
Performance Aware Design of Communication Systems

Lukas Pustina, Michael Gerharz, Peter Martini, Simon Schwarzer
Institute of Computer Science IV, University of Bonn

D-53117 Bonn, Germany
{gerharz,martini,pustina,schwarzer}@cs.uni-bonn.de

Volker Deichmann
Nokia Research Center

D-44807 Bochum, Germany
volker.deichmann@nokia.com

Abstract

In this paper we present a methodology for a perfor-
mance aware design of communication systems including
protocols and devices. The goal is to evaluate the perfor-
mance already in early stages of the design process to avoid
costly re-designs of bottlenecks in finished products. From
protocol specifications given as sequence diagrams, we de-
rive multiclass queueing networks as a means to estimate
the performance of the system architecture before any exe-
cutable prototype exists. This makes queueing theory acces-
sible to system and protocol designers even if the designer
is not familiar with details of queueing network theory. The
methodology supports an easy evaluation of design alterna-
tives without affecting the functional model. To achieve this,
it incorporates the performance information into the system
model in a non-invasive fashion, such that the system model
remains meaningful without this information.

1 Introduction

Due to increasing complexity, performance aspects be-
come more and more important in system design. In com-
munication systems, performance aspects are important on
two different levels. First of all, end-to-end performance
determines the user experience and allows for network re-
sources planning. On a more detailed level, the performance
of single devices is important to guarantee that each com-
ponent on an end-to-end path is able to reach the required
service level. This includes network elements as well as end
user devices. For example, in a video conferencing scenario
it is required that, on the one hand, the end devices, e.g.
mobile phones, are powerful enough to decode the video
stream in real-time and, on the other hand, the network de-
lay is small enough.

Therefore, it is important to consider these performance
aspects already in early phases of the system design (e.g.
when developing a new hardware architecture) when exe-
cutable prototypes are not yet available. This is the purpose

of the research area of performance engineering.
Existing approaches to performance engineering focus

on one performance aspect only. For example, to estimate
the end-to-end performance of a network running a certain
protocol family (such as e.g. video conferencing), queue-
ing network analysis and simulation are well-established
means. However, the performance of a network device is
often analysed by using a detailed emulation of the hard-
ware which prohibits reasonable performance estimates in
early stages of a development.

Therefore, we have derived a performance engineering
framework which makes queueing network theory accessi-
ble for device development as well. The framework is based
on the fact that message sequence charts are a common
way to describe communication protocols and algorithms.
As UML is todays de-facto standard for system modelling,
we propose a modelling approach which utilises UML se-
quence diagrams to specify the system behaviour (i.e. proto-
col procedures or algorithm functions). Hardware platforms
for the devices running the protocols are defined using UML
composite structure diagrams.

A major benefit of this UML based approach is that
the power of queueing network theory becomes available
to system designers unfamiliar with the details of this the-
ory. A further benefit of this approach is that the system
can be analysed on different levels of detail using the same
methodology, e.g. modelling and analysing a single device
as well as the complete system on an end-to-end basis. Fur-
thermore, design alternatives may easily be evaluated with-
out the need to build several prototypes.

The methodology we developed derives multiclass
queueing networks from the given UML diagrams. A
queueing network consists of interconnected queueing cen-
ters which process incoming jobs from one or several work-
loads. The processing is characterised by a workload de-
pendent, stochastically distributed service time. The inter-
connection may include branches and feedbacks forming a
loop. In order to distinguish between different visits of a job
to the same queueing center, multiclass queueing networks
assign a job class to each job.

391-4244-0419-3/06/$20.00 ©2006 IEEE

In the following, sec. 2 summarises related work in the
context of queueing network based performance engineer-
ing. Sec. 3 describes our approach to modelling a sys-
tem which is based on the fact that sequence diagrams are
widely applicable in protocol design. Sec. 4 outlines our
algorithm to derive queueing networks from a UML based
system specification. In sec. 5 we present first results gen-
erated by our prototypical implementation. Finally, sec. 6
summarises the paper and outlines perspectives for future
work.

