
SysCon 2008 - IEEE International Systems Conference
Montreal, Canada, April 7–10, 2008

A Methodology for Performance Predictions of Future ARM Systems Modelled in
UML

Lukas Pustina1, Simon Schwarzer1, Prof. Dr. Peter Martini1, Jari Muurinen2, Ari Salomaki2

1Institute of Computer Science IV
University of Bonn

D-53117 Bonn Germany
{pustina, schwarzer, martini}@cs.uni-bonn.de

Telephone: +49 228 73-4118

2Nokia-TP
Salo/Tampere, Finland

Abstract – The increasing complexity and short product cycles drive
developers of mobile systems to analyse the performance of systems
before hardware prototypes are available. Therefore, it is necessary
to predict application runtimes with the help of simulations of system
models. Miscellaneous components and factors of mobile devices af-
fect the performance, e.g. caches, buses etc. In order to predict the
performance of new system designs already during early stages of de-
velopment, models of the timing behaviour are necessary. We have
developed a modular timing simulator for models of typical mobile
systems which can be used to predict the runtime of applications on
future systems. Since UML is the de-facto standard for software mod-
elling and widely used, we use UML to specify the hardware of the
system. In this way, the gap between hardware and software mod-
elling may be closed and performance analysis of application and
system design are tight closer. The UML system model consists of
an architecture model and an instruction behaviour description. The
architecture model describes the components of the system and the
connections between them and the behavioural model specifies the
timing of the processor instructions. These models are used to sim-
ulate different configurations of an ARM9 system. Traces from one
configuration are used to predict the performance of another configu-
ration. Predictions for an ARM11 system with parallel pipeline units
are made.

Keywords – Performance, UML, ARM systems, Simulation, Modelling

I. INTRODUCTION

Especially, in the area of mobile systems there exists the
need for predicting the performance of systems without build-
ing hardware prototypes. This is due to the short product cycles
and the rapid growth in this area with additional applications
of the devices, e.g. multimedia cellphones. Since ARM pro-
cessors are widely deployed in mobile systems, this paper and
the proposed tools focus on the ARM processor family.

In this paper, we present a UML based modelling method-
ology to specify system, especially processor, details. The de-
veloper may connect several caches, writebuffers, memories,
and buses to model the desired configuration. Moreover, the
architecture of the processor pipeline consisting of pipeline
stages and the timing behaviour of processor instruction in the

pipeline are specified. UML diagrams are used to model the
system architecture and timing behaviour. UML is a graphical
modelling language and is the de-facto standard in the soft-
ware development area. The presented hardware modelling
with UML requires specialised concepts which are supported
by the UML profile SysML [1]. The MARTE profile [2] is
used to enhance the elements of the model with additional se-
mantics.

From this UML descriptions simulator configurations are
derived. Therefor we have developed a modular timing simu-
lator for assembler instruction traces. For each component of a
mobile system there is a representing simulation module. This
modular approach allows for a flexible configuration of a large
range of systems. Instruction traces of existing applications
captured on existing hardware are used as input for the simula-
tor to predict the runtime of the corresponding applications on
the modelled systems. Due to this trace-based approach, there
is no functional simulation necessary and the simulator only fo-
cuses on the mere timing of instructions and components. The
simulator is designed to be as independent as possible from the
instruction set.

The methodology of using captured traces as input for fu-
ture system models is evaluated by using captured traces to fed
simulations of modelled systems and compare the predictions
with measured figures. Since caches play a significant role for
the performance, ARM9 systems with and without caches are
modelled in UML, simulated, and the results are compared
with real world figures. ARM11 systems that include paral-
lel pipeline stages, are also modelled and predictions based on
ARM9 traces are presented.

The rest of this paper is structured as follows. Section II
gives an overview of related work in the context of proces-
sor simulation and UML modelling. Section III presents de-
tails of the ARM processor family which is used as case study
throughout this paper. The modelling methodology is intro-
duced in section IV by means of example diagrams for the
ARM9 and the ARM11 processors. Section V presents an



evaluation of the methodology and the timing simulator. Sim-
ulation predictions of system models are compared with real-
world measurements. Section VI concludes the paper.

