
Finding and Extracting Crypto Routines from Malware

Felix Leder, Peter Martini, Andre Wichmann
University of Bonn, Germany

Institute of Computer Science IV
Email: {leder, martini, wichmann}@cs.uni-bonn.de

Abstract

In this paper we present a new approach for identify-
ing the crypto routines in different types of malware. In
traditional malware analysis, like sandboxing, network
data is examined as seen on the wire or data is
collected as it is written to a file. The use of proprietary
binary formats, obfuscation, or encryption hides im-
portant details, which are necessary for investigating
malicious behavior. It is hardly possible to create
decryptors just from monitored sandbox data. Our
approach not only examines the data when leaving
or entering the malware but also correlates it with
information from inside the malware. By monitoring
the data at I/O interfaces as well as data dependencies
our approach automatically reveals the data origin.
Knowing the data origin enables an analyst to easily
find the crypto functions.

Using this approach, we were able to identify the
encryption, decryption, and command parser in dif-
ferent malware samples each within minutes. In our
evaluation, we present the results for the Kraken
command&control protocol encryption and for the file
encryption of the Srvcp trojan.

1. Introduction

An increase of malware has been observed all
through the last years but has never reached the
exponential growth currently observed [20]. There is
a clear trend towards one-time binaries that tend to
change from infection to infection. Along with the
rising overall number, more and more stealth and
hiding techniques can be found in malware [8], [20].

While sandboxing used to be enough to extract the
relevant information for understanding the behavior of
malware and for monitoring botnets [4] [22], modern
bots often encrypt network traffic, files and data in or-
der to avoid eavesdropping. Monitoring, as performed
by [18], is essential for estimating the effects and

infections of specific malware. Thus, it is necessary
to extract the crypto functions and include those into
existing monitoring tools, like the extension [11]

While sandboxing is an efficient means when net-
work traffic and files are unencrypted, it is rather use-
less for encrypted data. Sandboxes are just monitoring
the data passed along the OS interfaces, but encryption
and decryption takes place inside the malware. The
data leaving or entering the malware is just the result.
Automated decryption and decoding is required in
order to monitor and classify malware specimen.

The recovery of crypto routines has required a lot
of effort for manual reverse engineering and analysis,
in the past. We present an approach that automates the
finding of parts inside a malware that contain possible
crypto functions. The knowledge about these parts,
enables analysts to extract the functionality and create
decryption add-ons for monitoring tools.

Similar to sandboxes, we are monitoring the I/O
interfaces to the OS. Instead of just collecting the
data leaving the malware, we combine the information
at the interfaces with information from within the
malware. The main focus is to monitor buffers as they
passed to I/O interfaces. We use the memory address
of the buffer together with data dependecy information
for locating the buffer origin. We have observed that
the buffer origin is often close to the crypto routines.
The reason for this is that buffers are usually created
at the time they are needed and not far ahead.

Using our approach we were able to find the decryp-
tion functionality from different malware specimen
within minutes.

The rest of the paper is structured as following.
Section 2 gives an overview about related work. Sec-
tion 3 describes our approach in more detail. The
applicability is shown using a Kraken bot sample as
well as the Srvcp trojan in section 4. The publication of
our approach may invalidate it. Possible implications
are discussed in section 5. Section 6 concludes and
gives an overview about future work.



2

2. Related Work

Traditional malware analysis follows two different
paradigms. One way is to perform static analysis on
the raw binary. Another way is monitoring the malware
as it being executed with dynamic analysis.

During static analysis, the binary is analyzed without
executing it [7]. For that, it is typically disassembled
to assembly instructions. Based on the disassembly,
the control flow as well as information about the data
usage is extracted. It is often faster than dynamic
analysis [4]. The downside of static analysis is that
different data may be executed than the instructions
seen during the analysis. This is the case when packers
[16], polymorphism [19], or obfuscation techniques
[13] are used.

