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Abstract. There exist several algorithm setups to realize object recognition systems. But 
actually it is a challenging task to implement these technologies for real-time applications in 
embedded, mobile devices. One reason for that is that the required processing power for 
real-time algorithms, which are required to offer a reliable system, is not available. One 
potential solution to this problem is the use of multi-processor platforms. Depending on the 
number of processors, such platforms generally offer significant more instructions per time 
than single processor systems. This paper investigates how to speedup a traffic sign 
recognition system for mobile devices. A four parallel processor ARM platform will be utilized 
to test the algorithm speedup in practice. Therefore, the paper gives a first basic insight to 
the mobile traffic sign recognition system by introducing the required algorithms and by 
analyzing in a first step how some of the specific algorithms behave on a multi-processor 
platform.  
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1   Introduction 

Traffic signs are important instruments to keep the traffic flow up and running while volume of 
traffic continuously increases. Especially for car drivers it is important to remember always 
the actual speed limit. Therefore, it is a big help if cars are equipped with an automatic traffic 
sign recognition system, which always informs the driver about the actual speed limit. 
Besides the user interface, which plays a significant role for smooth and quick information 
access, it is important that the system is working in real-time. Real-time processing means in 
this particular case, that enough camera images per time are processed to guarantee that 
non of the traffic signs will be overlooked. This is only the case if the available processing 
power is strong enough to identify the relevant traffic signs at any speed of the car. Assuming 
that a system requires 10 images per second then there will be delivered at a speed of 
50km/h one image every 1.38m, at a speed of 130km/h one image within every 3.6m. If the 
processor platform is too slow it cannot be guaranteed that every camera image can be 
taken into account. If a camera image is lost, then several meters distance are covered 
before the next image is taken into account. During that time important traffic signs can be 
passed by the car and object recognition system is not aware about the actual speed limit 
information.             
Therefore, parallel processing in embedded solutions is a good approach to guarantee real-

time processing. Especially for image processing applications there is potential to parallelize 
the algorithms. If one considers image pre-processing, pixel-based operations can be often 
done independently from results of other pixel operations. Different tasks like region of 
interest selection and final object classification, which do not work only on pixel base, have 
also significant potential for parallelization. 
This paper introduces an algorithm setup for traffic sign object recognition and investigates 

selected algorithms from parallel processing perspective. 



2   Algorithm Setup for Traffic Sign Object Recognition 

The algorithm setup is shown in Figure 1. In the particular case 640x480 pixel images from 
the camera are delivered to the image pre-processing unit. Here Gauss filtering and edge 
detection are done.     

 

 

Figure 1 Algorithm setup for embedded traffic sign recognition 

Object classification is done via region of interest selection and finally template matching. 
The identified object information can be displayed in various ways on the mobile device 
screen and informs the driver about the actual speed limit. Figure 2 shows an example how 
an original input image from camera view is looking like. There is only one target object from 
speed limit point of view – the 70 km/h speed limit traffic sign on the right side. The rest of 
the image is not important for the actual application. Thus the application needs to identify 
that only one relevant circle is included into this image. All the rest of the image needs to be 
disregarded.  

 
 

 

Figure 2 Original image 

 



The first step in algorithm processing from Figure 1 is the Gauss filtering, which smoothes 
the image from noise. Image smoothing is done on pixel base. The desired pixel is convolved 
with the pixels in the near neighborhood. Figure 3 shows the linear filtering process. 

 

 
 

Figure 3 Linear filtering process, see also [1] 

 
The size of the filter region is an important parameter, because it defines how many pixels 

from the neighborhood contribute to the pixel smoothing. Equation (1) shows the 
mathematical description. 
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The new pixel 'I  at position � �vu,  is calculated from the convolution of the original pixels I  

at different positions � �jviu ГГ ,  and filter function H . R  defines the filter region.  