2 Related Work

In their pioneering work of integrated performance anal-
ysis Williams and Smith introduced the usage of queueing
networks in their SPE (Software Performance Engineering)
approach [17, 18]. Since then, the usage of UML as a mod-
elling language in the context of performance analysis has
been proposed by several authors [2, 5, 7, 8, 16, 13, 19, 12,
17, 6] and may be considered as a de-facto standard. There-
fore, we adopt the idea of generating performance models
from a set of UML diagrams for performance analysis in
early stages of development.

For modelling non-functional hardware and software as-
pects, we adopt the UML Profile for Schedulability, Perfor-
mance, and Time Specification (SPT profile) [14], which
also was proposed in several papers [19, 3, 2, 11].

Concerning the performance analysis, different kinds of
performance models have been proposed, e.g. execution
graphs used in [18, 17, 7, 6], petri nets utilised in [5, 13],
(extended) queueing networks instrumented in [2, 18, 17, 7,
12, 6, 11], or layered queueing networks [19, 15]. A good
overview of different methodologies, categorised amongst
others by the kind of performance model, the modelling
language used, and – in the case of UML – the diagrams
chosen is given in [1].

In this paper, we concentrate on a methodology that au-
tomatically derives queueing networks from UML 2.0 di-
agrams annotated according to the SPT profile. The pre-
sented methodology has been implemented and can be used
seamlessly with UML.

A range of other publications follows a similar approach
(see above). In [11], the UML 2.0 component diagram is
used to specify properties of the components which are to
be transformed into queueing centers, but the methodology
focuses on software aspects only, while the hardware of the
developed system is not considered.

The authors of [2] propose the usage of multiclass queue-
ing networks derived from UML models using use case, ac-
tivity and deployment diagrams. Software and hardware as-
pects can be modelled with these diagrams and are trans-
formed into a queueing network. Using use case diagrams
for specifying scenarios and the involved workloads is a

widely used and accepted practise also applied by [7, 6].
In contrast to [2, 7, 6], we use the new composite struc-

ture diagram of UML 2.0 for architecture modelling. It sup-
ports an evolution of the model by a hierarchy of refining
diagrams during the development process.

Moreover, we use sequence diagrams for modelling the
behavioural aspects similar to [7, 6, 18, 19, 11] which use
either generic message sequence charts or also UML se-
quence diagrams. In contrast to using activity diagrams
which require an annotation of the required resource to the
action [2], our approach employs composite structure di-
agram to associate software with hardware by reusing the
system components defined in class diagrams. In this way,
the mapping may be graphically performed in the model
and developers need to change only one diagram resulting
in an automatic propagation of this change to all related di-
agrams.

3 Modelling

In this section, we introduce our methodology to model
communication systems based on UML 2.0 and the UML
SPT profile (cf. sec. 2). Note that the SPT profile has been
specified for UML 1.x, for obvious reasons not taking care
of changes introduced by UML 2.0. A UML 2.0 compli-
ant successor of the SPT profile is currently not available.
Therefore, we adapted the current profile where necessary.
The methodology proposed enforces a strict separation of
the system model itself (cf. sec. 3.1) and the correspond-
ing performance model (cf. sec. 3.2) in the sense that per-
formance information is integrated within the model in a
non-invasive manner. Following this clear separation, it is
possible to maintain the system model independently from
the performance aspects so that the system model remains
meaningful without the performance information. Further-
more, the effects of altering the properties of a certain com-
ponent may easily be evaluated without the need to modify
the system model.

The methodology supports an evaluation of different per-
formance scenarios (cf. sec. 3.3) in a straightforward way
without the need to modify either the system model or the
performance model. This is achieved by defining a set of
use cases (the scenarios of interest) and defining workloads
for each scenario. Furthermore, by specifying which part
of the system should be analysed, it is possible to evaluate
the performance of the end-to-end system, certain network
elements, or even specific components of a single device.