Dynamic analysis tools analyze the malware while
it is executed. They normally monitor file and registry
accesses as well as network traffic. Some tools, like [9],
[22], make observe the malware from inside the system
in which it runs. Other approaches emulate the full
computer and observe the behavior of malware from
outside the system [4]. It uses QEmu [5] for emulating
x86 PCs. Systems that monitor botnets, e.g. [18], [21],
often rely on those tools for extracting information
about the command & control (c&c) protocol.

Tools, like the presented ones are used for the
mass-analysis of malware. They are able to obtain
information about malware using standard protocols.
They are generally not usable for encrypted. They only
observe the data leaving or entering through the OS
interfaces but they don’t take details from inside the
program into consideration.

Debuggers that allow scripting [1], [12], [23] can
be used to monitor API calls and other OS interfaces.
They may be used for finding coding functions but
this requires a lot of manual work because they don’t
include the functionality for data collection and corre-
lation.

The automated reverse engineering framework
PaiMei [3] is the method closest to our approach.
It traces program execution and collects information
at different breakpoints for posterior analysis. PaiMei
is a generic reverse engineering framework with no
specific focus. Therefore, it does not contain correla-
tion functionality for finding buffer creation or crypto
functions.

3. Methodology

Malware authors, like authors of any other software,
rely on the I/O functionality provided by the operating

Monitoring PointBuffer

Memory
Region

Stack Heap

Creation
Function

Stack-
frames

Memory
Context

Figure 1. Determining creation function for buffer

system (OS) in order to be independent from the OS
version.

In our approach, we exploit this to monitor data as
it is passed to the I/O interfaces of the OS. We collect
information about the memory, context information,
like filenames or network endpoints, as well as buffers
that contain encrypted data. For this, we are placing
monitoring points at the relevant I/O interfaces, e.g
the API function send().

Whenever a buffer is observed at a monitoring
point, the memory region that contains the buffer is
determined. Combining the information about mem-
ory region, buffer address, and details about the data
dependencies allows us to automatically determine the
buffer origin. We have observed that the buffer origin
is often close to the crypto routine. This is for two
reasons. First, crypto is the last action performed on
the data before it leaves the malware. Second, it is an
common development paradigm to allocate buffers at
the time they are needed and not long before.

The automated detection of the buffer origin is
depicted in figure 1. It relies on the knowledge about
data dependencies inside the malware. The data de-
pendencies must be determined differently for stack
and heap memory regions. For stack memory, this is
achieved by examining the stack frames at the time of
the interface call. For heap memory, information from
allocations monitoring can be used.

The vast amount of I/O usually performed by mal-
ware requires efficient filtering in order to focus the
analysts view for the crypto routines. Correlated in-
formation about data endpoints, like filenames, enable
such filtering.

In the following, our approach is formally described
before we present some aspects of our practical real-
ization.



3

3.1. Formal description

Definition 1. Let ζ be the set of functions.

Definition 2. Furthermore, let

Enc(d1 ◦ · · · ◦ dn)

be an encryption for the combined data units
d1, · · · , dn.

Definition 3. For a given Enc(.), let

Dec(Enc(.)) := Enc−1(Enc(d1◦· · ·◦dn)) = d1◦· · ·◦dn

be the decryption.

There may be a different decryption and ecnryption
in the botnet controller and the zombie. If Dec(.) ∈ ζ
and Enc(.) ∈ ζ, the malware contains both. This may
be because of the malware using symmetric encoding
or because the malware can be both controller and
zombie at the same time.

Definition 4. Let B := {b1, ..., bn} be the set of all
buffers used in the program. A buffer is a dedicated
space in memory that can be used in the time between
its creation and removal.

Definition 5. For a given buffer bi ∈ B, let

D(bi) := {f ∈ ζ|f defines bi}

be the set of functions that define bi. This means that
all f ∈ D(bi) fill the buffer bi with data. It will be
named definition set of bi in the following.

Definition 6. For a given buffer bi ∈ B, let

U(bi) := {f ∈ ζ, f uses bi}

be the set of functions that use bi. This means that all
f ∈ U(bi) access data in buffer b. It will be named
usage set of bi in the following.