 
One problem, which occurs, is the filtering at the image boundaries. The filter function 

requires the availability of pixels from the specified neighborhood. If the target pixel, which 
should be filtered, is already located at the image boundaries, there are not enough pixels 
available for filling up the filter matrix H.  From practical point of view this means that the size 
of the filtered image 'I  is smaller than the size of the original image I . If assuming a typical 
filter size of 3x3 pixels then one outer row and one outer column at each side of the image 
disappear for the filtered image 'I . 
 
Finally Figure 4 provides the comparison between the original and filtered image. Looking 

at the traffic sign at the right side or any other of the various objects it can be seen that the 
right image has less clearness than the left one. The edges have been smoothed and the 
transitions between the different objects are less precise. 
 



 
 

Figure 4 Image before (left) and after (right) filtering 

 
After image filtering has been finalized the next step in algorithm setup is the edge 

detection, which identifies all potential edges in the image. As a result the image is converted 
into an new format, which only contains edges, see Figure 5. 
 
 

 

Figure 5 Edge detection 

 

 
Region of interest selection is based in this approach on Hough transformation [1]. All 

available edges are investigated, whether they belong to the category circle. If not, the edge 
information is discarded. If yes, see Figure 6, the identified circle is classified as region of 
interest and delivered to the final algorithm stage, in the actual approach it is template 
matching. Template matching compares the region of interest with pre-defined objects. 
Actually, speed limit traffic signs are stored in various sizes for template matching. Template 
matching investigates whether a stored object provides significant matching with the region 
of interest. If yes, then a traffic sign has been recognized. If no, the next template is taken 
into account. If non of the templates match, then the region of interest does not contain the 
expected object. 

 



 

Figure 6 Hough transformation 

 
After an insight to the traffic sign recognition setup, the next section investigates general 

items with regard to parallelization 

3   Finding Concurrency 

This section presents theoretical considerations in the context of parallel processing.  
Under ideal conditions, it is possible to reduce the computation time of a program or an 
algorithm by the number of available processing units. Thus, if an one-processor system 

requires time 1T , a system with p  processors would require only a fraction of 1T . Ideally, this 

time pT  required by the multi-processor system would be 
p

T1  . 

 
Amdahl shows in [3] that the ideal conditions assumed in the above considerations are not 

possible in parallel computing. Every algorithm has one or more parts, which require 
sequential execution. Acquiring input data or combine data for output are examples for 
sequential parts. Sequential parts cannot only be found on the algorithm level, but also in 
blocks inside algorithms if they have strong interdependencies. These parts have to be 

computed sequentially and execute in time seqt , which is independent from the number of 

processors. The serial fraction of the execution time of an algorithm is defined as 
1

:
T

t
s seq
�  

[4]. 
The execution time of an algorithm which consists of parts which can be processed in 

parallel and parts which have to be computed sequentially is given by the following equation: 

parseq ttT Г�1 . The execution time on a multi-processor system would be 
p

t
tT par
seqp Г� . 

The speedup of an algorithm being executed in parallel is presented in equation (2), see [4]. 
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This equation shows that the speedup depends on the serial fraction of an algorithm and the 
number available processors. Thus, for the speedup holds 1�speedup  because the serial 

fraction of an algorithm is lower or equal than one 1�s . Therefore, it is important to be able 

to determine the serial fraction of an algorithm to estimate the performance gain on a multi-
processor system. 
 
The presented considerations and equations do not regard the overhead, which is caused 

by distributed computing. However, this aspect is an important factor for the evaluation 
whether a parallel execution of an algorithm is faster than the execution on a single 
processor. The overhead of a distributed execution of an algorithm is originated by the need 
to create a thread for each part of an algorithm, which has to be executed on another 
processor. Creation, destruction, scheduling, and managing these threads consume 
additional time which is not considered in the above mentioned equations. Moreover, the 
different threads will have to synchronize with each other. At a certain point in the algorithm, 
the results have to be combined before they can be passed to the next calculation or 
algorithm. Therefore, threads have to be stopped and have to wait for other threads to be 
finished with their parts of the calculation. This results in an additional overhead, because 
some threads remain idle and waiting. The overhead caused by the introduction of threads 

will be referred to as synchronization time synct  in the following. In [5] the serial fraction is 

proposed as metric to discover potential performance problems. 
 