For the presentation of the material we use a common
use case which is a video conference run on a mobile phone
using WLAN. Basically, we inspect the data decompression
on a single mobile. The mobile consists of a general multi-
purpose processor (MPU), a digital signal processor (DSP)
for decompression, and a display to show the video stream.

40

The data is received from a WLAN access point. If a trans-
mission error occurs, the frame will be resent. The MPU
passes the data to the DSP which decompresses each packet
in several iterations. Finally, the packet is sent to the dis-
play.

3.1 System Modelling

For modelling the system, we follow the common ap-
proach (e.g. [9]) to distinguish between the components
of the system, the topology of the system, i.e. the inter-
connection of the components, and the dynamic behaviour
of the system.

The system components are modelled by using class di-
agrams as in the example shown in fig. 1. It is reasonable to
include an explicit definition of the interfaces the class pro-
vides. Interfaces may be defined in UML using the stereo-
type <<interface>> and attached to a class as “required”
and “implemented” interfaces depicted by lollipops.

Figure 1: Class Diagram describing the mobile component

The system topology which specifies how the compo-
nents are interconnected is modelled by using composite
structure diagrams (cf. fig. 2 and 3 for an example). In
UML terminology, the elements (components) of a com-
posite structure diagram are interpreted as objects which
are instances of the specified classes. Thus, the class and
interface definitions modelled as mentioned above may be
reused. Components are interconnected by links and sup-
port the usage of the specified interfaces. Of course, multi-
ple instances of the same class may be interconnected.

It is possible to refine a class by a separate composite
structure diagram specifying its internal structure. This ap-
proach results in a hierarchy of composite structure dia-
grams. Fig. 4 shows such a hierarchy with the root CSD
RootCSD and the refinement composite structure diagram
Mobile; the diamonds represent components without a re-
finement. We call the top-level diagram the root composite
structure diagram (root CSD). From the root CSD all other
components are reachable in the component structure dia-
gram hierarchy in the sense that they are either parts of the
root CSD itself or of a refining composite structure diagram.

From a design perspective, it is desirable that different
design alternatives of a specific component can be easily
evaluated (i.e. of its refining composite structure diagram)

without the need to maintain two versions of the complete
model. Note that this is only possible with a clear sepa-
ration of the component functionality specified in the class
diagram and the architectural properties (including capac-
ity values, see below) specified in the composite structure
diagram.

Figure 2: Composite Structure Diagram describing the root CSD

Figure 3: Composite Structure Diagram describing the internal
structure of the mobile component

Figure 4: Hierarchy tree showing the root and a refinement CSD

The dynamic system behaviour is modelled by using se-
quence diagrams to specify use cases of the system. This
is a well-established approach for modelling the message
exchange between different entities in a closed system or
in a network. Again, the classes defined in the class dia-
grams may be reused and instantiated as objects in sequence
diagrams. Thus, the objects may exchange messages de-
fined as methods in classes or interfaces (cf. fig. 5). Note
that objects exchanging messages do not need to be directly
connected in the system topology, but may communicate
through intermediate components as well. In this case, it
must be ensured that a communicating path in the system
topology exists and routing information must be gathered

41

in order to establish a path between the sender and the re-
ceiver. This is discussed in more detail in sec. 4.1.

UML 2.0 includes so called interaction frames which
may be used to model complex control flows in sequence
diagrams. These interaction frames include alt-frames
(alternative execution), loop-frames (repeating execution),
ref-frames (inclusion of other sequence diagrams) et al.
The par-frame defining parallel execution with forks or
joins, is excluded in our methodology, because there is no
equivalent representation in queueing networks. [11] sug-
gests to use so called “Extended Queueing Networks” to
incorporate parallelism. This approach could be easily in-
tegrated into our simulative evaluation (cf. sec. 4.3). Note
however, that a valid way to model parallelism is to use sev-
eral use cases in a performance scenario (cf. sections 3.2
and 3.3) resulting in multiple workloads each with its own
jobs.