Definition 7.

C(f) = {bi ∈ B|f creates bi}

C(f) is the set of buffers created by function f .

Definition 8. An execution path ρ, is a sequence of
functions f1, f2, · · · , fm that reflects the order in which
functions have called each other during execution.

3.1.1. Assumptions. We assume that the encryption
inside the malware is conducted in the definition sets
D(bi) for a buffer bi, which is used at a monitoring
point, later on. This situation is illustrated in figure 2.
Furthermore, we assume

D′(bi) := D(bi) ∩ Enc(.) 6= ∅

Encryption Func.

Monitoring Point

1. Create Buffer

2. Fill Buffer

3. Encrypt Buffer

4. Send Out

Outp. Mgmt.

Output

d� d� … d��� d�

Figure 2. Encryption and output of a buffer

Monitoring Point

Decryption Func.

1. Create Buffer

2. Receive Input

3. Decrypt BufferInput Mgmt.

Input
d� d� … d��� d�

Figure 3. Input and decoding of a buffer

D′(bi) is that part of the definition set of bi that ecrypts
into bi. The crypto consists of four steps that are
combined in one function. First, the buffer is created.
Second, as an optional step, the buffer is filled with
data units. The units may already be combined and
just copied into the buffer. The third and important
step is to encrypt the data into the buffer. Fourth, the
buffer is passed out of the crypto function. After that,
it may pass a number of functions related to managing
the output. Finally, it is passed to the output interface.
Montoring points are placed on the output interface.

The decryption is performed in the usage sets U(bi)
for a buffer bi. We assume:

U ′(bi) := U(bi) ∩Dec(.) 6= ∅

U ′(bi) decrypts the data contained in bi. This is illus-
trated in figure 3. The decoding functionality consists
of 3 steps. First, the buffer is created. Second, the
buffer is passed to the input interface. A monitoring
point is placed on that input interface. The buffer may
pass an arbitrary number of input management func-
tions. The third and important step is the decryption
of the buffer data.

We assume that

∀bi ∈ B : ∃f ∈ ζ|f creates bi

Every buffer is created by a function in the malware



4

program. This does not hold for global buffers. Impli-
cations are discussed in sections 3.1.2, 5.

More specific, we assume that every buffer b is
created by a single function f̂b ∈ ζ. It is either
contained in the stack frame of that function or in a
heap buffer allocated from that function.

Let

M : bi 7→ {Stack,Heap,GlobalMemory}

be a function that maps a buffer bi to the memory
region in which it is located. We assume that such
a mapping exists and that buffers exist either on the
stack, heap or in global memory.

3.1.2. Methodology. We have observed that the cre-
ation function of a buffer is very often close to the
crypto routines using it. Therefore, the goal is to find
the creation function f̂b for buffer b.

This is achieved in a three stages.
1) Placing a monitoring point MP on the relevant

I/O interface
2) Determine the memory region containing buffer

bi, which is observed at MP
3) Find creation function f̂ based on the memory

region and information about bi
Let f∗ be the I/O interface function. In a first step f∗

is monitored. During execution, buffer bi is observed
when being passed to f∗.

In a second step

M(bi)→ {Stack,Heap,GlobalMemory}

is used to determine the memory region, in which bi
is located. Buffers can reside in three different types
of memory: Stack, Heap, and Global Memory. The
buffer creation function f̂b = C−1(b) is determined
depending in the memory type.

Since each buffer bi ∈ B is created by a single
function, C−1 exists with

C−1(bi) = f ∈ ζ|f created bi

Stack buffers must exist inside the stackframe of one
functions in ρ. Each f ∈ ρ can uniquely be identified
by its stackframe λf and its return address.

f̂b = C−1
stack(b) := f ∈ ρ|bi is part of λf

is the function f that created and contains bi in its
stackframe λf .
C(f) can be determined for heap buffers by moni-

toring all heap allocations. Since buffers are unique and
created by a single function, C−1

heap can be constructed
and

f̂b = C−1
heap(b)

Global buffers are created at program start by the OS
and not by a function inside the malware. Therefore,
global buffers are left out of scope. It is not known
to us that any malware is using global buffers for I/O
operations, but it would theoretically be possible. This
is duscussed in section 5.