II. RELATED WORK

Due to the complexity of processors and microarchitec-
tures, simulations are used to predict their performance [3].
In the context of processor simulation two approaches exist,
i.e. trace-driven simulation and execution-driven simulation.
Trace-driven simulation uses captured or synthetically gener-
ated trace files as input and simulates their timing behaviour
on a modelled system. This approach is an old technique and
widely used [3], [4]. Execution-driven simulation uses soft-
ware programs as input and simulates their functional execu-
tion. SimpleScalar [5], [6] is an example for this approach.
The execution-driven approach suffers from the drawback of
a fix instruction set and the necessity to port operating sys-
tems and drivers to the simulation framework. Programs like
Qemu [7] emulate the functionality of a processor, but lack a
timing model for the processor and the architecture. The ad-
vantage of the trace-driven approach is, that every traceable
program can be used as input without the implementation of
special system calls or the need to adapt the operating system.
The drawback is that, branch prediction in the pipeline can
not always be modelled, because often the input traces con-
tain only the executed instructions. However, this has typically
no significant influence on the simulation accuracy [3]. The
ChARM tool [8] for ARM-based systems follows the trace-
driven approach, but the simulated processors are not up to date
anymore and the simulated instruction set is not configurable.

We also follow the trace-driven approach and developed a
modular timing simulator for ARM-based systems. The sim-
ulator supports user-defined architectures and instruction sets.
Up to date processors of the ARM family are modelled and
used to simulate traces gathered at the hardware level. Thus,
effects of the operating system and drivers are automatically
included which is important for accurate system simulations
[9], [10]. Execution-driven approaches and emulators may be
used as alternative to real hardware to generate input traces for
the timing simulator.

The system and the processor details are modelled with
UML. Software performance engineering methods (SPE) [11]
use annotated UML diagrams to model the system and soft-
ware under study [12], [13], [14]. Since UML does not al-
low for the modelling of non-functional aspects many authors
apply the UML Profile for Schedulability, Performance, and
Time Specification (SPT) [15] to enhance the diagrams with
the necessary semantics [13], [14]. The UML Profile for
Modeling and Analysis of Real-Time and Embedded systems
(MARTE) [2] is the successor of the SPT profile, allows for a
detailed modelling of performance aspects, and supports UML
2. Composite structure diagrams of UML 2 are used in SPE
methods to model system architectures without processor de-
tails [13], [16]. Our modelling methodology uses new diagram

types of the SysML profile [1]. SysML is a subset of UML 2
with some extensions to allow for a detailed system modelling.

The authors of [17] analysed the performance of a video
codec on ARM systems and determined components which
affect the performance. The proposed modelling methodolgy
and the timing simulator consider these components.

Using a subset of benchmark suites is often applied to anal-
yse system architectures [18], [19]. Therefore, applications of
the MiBench suite [20] with inputs from MiDataSets [21] are
used in the evaluation.

III. ARM PROCESSOR FUNDAMENTALS
Figure 1 depicts a schematic overview of components typi-

cally used in mobile systems like cellphones. A processor con-
sisting of a pipeline and registers is connected to caches. These
caches are connected via a system bus to the main memory and
other peripherals. A writebuffer is placed in between the data
cache and the bus, so that the processor is not delayed by write
accesses to the memory.

Fig. 1. Schematic overview of typical components in a mobile phone.

The main memory is often built from one or more RAM
modules. These modules have different latencies for read and
write access and support a special burst mode when successive
data is addressed. Since the RAM modules have to internally
address the requested data first, the read and write access la-
tencies depend on the distance between the requested data ad-
dresses and the internal data cell structure.

ARM processors are widely used in mobile devices, thus
this paper focuses on this processor family. The ARM proces-
sors are Reduced Instruction Set Computer (RISC) based and
employ modern concepts like pipelines and Harvard separated
instruction and data caches. The advantage of the pipeline con-
cept is that all pipeline stages work in parallel and thus multi-
ple instructions can be processed during one pipeline cycle.
There are two types of pipeline cycles. Arithmetical and log-
ical calculation steps, reading registers etc. last one internal
cycle (I-cycle) which duration depends on the clock speed of
the processor. Requesting instructions or data from the mem-
ory depends on the latencies of the bus and the memory mod-
ules. This duration is referred to as memory cycle (M-cycle)
in the following. The theoretical maximum parallelism of the
pipeline stages cannot always be achieved due to interlocks and
stalls. An instruction in the pipeline may need the result of a
predecessor instruction for its own calculation. Such a situ-
ation is called an interlock and the pipeline is automatically



stalled until the required values become available. Another
cause of pipeline stalls are instructions needing more than one
I-cycle in a stage, e.g. complex multiplications.