Figure 5: Sequence Diagram describing data receipt ion and pro-
cessing

3.2 Performance Modelling

A performance model describes the non-functional as-
pects of a system with respect to its performance. Two steps
are necessary to fully specify a performance model. First,
the performance capacity of each component has to be con-
figured, and secondly, the resource demand of each action
defined for the functional behaviour has to be provided for
each component and each use case.

3.2.1 Modelling the Component Capacities

Similar to the system topology, the specification of the ca-
pacity of each component is an important and at the same
time difficult part of the design decisions. In order to eval-
uate different topologies, the composite structure diagram
was selected for topology modelling because of its flexibil-
ity and the possibility to easily exchange and compare it
with other topologies. Thus, it is sensible to define the ca-
pacity of components in the corresponding composite struc-
ture diagram as well. In this way, the configuration of the
components is as exchangeable as the topology itself. Thus,

a designer is able to exchange entire parts of the architec-
ture at once. The alternative approach to incorporate the
performance capacity into class diagrams would require to
change the model at two different places in order to alter the
architecture.

For the component capacity specification, we use the
SPT profile tagged value PArate which is part of the
<<PAhost>> annotation. It allows us to specify the com-
ponent capacity as a relative speed value compared to a ref-
erence component with a default value of PArate=1 (this
component does not need to be part of the diagram). If
a component provides this reference speed, the annotation
may be omitted.

To obtain absolute component capacities, the relative
speed values are multiplied along the composite structure
diagram hierarchy. As the system topology evolves from
the hierarchy of composite structure diagrams, the compo-
nent capacities should affect all refinement components as
well. Thus, a speed-up of a component results in speed-
ing up all its refinement components as well. This allows
the designers to change the architecture of either the whole
subsystem or merely specific components if applied on the
lowest layer.

This inheritance approach is more sensible than speci-
fying absolute capacities directly in the PArate values, be-
cause a desired change of the architecture would impose
changes on every single sub-layer as well.

In order to transform the system model into a queueing
network, it is also necessary to specify the scheduling pol-
icy of each component. The tagged value PAschdPolicy is
used for this purpose. It is added to the <<PAhost>> annota-
tion in the same way as the PArate tagged value. Because
the FIFO service discipline is the most common one, it is
used as the default policy.

3.2.2 Modelling the Resource Demand

The second step of performance modelling is the modelling
of the resource demand resulting from the functional be-
haviour of the system executing a given use case. Note that
each message defined in a sequence diagram triggers an ac-
tion on the receiving component and thus, uses resources
on that component. Therefore, in this step it is ultimately
required to provide estimates for the resource demand of
every action defined in the sequence diagrams which spec-
ify the functional behaviour of the system.

According to the SPT profile, resource demand is spec-
ified by the PAdemand tagged value inside a <<PAstep>>
annotation. The demand is represented by a triple consist-
ing of a source modifier specifying how the demand was
captured (e.g.measured or estimated), a type modifier giv-
ing the type of the value (e.g. average value or distribution),
and a time value which is the actual service time and can

42

also be expressed by a probability distribution (for further
details refer to the SPT profile[14]) (cf. PAdemand anno-
tation in fig. 5). To get the actual resource consumption
from this demand, the demand value has to be divided by
the speed factor of the component defined above (cf. sec.
4.2).

In a straightforward approach, every message in a se-
quence diagram (describing a certain use case) would be
annotated with a <<PAstep>> definition specifying the re-
source demand triggered by that action. However, the au-
thors of [11] propose a solution that allows for the speci-
fication of a default resource demand for each component.
For this purpose, a component in a composite structure dia-
gram may be annotated with a <<PAstep>> value such that
whenever an action on this component is triggered, the de-
fault resource demand is assumed unless a scenario depen-
dent resource demand is specified in the sequence diagram.
Note that this use of the <<PAstep>> annotation is not SPT
profile compliant.