Thus, based on M(bi) the buffer creation function

f̂b = C−1(b)

for buffer b can be determined:

C−1(bi) :=
{
C−1

stack(bi) : M(bi) = Stack
C−1

heap(bi) : M(bi) = Heap

3.1.3. Finding the crypto routine. The final goal is
to determine the crypto routine. The identification and
knowledge about the crypto routine allows an analyst
to reveal the coding logic and to integrate it into
existing monitoring tools.

For encryption, the definition set D′(bi) is of rel-
evance. For decryption, the usage set U ′(bi) is of
interest. The finding is similar in both cases. We will
focus on the encryption in the following.

Let f◦ ⊆ D′(bi) be a single function that either
performs the full crypto or initiates and coordinates it.
Based on our observations very often either the crypto
routine is the same as the buffer creation function or
it is called from the buffer creation function:

f◦ = f̂

or

∃ρ◦ = f1, ..., fi, fi+1, ...|fi = f̂ , fi+1 = f◦

From a software design perspective this is a very
intuitive behavior. A software author creates a buffer at
the time it is needed and does not unnecessarily block
memory. Soon after the buffer is created, it is used for
crypto. Then, it is passed to the I/O interface. Thus, the
crypto can be found by investigating the buffer creation
function.

3.2. Practical realization

The implementation is presented and evaluated using
Microsoft Windows malware. The general approach is
not dependent on the platform.

As described in the previous section, we locate the
crypto by finding the creation function for I/O buffers.

The practical implementation is based on the con-
cept of monitoring points and run-time analysis. Moni-
toring points are used for observing relevant API calls.
They are placed on three types of interface functions:

1) Data endpoint and context information



5

2) Heap operations
3) input and output
Context information and information about the data

endpoint are used to filter out the results for a specific
context. This information can hold filenames or net-
work connection addresses. Examples for monitored
context API calls are connect() or CreateFile(). The
handles returned can later be used to map a specific
buffer origin to a given context. With this information
it is possible to differentiate buffer origins by their
context, i.e. different files or network endpoints, which
may be used simultaneously.

Heap operations are monitored to create a list of
heap sections and a mapping to the function that
created those regions. This mapping is used later on to
determine the origin of heap buffers.

The most important monitoring points are the ones
for input and output API, like send() or WriteFile().
The buffer origin is determined whenever such a
monitoring point is triggered. In addition, the context
computed by comparing the handles. This is used for
filtering for specific data endpoints, like file names.
The buffer passed to the I/O API is examined in order
to find its origin. Based on the memory address of
the buffer, the memory region containing the buffer is
determined.

The memory region can be determined by compar-
ing the buffer address to the start and end of each
memory region inside the malware.

If the buffer is located on the stack, the stack is
unrolled and split into the stackframes. In addition to
the boundaries of each stackframe, the functions that
created the frame is extracted. Then, the buffer address
is compared with each stackframe. The stackframe that
contains the buffer belongs to the creation function of
the buffer.

In case the buffer is located in the heap, the informa-
tion from heap monitoring points is used to determine
the buffer creation function. This is performed using
a mapping of heap sections to their creation functions
and matching them ti the buffer address.

4. Evaluation

We will show the applicability of our approach
using two different malware samples. For all of these
samples, as well as the Storm worm and SdBot variants
that are not mentioned here, we were able to identify
the relevant functions within minutes.

The malware samples we present in the following
are a sample of the Kraken botnet and the Srvcp
trojan. The Kraken sample is used to show the general
applicability of our approach based on an up-to-date

example. The Srvcp trojan illustrates the challenge to
find the right I/O points and how our approach can be
used iteratively to find it.