The ARM9 [22] and the ARM11 [23] processors are used
as examples throughout this paper. Figure 2(a) depicts the five-
ary pipeline of the ARM9. The fetch stage reads instructions
from the memory. The decode stage decodes instructions and
the execute stage performs arithmetic, logical, and multiply op-
erations.The memory stage performas data access to the mem-
ory and in the writeback stage results are written back to regis-
ters. The pipeline of the ARM11 introduces the concept of par-
allel pipeline stages. Figure 2(b) depicts a schematic overview
of the ARM11 pipeline which splits up after the issue stage into
the three pipelines ALU pipeline, MAC pipeline, and load/store
pipeline. The issue stage reads registers and issues the instruc-
tions to the succeeding pipelines which may process instruc-
tions in parallel e.g. a logical operation in the ALU and a mul-
tiplication in the MAC can be processed in parallel.

(a) ARM9 pipeline

(b) ARM11 pipeline

Fig. 2. Schematic overview of ARM processor pipelines.

IV. MODELLING METHODOLOGY

This section presents the UML modelling methodology for
mobile systems that applies the SysML profile for UML and
the MARTE profile. The SysML profile enhances the seman-
tics of UML to allow for the specification of systems consisting
of hardware and software. The MARTE profile is used to en-
hance the model elements with the additional needed semantics
of the components.

The architecture model describes the system components
which affect the performance, e.g. caches, buses, the instruc-
tion set etc. It defines the architecture of the system consist-
ing of these components and the communication paths between
them. Basic block diagrams (BBD) of SysML are used to de-
fine the components of the system model. Basic block dia-
grams are the SysML counterpart of UML class diagrams. In-
ternal block diagrams (IBD) of SysML are used to model the
internals of the components and their interconnections. They
are similar to composite structure diagrams in UML.

The pipeline behaviour and the timing behaviour of the pro-
cessor instructions are modelled in the instructions behaviour

model. Sequence diagrams specify behavioural aspects of the
processor instructions.

A. Architecture Model

System components are defined as SysML blocks in a block
definition diagram. SysML blocks are modular units of the
system which can be logical or physical. The block defini-
tion diagram defines the static relationships between the blocks
i.e. compositions and generalisations. A Block is a stereo-
type of the UML class element. The architecture and the com-
munication between the components are specified in internal
block diagrams. This diagram allows for refinements of com-
ponents and the modelling of runtime communication between
the modelled elements. Instances of the defined blocks are
used in internal block diagrams as so-called parts.

Blocks and parts do not carry any semantical meaning in re-
spect to mobile system components. Thus, stereotypes are used
to enhance the model with semantics. The MARTE profile is
applied, which introduces multiple stereotypes to annotate in-
stances in a sophisticated manner, i.e. �HwProcessor�,
�HwCache�, �HwMemory�, and �HwBus�. Never-
theless, the granularity of this profile is not detailed enough for
our system modelling approach. Thus, we extend stereotypes
by additional tags and introduce new stereotypes. The stereo-
type �HwProcessor� provides tags for the specification
of the number of pipeline stages and the number of registers.
Since only the amount of stages does not suffice to simulate
an assembler trace with our timing simulator in a realistic way,
we introduced the new stereotypes�HwPipelineStage�
and�HwRegisterbank�.

Figure 3 shows a block definition diagram with the inv-
oled components modelled as blocks. The Registerbank and
Pipelinestage blocks are parts of the Processor block mod-
elled by composition. The Cache block is refined by an in-
struction cache ICache block and a data cache DCache block.
Instances of these blocks are used as parts in internal block
diagrams. Figure 4 depicts an internal block diagram describ-
ing the architecture of an ARM9 system with the aforemen-
tioned components (cf. fig. 1 and ??). The instruction cache
is directly connected to the bus, whereas the data cache is con-
nected via a writebuffer to the bus. The bus is connected to
the main memory. All parts in this internal block diagram
are annotated with stereotypes. The memory part is annotated
with�HwMemory� and latencies for different data accesses
depending on the distance between the requested memory ad-
dresses (cf. section III) are specified in the annotation. The
stereotype�HwBus� describes the properties of the bus part.
The tags bandwidth, clock, and schedPolicy are used
as defined in the profile and specify the bandwidth, the clock
speed, and the arbitration scheme of the bus. In order to spec-
ify the burst capabilities of a bus, we extended this stereotype
by the tag burstwhich gives the supported burst lengths. The
�HwWritebuffer� stereotype provides tags to specify
the properties of the buffer. The tag addressBuffer spec-
ifies how many non-successive write requests can be buffered.