3.3 Performance Scenario

The system and performance modelling steps described
in sec. 3.1 and 3.2 show how to specify the functional and
the non-functional aspects of a system with the focus on
performance evaluation. Next, we address how to use these
models to actually evaluate the performance of a given sys-
tem.

The components to be evaluated vary depending on the
developer’s perspective and interests which determine the
performance scenario to be examined. A performance sce-
nario consists of the system topology description and one
or more separate use cases. The starting point of a single
use case is its root step which does not necessarily need to
be the first message specified, but depends on the designer’s
interest. The SPT profile stereotypes <<PAopenLoad>> and
<<PAclosedLoad>>, which assign a workload (basically an
arrival process for the annotated message), determine the
root step and must be unique in each sequence diagram.

The processing composite structure diagram (process-
ing CSD) of a performance scenario is the composite struc-
ture diagram which, together with its refinement CSDs, de-
scribes the topology of the components participating in the
selected use cases. Thus, it is possible to evaluate only a
part of the whole system by selecting a subset of the use
cases and a processing CSD representing the first hierarchi-
cal layer of the topology of the system part. The developed
methodology supports this composition of performance sce-
narios as proposed by the SPT profile. According to the in-
terests of the designers, they incorporate several sequence
diagrams to one performance scenario in order to evaluate
the effects of the parallel execution of these diagrams and
the resulting concurrent demands.

4 Transformation

In this section, we present an algorithm using the system
model and the performance scenario definition as described
in the previous section to generate a multiclass queueing
network. This queueing network may be evaluated by third
party tools in an analytical or simulative way.

The transformation algorithm consists of four steps as
depicted in fig. 6. For each use case specified in the per-
formance scenario, the chain of actions is identified which
basically describes the flow of execution triggered by the
reception of messages in the sequence diagrams. Thereafter
each action is mapped to the components performing the
action by evaluating the composite structure diagram hier-
archy. This information is used to specify the queueing net-
work for this specific use case. Steps 1–3 are repeated for
each use case until finally, in step 4, all individual queue-
ing networks are merged to the resulting queueing network
covering the whole performance scenario. For this purpose,
multiclass queueing networks are used.

Figure 6: The four steps of the transformation algorithm

4.1 Identifying the Chain of Actions

In the first step each sequence diagram associated with
the involved use cases is transformed into what we call a
chain of actions. Note that every message in a sequence di-
agram corresponds to an action in the receiving object trig-
gered by the reception of that message. The corresponding
chain of actions for the use case described by the sequence
diagram in fig. 5 is depicted in fig. 7. Following the se-
quence of messages, a chain of such actions evolves. Note
that loops and alternatives are independent elements in the
chain of actions which are resolved in a later step (cf. 4.3).
Finally, for each action the resource demand is identified
according to their <<PAStep>> annotation (cf. sec. 3).

43

Figure 7: Chain of actions for data reception use case

As mentioned in sec. 3.1, our methodology supports
both direct and indirect message exchange. In case of an
indirect message exchange, i.e. when the communicating
components do not share a direct link in the system topol-
ogy, a route from the source of the message to its destination
component must be determined, because resources are con-
sumed on these components as well. (Note that the designer
must ensure for the existence of such a route.)

In general, such a route may be discovered using com-
mon routing algorithms such as Dijkstra, Bellman-Ford or
a simple breadth first search. In that case, the components
of the composite structure diagrams would correspond to
the nodes inside a graph for which the links are defined by
the connections between the components. A drawback of
this approach is that the selected route might not neces-
sarily be the desired one if several alternative routes exist
(even if it is optimal under a specific metric). To leverage
this situation, additional information could be incorporated
into the model to guide the algorithm in discovering the de-
sired route, e.g. by specifying required and implemented
interfaces in intermediate components. However, note that
this additional information violates the non-invasive princi-
ple since it modifies the system model.