In the theoretical considerations about the speedup of parallel executions for an algorithm, 

the synchronization time has to be respected, too. It has to be noted, that the synchronization 
time increases with the number of involved processors. The overhead added by threads 

increases with the number of involved processors. Thus the total time overhead is ptsync � . 

The execution time of a distributed algorithm regarding this overhead is 

� �
p

t
tptT

par

seqsyncp ГГ�� . These considerations lead to a refinement of equation (2) with 

respect to the parallel overhead. Equation (3) accounts for these considerations. 
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Equation (3) shows that a parallel approach may slow down the total execution time of an 

algorithm if 1T  is small compared to the synchronization time, which is introduced for each 

processor. Thus, the speedup may become a speed-down. 
 
Therefore, it is important to identify parts of an algorithm, which can be executed 

concurrently. The authors of [6] present design patterns for parallel application programs. 
Design patterns are descriptions of recurring problems and their solutions [7]. The pattern 
language in [6] consists of four design spaces. First, the finding concurrency space, which 
covers the phase of identifying the concurrency of a problem and defining tasks for parallel 
execution. Second, the algorithm structure space deals with the challenge of finding a 
structure for the algorithm to take advantage of the possible parallel computation. In the third 
design space, called supporting structures, abstract data types are introduced which may 
support the programmer in realizing the parallel execution. The forth design space covers 
low-level implementation issues and therefore, is named implementation mechanisms. The 
separation into the above mentioned four parts is a good approach to follow while porting an 
algorithm from a single-processor system to a multi-processor system.  



4   Parallel Implementation 

Before investigating the parallelization of the object recognition system, it is important to 
analyze the overall processor load when the different algorithms are active. Figure 7 provides 
the overall load division of the different algorithms in a single processor environment. The 
first operation starts with the conversion of RGB colors into a grey image. After that, Gauss 
filtering with 12% and edge detection based on Canny with 16% processor load takes place. 

gauss

12%

canny

16%

hough40

9%
hough24

15%

hough16

9%

hough12

13%

rgb2grey

9%

template 

matching

17%

 
Figure 7 Division of the overall processor load in a single processor environment 

 
For Hough transformation radii with different values (12, 16, 24, 40 pixels) have been 

applied to find a potential traffic sign with different sizes. The Hough transformation 
consumes about 46% of the overall processing time. Finally, template matching takes 17% 
processor time. In the following Gauss and Hough transformation are investigated in detail. 
 
Taking the finding concurrency space into account the described object recognition system 

can be investigated for parallel implementation. The Gauss filtering process fulfills the 
qualifications for parallel execution. From equation (1) one can see, that each resulting pixel 
could be assigned to an own thread for parallel execution. This is possible because no serial 
dependencies internally Gauss filter require the algorithm to wait for provisional results. The 
only interdependency for such an extreme case is the memory management, because 
smoothing one pixel  ),(' vuI  requires convolution with original neighboring pixels 

� �jviuI ГГ ,  from region R , not with already smoothed new neighboring pixels � �jviuI ГГ ,' . 

Guaranteeing the separation between these two memory spaces, full parallelization is 
possible. When going back to the finding concurrency space theory, one can define a task 
decomposition to execute the Gauss filtering in multithreading manner.  
 
In the current case it makes no sense to provide e.g. 640x480 = 307200 single threads 

because so many processing units are not available from the test platform. In this paper an 
ARM four-processor platform has been used. The ARM processors are based on a 32-bit 
integer RISC architecture. The used ARM11 cores are clocked with 200 MHz and can use 32 
kB of dedicated level-1-cache for data and instructions respectively. A shared second level 
cache with a size of 1 MB, which runs at core frequency, allows fast data exchange between 
the processors. 
 