The tag buffersize specifies the maximum number of data
which can be buffered for the requests. The �HwCache�
stereotype provides tags for the specification of cache proper-
ties like size, latency, replacement policy etc. The�HwPro-
cessor� stereotype specifies the clock speed of the proces-
sor and gives the annotated component a processor role.

Fig. 3. Block definition diagram of the components used in the ARM9 model.

Fig. 4. Internal block specifying an ARM9 system.

In order to describe the internal properties of the proces-
sor part, this part is refined by another internal block dia-
gram. The internal components are pipeline stages and the
register bank. The �HwRegisterbank� stereotype con-
tains all necessary information to specify the register bank
properties, i.e. the number of registers and the register
size. The refined processor block consists of pipeline stages
which are connected with each other to specify possible in-
struction paths. Pipeline stage parts are annotated with the
�HwPipelinestage� stereotype that may contain the
tags defaultCycle and branchExecuteStage. The
defaultCycle tag is used to ease the specification of the
timing behaviour of instructions that will be described in sec-
tion B. The tag branchExecuteStage is set for stages
which determine whether a branch is taken or not. If a branch
was miss-predicted, the pipeline is flushed to remove already
fetched instructions from the predecessor stages. Pipeline
stages which access the caches or the memory need appropriate
ports which connect them to the cache or memory ports of the
processor block (cf. fig. 4). Stages which processing require
register values, need a connection to the register bank.

Figure 5 depicts the five-ary pipeline of an ARM9 proces-
sor (cf. fig. 2(a)). For simplicity, only the annotations of the
fetch and execute stages are shown here. The fetch and mem-
ory stages have memory ports, because the fetch stage loads
instructions from the memory and the memory stage reads or
writes data.

Fig. 5. Internal block diagram of an ARM9 pipeline.

In case of a linear pipeline, all instructions take the same
path through the pipeline. Consecutive pipeline stages are con-
nected with each other via atomic flow ports (cf. fig. 5), a spe-
cial variation of UML ports which accept only one type and
have only one flow direction. The atomic flow port is typified
with the Instruction block (cf. fig. 3). In this way the path of
instruction objects through the pipeline is defined.

In case of a pipeline with parallel pipeline stages, e.g.
ARM11 pipeline, instructions may take different paths (cf.
fig. 2(b)). For example, an add (addition) is processed by the
ALU stage whereas a mul (multiplication) is processed by the
MAC stage, but both stages have the same predecessing stage.
Therefore, it is necessary to specify the paths depending on
the instruction types. Specialised instruction blocks are intro-
duced which are employed to typify the atomic flow ports of
the pipeline stages. In this way, the paths for the different in-
struction types is defined.

Figure 6 presents specialised instruction blocks for the in-
struction set of the ARM11 which correspond to the parallel
stages, i.e. ALUInstruction, MACInstruction, and LSInstruc-
tion. The actual instructions are specialisations of these blocks
and are reused in the behavioural model (cf. sec. B). Figure 7
depicts an extract of the internal block diagram defining the
pipeline of an ARM11 system. The flow of instruction objects
through the pipeline is restricted by the typed flow ports and
the item flow of the connectors between the ports.

The block definition diagram of all involved components,
the internal block diagram of the system layout and its refine-
ments, i.e. the pipeline description, and the instruction inter-



Fig. 6. Block definition diagram defining the instruction types of the ARM11.

Fig. 7. Extract of an internal block diagram for the pipeline of an ARM11.

face hierarchy, form the architectural model. In the next sec-
tion the pipeline behaviour and the timing behaviour of instruc-
tions are modelled with the help of sequence diagrams.
B. Instruction Behaviour Modelling

Processor instruction sets consist of instruction types with
different timing behaviours. For example, a multiply instruc-
tion needs more processor cycles than an addition and registers
may be needed in different pipeline stages. In the following,
the behaviour specification is exemplary described by means
of the instruction add. It adds two register values and stores
the result in the first register.

add r6, r4 // r6 = r6 + r4

Optionally, the instruction add supports shift flags to
left/right shift (multiply/divide by a power of two) the value
of the second register before the addition. The power is speci-
fied as a third parameter.