If a message is exchanged indirectly, the implicit actions
on the intermediate components are additionally inserted
into the chain of actions in front of the message target. Since
these intermediate components are not annotated with a use
case specific demand in the currently processed sequence
diagram, the default resource demand as defined in (cf. sec.
3.2.2) is used instead.

4.2 Mapping Actions to Components

Step 2 takes the elements from the chain of actions and
maps each of them to its executing component which may
be derived from the hierarchy of composite structure dia-
grams. As the resource consumption is analysed on the level
of the processing CSD, all components in sub-diagrams
have to be mapped to their containing component in the
processing CSD. In the video conference example, the com-
ponents are mapped to the Mobile composite structure dia-
gram depicted in fig. 2 which is used as the processing CSD.
For additional components which the processing CSD does
not contain but which are required for the use case defini-
tion (e.g. source and sink in an end-to-end scenario), the
corresponding components are derived from the root CSD
or sub-hierarchies thereof. In the example, this is necessary

for the access point component AP.
Additionally, in order to configure the queueing network

properly the capacity of each processing resource has to be
determined. From the hierarchy of composite structure dia-
grams, a component’s capacity may be calculated from the
PArate tagged value as described in sec. 3.2.1, i.e. the rela-
tive speed values propagate from the processing CSD down
to the refinement CSDs by multiplying the respective val-
ues.

The result of this step is the sequence of processing re-
sources in the way they are “visited” in the current use case
and the resource demand that is generated by the actions
corresponding to that step. Thus, each step of the sequence
is annotated with the corresponding resource demand as
well as the capacity of the associated component.

4.3 Generating a Queueing Network for a Single
Use Case

In step 3, the sequence of processing demands and com-
ponents generated in step 2 is transformed into a queueing
network corresponding to the original use case. First of all,
each participating component is transformed into a queue-
ing center. The service times for each queueing center are
calculated by dividing the resource demand as derived in
the chain of actions and the resource capacity as derived in
step 2. The scheduling policy of the queueing centers is
taken from the PAschdPolicy tagged value of the process-
ing CSD <<PAhost>> annotations.

The connection of the queueing centers, which deter-
mines the possible paths a job may take through the queue-
ing network, is derived from the chain of actions. In a first
step, the structural elements identified in step 1, i.e. loops,
alternatives and plain actions, are connected as specified
in the sequence of processing resources. In a second step,
loops and alternatives are resolved. A special treatment is
also required for implicit loops in which the same resource
is visited twice or more in the sequence of processing re-
sources. These revisits evolve from either another message
sent to the same component in the sequence diagram or by
mapping different refinement components to the same pro-
cessing CSD component. In contrast to implicit loop, ex-
plicit loops are explicitly specified in the sequence diagrams
using the loop-frame. Alternatives, specified using alt-
frames, distribute the jobs to several subsequent queueing
centers according to branching probabilities provided in the
sequence diagram.

The actual transformation of these structural elements
heavily depends on the desired type of queueing network
evaluation. For an analytical evaluation, currently only
product form queueing networks[10] which conform to the
BCMP rules[4] are supported. Non-product form queueing
networks are supported by simulation.

44

4.3.1 Structural Transformation for Analytical Evalu-
ation

If the queueing network is in product form, an analytical
evaluation may be performed by considering each queue-
ing center separately. In this case, it suffices to determine
the service demand on each component. According to the
forced flow law (cf. [10]) the service demand Di of a job
in a queueing center i is the product of the service time Si
for that job and the number of visits Vi of this job to that
queueing center. Thus, for each queueing center, we have
to determine how often it is visited by each job on average.