Thus there has been investigated how 1, 2 and 4 threads behave from the relative time 

consumption and speed up perspective. One image row has been assigned to one thread, 
thus, 1, 2, or 4 rows are computed in parallel, respectively. Figure 8 shows the normalized 
processing time.  
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Figure 8 Gauss filter multithreading with 1,2 and 4 threads, 640 x 480 pixels 

The single thread approach has been used for normalization and thus requires 1 single 
time unit. Two threads can speed up the overall image processing for Gauss filtering to 0.53 
time units, which is practically 6% from ideal time consumption of 0.5 time units. Four parallel 
threads speed up to 0.28 time units or 12% from ideal time processing with 0.25 time units.  
 
Very similar results can be achieved for Hough transformation from Figure 1 and Figure 6, 

respectively, In this particular case, circle detection is considered. Processing time 
measurement results from a 640 x 480 pixel image can be seen from Figure 9.     

 

Multithreading Hough Circles
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Figure 9 Hough circle multi-threading with 1,2 and 4 threads 

 



The algorithm, which belongs in Figure 1 to the classification section of the overall object 
recognition approach, provides also an overhead of 6% when running with two threads and 
20% when utilizing four parallel processors. 
But for embedded systems it is not always possible that image sizes of 640 x 480 pixels 

can be processed in real time. This is because of the overall algorithm complexity for pre-
processing and classification, see Figure 1, and available processor power in the mobile 
device. In this implementation the image size often needs to be chosen with lower resolution 
than 640 x 480 pixels. Figure 10 and Figure 11 show that image size of 128 x 96 pixels 
provide a cross-over point for processing time and speed up factor between one- and multi-
processor approaches. 
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Figure 10 Normalized processing time for various images sizes 

Images with smaller sizes than 128 x 96 pixels consume more processing time the smaller 
the image sizes are and the larger the number of threads is. If the image size is larger than 
128 x 96 pixels, the multicore platform provides more performance than a single processor 
approach. Figure 11 shows the speed up factor measurements. 
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Figure 11 Gauss filter speed up factors for 2 and 4 threads 



With very large image sizes like 1024 x 768 pixels the two threads approach speeds up to 
factor 1.91 or 4.5% less than ideal speed up factor 2, and the four threads approach speeds 
up to factor 3.67 or 8.25% less than ideal speed up factor 4. The two threads approach is 
more close to optimum with an image size of 1024 x 768 pixels than the four threads 
approach, which requires even larger image sizes to be as efficient as possible.  
 
For the embedded system design approach from algorithm level as well as multi-processor 

architecture point of view, this means that there is most probably an iterative approach for 
optimization required. The potential parallelization of all algorithms, the real-time 
requirements, e.g. required number of images per second, as well as the number of 
processors and architecture of the multicore platform, needs to be adjusted to each other as 
long as the best setup from performance, cost and power consumption perspective has been 
reached.  

5   Conclusion 

This paper has introduced an object recognition system for speed traffic signs. The system 
is targeting to run on mobile devices and thus, the system needs to work in an embedded 
environment. The available processing power in embedded systems is limited, but the 
application needs to work in real-time. Therefore it is a good alternative to employ a multi-
processor platform to provide enough processing power. 
Because parallelization of a system is not a simple task, it needs to be identified, which 

parts of the system can be utilized for parallel execution. Therefore one can start to dig into 
the finding concurrency space, which provides on an abstract level an indication about the 
parallelization potential within an application. Two algorithms, Gauss filtering and Hough 
transformation, have been investigated for parallelization. Results show that parallelization is 
efficient and normalized time consumption is roughly proportional to the number of 
processors if the image size is large enough. For small images, the actual parallel processing 
setup can significantly slow down the processing speed. 
Thus this paper is the starting point to investigate how to optimally choose system 

parameters, parallel platform architecture and finally algorithm architectures for object 
recognition in embedded systems. 
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