Figure 8 shows the specification of the pipeline behaviour
of the instruction add in an ARM9 processor. Instances of
the pipeline stage block corresponding to the stages modelled
in the internal block diagram pipeline (cf. fig. 5) are shown
on top. The registerbank is part of the diagram, because the
instruction has to access registers during processing. Since
the instruction is fetched by the fetch stage from the mem-
ory, a message to the memory element is modelled. The
�HwCycle� annotation and its tag cycleType specify
that the instruction consumes a memory cycle in the this stage.
If the tag cycleType is omitted, the default cycle type de-
fined in the internal block diagram pipeline is taken (cf. fig. 5).
In the decode stage an I-cycle is consumed which is modelled
by an annotated message to the decode stage. In the execute
stage exclusive access to the first register of the instruction

(r6) is needed, because the result of the addition is stored into
the first register, the second register (r4) is only read. This
is modelled by a message to the registerbank annotated with
the�HwRegisterComm� stereotype. The value of the tag
registerLock is set to 1, because the first register of the pa-
rameters is used to store the result. The tag registerRead
is set to 2, because the value of the second register is read.

As mentioned above, the instruction add may be invoked
with a shift flag, to shift the second register value before the
addition. A UML alt-frame is used to distinguish the different
behaviours depending on the instruction flags. In case of a set
shift flag, an additional I-cycle is consumed in the execute stage
to perform the shift operation and a third register is read. The
additionally read register value is again modelled by a message
to the registerbank. At the end of the calculations in the execute
stage, the register containing the final value, is unlocked and
the registerbank is informed that the registers are not needed
anymore. The message to the registerbank annotated with
�HwRegisterComm� and the tag registerReady set
to 1,2, indicates that the first and second register (r6 and r4) are
not needed anymore. In the following stages only I-cycles are
consumed due to the defaultCycle tag value in the inter-
nal block diagram pipeline. In this way, the pipeline behaviour
and the timing behaviour of the instruction set is modelled.

Fig. 8. Sequence diagram specifying the behaviour of the instruction add.

UML sequence diagrams are used to model the pipeline be-
haviour and the timing behaviour of instructions. The MARTE
profile is enhanced by new stereotypes to specify the model in
the desired level of detail. The instructions’ behaviour is mod-
elled cycle-accurate and register access is modelled, too.

The architecture model and the instructions behaviour
model specify the architecture and the behavioural aspects of
mobile systems. UML profiles, i.e. SysML and MARTE, are
employed in the modelling. SysML helps in specifying the
architecture and the MARTE profile enhances the model ele-
ments with semantical meanings.

V. EVALUATION
This section presents the evaluation of the simulation frame-

work and the applicability of the proposed modelling method-
ology. Traces from an ARM9 system are gathered and used as



input for two system models. First, a system with direct con-
nection between the processor and the bus is analysed. Second,
instruction and data caches are placed in between the processor
and the bus. These system architectures are modelled in UML
according to the presented methodology (cf. sec. IV). Sim-
ulation results for the standard C-lib memcopy function, jpeg
encoding, and jpeg decoding for both systems are presented in
detail and compared to measured real world figures. Samples
of simulation results for the AES algorithm (encoding and de-
coding) and the Dijkstra algorithm are presented, too. Finally,
predictions for a system with an ARM11 processor are shown.

The applications have been traced on an OMAP5912 board
[24] with the help of a Lauterbach tool set [25]. The OMAP
board contains an ARM926EJ-S MPU [22] with a clock fre-
quency of 192 MHz. The MPU provides a 16 kB instruction
cache as well as an 8 kB data cache. Both caches use a block
size of 32 bytes and are four-way associative. The AMBA sys-
tem bus [26] connects the processor, caches, and peripherals
like the main memory. A 32 MByte SD-RAM is used as main
memory. The operating system used is a Linux branch from
Montavista [27]. The Lauterbach tool is able to trace the ex-
ecuted instructions, the instruction addresses, and the data ad-
dresses in case of load and store instructions. The measured
timings are cycle-accurate. Since neither the specification of
the board, nor the specification of the used RAM give exact in-
formation about the memory access latencies, we measured the
latency of load and store accesses. Table I shows the measured
mean values as well as their standard deviation. The distance
between the requested addresses of successive instructions is
varied. It can be seen that the memory latency for successive
instructions with an address distance of 1000 bytes is around
50 ns larger than for smaller distances. Therefore, we mod-
elled the RAM accordingly with different latencies for a dis-
tance less and larger than 1000 bytes. Measurements of burst
accesses are stable and the following values are used in the
simulations; burst read: 10 ns and burst write 7 ns.