Di = Vi ·Si (1)

Implicit loops correspond to revisits of a particular
queueing center and increase the number of visits by 1. Ex-
plicit loops are handled in a similar way by increasing the
number of visits by the number of repetitions of the respec-
tive loop. Since explicit loops may span several queueing
centers, the number of visits must increase for each center.
In case of an alternative, the corresponding queueing cen-
ters are visited with a certain probability. Thus, the number
of visits is increased by this probability. Note that an alter-
native may span several queueing centers.

4.3.2 Structural Transformation for Simulative Evalu-
ation

In contrast to the analytical simulation, the sequence of
the queueing centers is very important for the simulative
model, because it determines the paths a job can take to
move through the network. Thus, to generate the structure
of the queueing network it is necessary to resolve the three
structural elements, i.e. implicit loops, explicit loops, and
alternatives, in such a way that each single path through the
network possibly initiated by the current workload is avail-
able in the resulting queueing network for this scenario.

As mentioned above, loops essentially result in re-
visiting the same queueing center several times. To be able
to service each visit of a job of the same workload with a
different service time, it is necessary to distinguish between
each visit. For this purpose, we use the concept of multi-
class queueing networks. Basically, the job class of a job
needs to be increased for every loop iteration so that a dif-
ferent service time may actually be used for each iteration.

For the implementation of implicit loops, the transfor-
mation needs to reconnect the outgoing link of a queueing
center for the incoming job class to the input of the same
queueing center for the increased job class. Concerning ex-
plicit loops, the transformation must ensure that all queue-
ing centers that are part of the loop are connected. The out-
going link of the last queueing center of the loop needs to
be reconnected to the input of the first queueing center of

the loop. This way, the jobs of the job class to loop are con-
tinuously rerouted back to the loop start until they finished
the last repetition after which they leave the last queueing
center of the loop to the remaining queueing network.

The conversion of an alternative exploits the fact that
each individual branching connection to a sub-queueing
network can be handled like a regular connection. Before
the jobs leave the queueing center in front of an alternative,
they are pseudo-randomly assigned to one of the branches
according to the given probabilities. Additionally, the out-
put of each branch is connected to the queueing center suc-
ceeding the alternative. Here, it is necessary to recombine
the split job stream by assigning a uniform job class to every
job leaving the different branches.

Fig. 8 shows the result of the transformation of the video
conference scenario (cf. fig. 5).

Figure 8: Single queueing network for data reception use case

4.4 Combining Use Cases to the Resulting Queue-
ing Network

The last transformation step merges the use case specific
queueing networks generated in step 3 to a unified queue-
ing network representing the entire performance scenario.
In this step, it has to be assured that the job classes assigned
in the use case specific queueing networks are mapped to
unique job classes of the unified queueing network. This
allows the queueing centers to distinguish between the use
cases, and thus to process jobs of different workloads with
the appropriate service times. In the video conference ex-
ample, there is only one use case, and thus the resulting
queueing network equals the single queueing network de-
picted in fig. 8.

5 First Results

This section presents first results generated by our proto-
typical implementation. The performance values used here
are not based on real world measurements and are simply
used to demonstrate the applicability of our methodology.
A sophisticated validation is out of scope of this paper and
will be part of future work.

45

The evaluated performance scenario consisted of the use
case described by fig. 5 only. The mobile device receives
video frames from the AP, decodes them in the MPU, iter-
atively decompresses them by the DSP, and finally shows
them on the display. In case of a transmission error, the
missing ACK forces an immediate retransmission by the AP.
For clearness, the workload has been annotated in this dia-
gram as well. Tab. 1 presents the performance values and
some of the results given by our implementation for the DSP
component.

Element Parameter
Workload dist.: normal(40, 1) 25 fps
loop repetition: 3
aDSP dist.: normal(10, 1) service time
Results
Utilisation 75%
Avg. queue len. 1.75

Table 1: Performance data for DSP component

In this example, the utilisation of the DSP is 75% and the
average queue length is 1.75. These results may be easily
validated by manual calculations.

