPU. Only after moving the interpolation (12%) and the mo-
tion compensation (10%) to the DSP, too, the MPU load dropped
low enough to allow the user to perform background activities as
required (cf. sec. 3). During this modelling phase we distinguished
between I-, B-, and P-frames. The probability for each frame type
directly follows from the GoP (cf. sec. 5.1) which is pI = 1/13,
pB = 8/13, and pP = 4/13 in this scenario. Table 3 presents the
final results with all three mentioned algorithm parts running on the
DSP which accounts for 81% of the computational complexity.

Sim. run MPU DSP
stochastic 63% 57%
trace-based 62% 56%

Table 3: Utilisation of MPU and DSP in architecture (2)

It can be clearly seen that both processors have enough resources
to perform additional background tasks. Further, it is sensible to
invest into porting parts of the decoding algorithms to the DSP.

In addition, we ran the simulation of architecture (2) with the
trace files generated by our measurements. In these trace files the
frame type, the processing time, and the frame number are saved
for each processed frame. Thus, we could directly compare the
trace based simulation results with the performance figures from
the stochastically modelled simulation which showed to be an ap-
propriate approximation (cf. tab. 3).

6. LESSONS LEARNT
In this section, we want to share our experiences with the pre-

sented methodology applied to the concrete example.
The presented system modelling approach proved to be applica-

ble and well suited for the given task to model a DVB-H enabled
mobile phone. The intuitive separation of aspects into components,
architecture, and behaviour model could be strictly kept during all
stages of the system design. Since the chosen UML Case tool Tau
G2 supports the direct linking of class diagrams with composite
structure diagrams, it was possible to iteratively decompose the sys-
tem as suggested by our approach.

For specifying the resource capacities in the performance model
(cf. sec. 4.1.2) we dropped the requirement of a strict separation
of architecture and behaviour (requirement (3), cf. sec. 3). Since
the capacities are rather part of the architectural system design, we
decided to move their modelling to the composite structure dia-
grams instead of the class diagrams. Even though this violates the
required separation of component and architecture modelling, it en-
ables a simple exchange and comparison of architectures.

The SPT-Profile annotations for modelling resource demands are
easy to use, but have two drawbacks. First, the specification of
service times is very technical. Designers unfamiliar with queue-
ing networks still need to understand queueing theory in order to
choose the appropriate service time distributions (and how to esti-
mate them from already known data). This applies for the specific
distribution parameters as well. Second, the actual annotation val-
ues lack any information about their composition. For example,
distributing the video decoding service time by 19% to the MPU
and by 81% to the DSP (cf. sec. 5.2) results in manual calculations
and annotations. The informaion how these values were created is
lost as there is no direct description. This makes the performance
model hard to understand.

The performance input values (capacities and demands) are an
integral part of the whole performance evaluation and thus should
be as close to reality as possible. However, obtaining these values
is very difficult, if the system to model has no real world imple-
mentation. During our research we studied a plethora of papers
and technical reports in order to gain sensible input values for our
model. Since this approach did not lead to satisfying results, we
developed our own testbed for measurements as described in sec-
tion 5.1. This testbed included a fully functional OMAP board run-
ning a Linux distribution and a patched version of mplayer, in other
words an early prototype. We suppose that the lack of appropriate
performance input values is inherent to all performance modelling
approaches and should be further investigated. A database with per-
formance figures for common components and algorithm demands
could be a first step towards a practicable solution accepted by de-
velopers.

The integration of our U2Q tool into the UML CASE tool proved
to be an elegant and sophisticated way to enable a practicable em-
ployment of our methodology. The designers do not need to change
to another application, but only configure the performance scenario
and receive the values in a detailed report. The direct write back of
basic performance results such as the utilisation and the throughput
into the model itself visualises bottlenecks. A further enhancement
could be to tag highly stressed components in colour. Addition-
ally, the detailed report could be modified to show only metrics of
interest.

7. SUMMARY & FUTURE WORK
In general, the methodology we presented throughout this paper

proved to be well suited for the given task. The modelling approach
is close to design methodologies already established and thus easily
adoptable by designers and developers. It builds upon UML 2.0
and implements a strict separation of architectural and behavioural
aspects of the system. The former are modelled using class and
composite structure diagrams while the latter are modelled using
sequence diagrams. Performance annotations are included using
the standard SPT-profile.

The automatic generation and evaluation of a queueing network
directly from the development tool enables an easy application of
performance analysis of system designs. The seamless integration
hides the technical details of queueing networks from the users.
However, it is a very complicated task to gather realistic perfor-
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mance input values which are essential for reasonable evaluations.
In order to get the developers’ acceptance for a performance en-
gineering enhanced design methodology, its usage must be as less
interfering with their routine work methods as possible. This also
includes obtaining performance input values. This should be part
of further research work.
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