TABLE I. Mean measured memory latencies and standard deviations.

memory ad-
dresses distance

read std. write std.

4 bytes 125 ns 0.45 74 ns 11.75
100 bytes 129 ns 3.83 77 ns 3.88

1000 bytes 172 ns 15.70 120 ns 15.61
4000 bytes 172 ns 15.44 120 ns 15.47

A. C-lib memcopy Function Analysis
As first application multiple runs of the standard C-lib mem-

copy function with an increasing block size to copy are per-
formed. This application has a very high percentage of mem-
ory operations, so that the caches, the bus, and especially the
main memory affect the performance of the system.

The memcopy function is executed 32 times, each time the
buffer to copy is increased by 1024 bytes, starting with a buffer
size of 1024 bytes. Traces gathered on the OMAP board are

used to simulate the runtime on the two aforementioned sys-
tems, i.e. a system without caches and a system with instruc-
tion and data caches.

Figure 9 presents a comparison of the measured real-world
figures of the memcopy runs and simulation results with traces
of the memcopy function for the system without caches. The
mean values, the minimum and maximum of the measured
figures, and the simulation results are shown. The variations
of the measured figures and the simulation results can be ex-
plained by interrupts of the Linux kernel. The y-axis on the
right presents the relative errors of the mean values of the sim-
ulations compared to the measured figures. It can be seen that
the relative error decreases with an increasing block size of the
memcopy function. An explanation for this is the aforemen-
tioned fact of varying RAM latencies which is not modelled
in detail in our simulator and just simulated in an abstract way
by using mean access latencies. The influence of this impre-
cise main memory modelling is larger for small traces, because
only a few memory accesses occur.

Figure 10 presents a comparison of measurements and sim-
ulation results as described above for the system with instruc-
tion and data caches. The mean relative error of these sim-
ulations is larger than for the system without caches, but the
relative errors of the predictions decreases with an increasing
size of the memcopy traces. This can be explained by the fact
that in this configuration (with caches) significantly less mem-
ory accesses influence the runtime, because the caches handle
most of the memory requests. This deviation decreases with
the amount of memory accesses, so that for larger trace files
the influence of the abstract RAM modelling is reduced.

Fig. 9. Comparison of real-world measurements and simulation results of the
standard C-lib memcopy function for a system without caches.

B. MiBench Algorithms Analysis

The number of instructions and the number of memory ac-
cesses for real applications like jpeg encoding and decoding is



Fig. 10. Comparison of real-world measurements and simulation results of the
standard C-lib memcopy function for a system with caches.

magnitudes larger than for the memcopy function. The follow-
ing section presents measurements and simulations for appli-
cations taken from the MiBench suite [20]. Simulation results
of the jpeg encoding and decoding algorithms are presented in
detail. Sample results for AES and the Dijkstra algorithm are
presented. We used inputs from the MiBench suite or from the
MiDataSet collection [21].

The Mibench traces are much larger than the traces of the
memcopy function. The number of instructions of the memcopy
traces ranges from around 180 to ca. 17,000 depending on
the size of the buffer to copy. The number of instructions in
the jpeg traces range from around 2.4 million to 160 million
depending on the size of the input. The jpeg algorithms have
been also traced on the OMAP board and measurements for the
systems with and without caches have been performed.

Figure 11 shows measured real-world figures and the simu-
lated runtimes for the jpeg encoding of inputs taken from the
MiDataSet collection. The measurements and the simulations
are performed with instruction and data caches. On the x-axis
the input images are listed and the measured and simulated run-
times are plotted on the y-axis. The right y-axis is the scale for
the relative error. It can be seen that the measured runtimes
on the OMAP board do not vary like the measurements of the
memcopy function. This is due to the much larger runtime so
that interrupts of the Linux kernel do not significantly influ-
ence the measurements. The relative error (right y-axis) of the
simulation results is plotted for each input. The mean value of
the relative error is around 3.5%. The simulation results are
closer to the measured real-world figures than in the memcopy
analysis. This underlines the observation that the relative error
decreases with the number of instructions in the trace due to
the abstract modelling of the main memory.