6 Conclusion & Further Work

In this paper, we have introduced a performance engi-
neering framework which allows the evaluation of commu-
nication systems in early phases of their development. The
methodology is based on using UML sequence diagrams to
model protocol behaviour and use cases. From these dia-
grams, multiclass queueing networks are derived which can
either be simulated or analysed mathematically such that
the power of queueing network theory becomes available to
system designers not familiar with the details of this theory.

For specifying hardware properties, UML composite
structure diagrams have been proposed which allow a sys-
tem to be designed in a hierarchical manner. Performance
relevant information is incorporated into the model in a
non-invasive fashion leaving the system model independent
from the actual performance scenario.

This way, design alternatives may be easily evaluated
and compared. Furthermore, the system may be analysed
from different perspectives, focusing either on the systems
end-to-end performance, the performance of single devices
running the specified protocols, or a combination of both.
Different abstraction levels are possible for different devices
on an end-to-end path.

An implementation of the presented methodology exists.
Future work will focus on a seamless integration into exist-
ing UML environments to enhance its practical applicability
in protocol and system design. In this context, it is also en-

visioned to make use of a more detailed functional model
provided by UML state charts.

References

[1] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni.
Model-based performance prediction in software develop-
ment: A survey. IEEE Trans. Software Eng., 2004.

[2] S. Balsamo and M. Marzallo. Performance evaluation of
uml system architectures with mutliclass queueing network
models. In WOSP, 2005.

[3] S. Balsamo, M. Marzolla, A. D. Marco, and P. Inverardi.
Experimenting different software architectures performance
techniques: a case study. In WOSP, 2004.

[4] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios.
Open, closed, and mixed networks of queues with different
classes of customers. J. ACM, 1975.

[5] S. Bernardi, S. Donatelli, and J. Merseguer. From uml se-
quence diagrams and statecharts to analysable petri net mod-
els. In WOSP 2002, 2002.

[6] V. Cortellessa, M. Gentile, and M. Pizzuti. Xprit: An xml-
based tool to translate uml diagrams into execution graphs
and queueing networks. In QEST, 2004.

[7] V. Cortellessa and R. Mirandola. Deriving a queueing net-
work based performance model from uml diagrams. In
Workshop on Software and Performance, 2000.

[8] V. Cortellessa and R. Mirandola. Prima-uml: a performance
validation incremental methodology on early uml diagrams.
Sci. Comput. Program., 2002.

[9] ETSI. UML Profile for Communicating Systems (draft).
2005.

[10] R. Jain. The Art of Computer Systems Performance Analysis.
Wiley Professional Computing, New York, 1991.

[11] A. D. Marco and P. Inverardi. Compositional generation of
software architecture performance qn models. In WICSA,
2004.

[12] M. Marzolla and S. Balsamo. Uml-psi: The uml perfor-
mance simulator. In QEST, 2004.

[13] J. Merseguer and J. Campos. Software performance model-
ing using uml and petri nets. In MASCOTS Tutorials, 2003.

[14] OMG. UML Profile for Schedulability, Performance, and
Time Specification: Version 1.0. Object Management Group,
2003.

[15] D. C. Petriu and X. Wang. From uml descriptions of high-
level software architectures to lqn performance models. In
AGTIVE 1999, 2000.

[16] R. Pooley and P. King. The unified modeling language and
performance engineering. In IEE Proceedings — Software.,
1999.

[17] C. U. Smith and L. G. Williams. Performance Solutions, A
Practical Guide to Creating Responsive, Scalable Softwarre.
Addison-Wesley Pearson Education, 2001.

[18] L. G. Williams and C. U. Smith. Performance evaluation of
software architectures. In WOSP, 1998.

[19] J. Xu, C. M. Woodside, and D. C. Petriu. Performance anal-
ysis of a software design using the uml profile for schedu-
lability, performance, and time. In Computer Performance
Evaluation / TOOLS, 2003.

46

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