Figure 12 shows the runtime predictions of the jpeg encod-
ing algorithm for a system without caches. The relative error

Fig. 11. Comparison of real-world measurements and simulation results of the
jpeg encoding algorithm for a system with instruction and data caches.

(right y-axis) of the simulation prediction is again plotted for
each input. It can be seen that the measured real-world figures
are predicted by the simulations for this configuration. The
mean relative error for the predictions is around 2%.

Fig. 12. Comparison of real-world measurements and simulation predictions
of the jpeg encoding algorithm for a system without caches.

The results for the jpeg decoding algorithm are similar to the
results of the jpeg encoding. Measurements and simulations of
six input images result in a mean relative error of less than 1%
in case of the system without caches and an error of around 4%
for the system with caches. Sample measurements and simula-
tions for the AES algorithm and the Dijkstra algorithm are also
in this range. The relative error for AES encoding is less than
2%, for AES decoding around 4%, and the Dijkstra runtime is
simulated with less than 1% deviation.

Due to the lack of cycle-accurate measurements for an



ARM11 system, the Linux gettimeofday function has been
used to measure the runtime of ARM9 jpeg encoding and de-
coding binaries on an ARM11. The ARM11 system runs at a
clock speed of 210 Mhz and incorporates an 32 kB instruction
and a 32 kB data cache. The measurements show a speedup of
1.28 for encoding and a speedup of 1.14 for decoding, which
implies a 12% higher speedup of encoding. The encoding pro-
cess has a higher ratio of arithmetical operations which are
processed in I-cycles and therefore, the encoding profits more
from the higher clock rate of the ARM11 than the decoding
process. Due to the unknown memory access latencies of the
ARM11, the ARM9 OMAP board settings are used in the sim-
ulations. Thus, only the ratio of the predicted speedups can be
compared with the measurements. The simulations of ARM9
traces on the ARM11 model results in a speedup prediction of
1.39 for encoding and 1.23 for decoding. This implies a 13%
higher speed up of encoding. Thus, nearly the same speedup
ratio as in the measurements (12%) is predicted.

The evaluation shows that the accuracy of the simulation
results increases with the size of the input traces. An explana-
tion for this is the abstract simulation of RAM modules in the
timing simulator. The simulated systems are modelled accord-
ing to the proposed modelling methodology which shows the
applicability of the methodology.

VI. CONCLUSION

Simulations of instruction traces of applications gathered
on existing hardware to predict the performance of non-
existing hardware architectures is a common means in the
area of performance engineering. This paper presented a
methodology for modeling system architectures of mobile
systems, and especially processor details. These models
are used to configure a modular trace-based timing simu-
lator. The modular design of the simulator allows for a
flexible configuration so that a large number of systems
may be configured. The modelling methodology is UML-
based. The SysML profile and the MARTE profile are utilised
by the methodology to enhance the model with the neces-
sary semantics. The stereotypes �HwPipelinestage�,
�HwRegisterbank�, �HwWritebuffer�, �Hw-
RegisterComm�, and �HwCycle� are introduced to
model the systems with the desired level of detail. The UML
diagrams are not only used to describe the system but are used
to configure the simulator. An ARM9 case study shows the
applicability of the modelling methodology and of the mod-
ular simulator. Runtime predictions for system architectures
with caches and without caches are presented and compared to
measured real-world figures.

Future work will focus on an extensive analysis of further
applications and algorithms from the MiBench suite. The main
memory module has to be modelled and simulated in more de-
tail. Thus, the modelling methodology will be enhanced to
support this requirements, so that an increase of the predic-
tions’ accuracy can be expected. Furthermore, the ARM9 case
study will be transfered to an ARM11-based system.

REFERENCES

[1] OMG, “Omg systems modeling language (omg sysml), v1.0,” Sep 2007.
[2] ——, “A uml profile for modeling and analysis of real-time and embed-

ded systems (marte), beta 1,” Aug 2007.
[3] J. J. Yi, L. Eeckhout, D. J. Lilja, B. Calder, L. K. John, and J. E. Smith,

“The future of simulation: A field of dreams,” Computer, vol. 39, no. 11,
pp. 22–29, 2006.

[4] L. Eeckhout, K. de Bosschere, and H. Neefs, “Performance analysis
through synthetic trace generation,” in ISPASS’00: Proceedings of the
2000 IEEE International Symposium on Performance Analysis of Sys-
tems and Software. Washington, DC, USA: IEEE Computer Society,
2000, pp. 1–6.

[5] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for
computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67, 2002.

[6] D. C. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,”
Tech. Rep. CS-TR-1997-1342, 1997.

[7] F. Bellard, “Qemu homepage,” http://fabrice.bellard.free.fr/qemu/, 2007.
[8] C. A. Prete, M. Graziano, and F. Lazzarini, “The charm tool for tuning

embedded systems,” IEEE Micro, vol. 17, no. 4, pp. 67–76, 1997.
[9] H. Cain, K. Lepak, B. Schwartz, and M. Lipasti, “Precise and accurate

processor simulation,” in Proceedings of the Fifth Workshop on Com-
puter, Feb 2002, pp. 13–22.

[10] J. Flanagan, B. Nelson, J. Archibald, and G. Thompson, “The inac-
curacy of trace-driven simulation using incomplete mulitprogramming
trace data,” in MASCOTS, 1996.

[11] C. U. Smith and L. G. Williams, Performance Solutions, A Practical
Guide to Creating Responsive, Scalable Softwarre. Addison-Wesley
Pearson Education, 2001.

[12] M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Israr, and
J. Merseguer, “Performance by unified model analysis (puma),” in WOSP
’05: Proceedings of the 5th international workshop on Software and per-
formance. New York, NY, USA: ACM Press, 2005, pp. 1–12.

[13] L. Pustina, S. Schwarzer, M. Gerharz, P. Martini, and V. Deichmann,
“Performance evaluation of a dvb-h enabled mobile device system
model,” in WOSP ’07: Proceedings of the 6th International Workshop
on Software and Performance. New York, NY, USA: ACM, 2007, pp.
164–171.

[14] S. Balsamo and M. Marzallo, “Performance evaluation of uml system
architectures with mutliclass queueing network models,” in WOSP, 2005.

[15] OMG, UML Profile for Schedulability, Performance, and Time Specifi-
cation: Version 1.0. Object Management Group, 2003.

[16] X. Wu and M. Woodside, “Performance modeling from software compo-
nents,” vol. 29, no. 1. New York, NY, USA: ACM, 2004, pp. 290–301.

[17] R. Klein, K. Travilla, and M. Lyons, “Performance estimation of mpeg4
algorithms on arm based designs using co-verification,” 2002.

[18] A. Phansalkar, A. Joshi, L. Eeckhout, and L. John, “Measuring program
similarity: Experiments with spec cpu benchmark suites,” in ISPASS’05:
Proceedings of the 2005 IEEE International Symposium on Performance
Analysis of Systems and Software. Austin, TX: IEEE, 3 2005, pp. 10–
20.

[19] J. Yi and D. Lilja, “Simulation of computer architectures: Simulators,
benchmarks, methodologies, and recommendations,” IEEE Transactions
on Computers, vol. 55, no. 3, pp. 268–280, 2006.

[20] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in WWC ’01: Proceedings of the Workload Character-
ization, 2001. WWC-4. 2001 IEEE International Workshop on. Wash-
ington, DC, USA: IEEE Computer Society, 2001, pp. 3–14.

[21] G. Fursin, J. Cavazos, M. O’Boyle, and O. Temam, “Midatasets: Cre-
ating the conditions for a more realistic evaluation of iterative optimiza-
tion,” in International Conference on High Performance Embedded Ar-
chitectures & Compilers (HiPEAC 2007), January 2007.

[22] ARM926EJ-S Technical Reference Manual, ARM Limited, 2003.
[23] ARM11 MPCore Technical Reference Manual, ARM Limited, Feb 2008.
[24] OMAP5912 Applications Processor Data Manual, Texas Instruments,

Dec 2003.
[25] Lauterbach, “Lauterbach homepage,” http://www.lauterbach.com, 2008.
[26] AMBA Specification (Rev 2.0), ARM, May 1999.
[27] “Montavista linux,” http://www.mvista.com, 2008.