4.1. Kraken Botnet

The Kraken Botnet was the largest spamming botnet
in 2008 [17]. Single infected hosts have been observed
of sending as much as 500.000 junk mails. Besides
that, it harvests the windows address book as well
as local files for email addresses and can download
and execute additional programs. The bots contain a
list of dynamic DNS hostnames for contacting the
botnet master [15]. They subsequently try to contact
each hostname via UDP and continue with the next
hostname if no response is received. After a suc-
cessful handshake, the a proprietary, encrypted com-
mand&control protocol is used between the infected
host and the botnet controller.

For our evaluation, we have used a sample that uses
the Kraken protocol version 311. Monitoring points
were placed on networking function, e.g. sendto(),
send(), and recvfrom().

During the first 20 seconds, different TCP connec-
tion attempts were observed. After 20 seconds, the first
handshake packet was sent to UDP port 447 using
sendto(). The buffer at the sendto() monitoring point
was located on the stack. It was contained in the stack
frame located of the function that mapped to address
0x1A832C in our dumped sample. Not answering those
requests, we saw similar requests to different hosts
every 10 seconds. All buffers observed originated from
the same function.

The function at this address (sub 1A832C) con-
tained the code excerpt that is displayed in figure 4.
Function names and comments were added for pre-
sentation purposes, afterwards. The code block shows
how different fields in the buffer are filled with data.
The data contains keys, a seed based on processor
ticks, command and subcommand, protocol version,
size, and some kind of checksum. There are two func-
tions following this block. The first function (encrypt-
Header), which is called at address 0x1A83F2, and its
subfunctions contain some suspicious operations that
are often found in encryption functions. The second
function (create new udp sock), which is called at
address 0x1A83F7, creates a UDP socket.

With the first function being a candidate for an
encryption function, we ran the botnet sample in a
debugger. Stepping over the presented code shows how
the data in the buffer is changed by the encryptHeader
function. The result is then sent out using sendto(). A
detailed manual investigation as well as a dissection



6

.text:001A83CA mov dword ptr [esp+80h+buf], eax

.text:001A83CE lea eax, [esp+80h+buf] ; key 1

.text:001A83D2 mov [esp+80h+var_2C], edx ; key 2

.text:001A83D6 mov [esp+80h+var_28], ebx ; seed

.text:001A83DA mov [esp+80h+var_24], 1 ; cmd

.text:001A83DF mov [esp+80h+var_23], bl ; cmd2

.text:001A83E3 mov [esp+80h+version], 137h ; ver.

.text:001A83EA mov [esp+80h+var_20], ebx ; size

.text:001A83EE mov [esp+80h+var_1C], ebx ; chks.

.text:001A83F2 call encryptHeader <----------

.text:001A83F7 call create_new_udp_sock

...

.text:001A8422 lea eax, [esp+90h+buf]

.text:001A8426 push eax ; buf

...

.text:001A842B call ds:sendto <-------------

Figure 4. Kraken encryption function

from C. Pierce [15] verified this function to be the
encryption.

In a second step, we modified our lab setup and
spoofed a UDP response with dummy data. With a
monitoring point on recvfrom(), we were able to find
the decryption function, as well. The buffer was located
in the same stack frame as the send buffer but the
buffers were not identical. It was created by the same
function sub 1A832C. Kraken is using symmetric en-
cryption.

It took us only some minutes to identify both encryp-
tion and decryption functions with our approach. The
Kraken sample ran for 20 seconds before the first UDP
monitoring point was triggered. The routine related to
the trigger immediately revealed the buffer creation
function. Afterwards, we needed around five to ten
minutes for manual investigation to identify and verify
encryption and decryption candidates.

4.2. Srvcp Trojan

Srvcp is a trojan for Windows OS. It received
its commands via IRC from a decicated server. It
contains commands for downloading and executing
arbitrary programs on the infected machine as well as
commands for possible network scans and DoS attacks.

The list of IRC servers and other configuration
details are stored in the encrypted file gus.ini in the
Windows system folder. We came across the file using
FileMon [9]. Its encrypted contents is shown in figure
5. As the characters in the file are all printable char-
acters but do not make any sense on first sight, it is
very likely to be encrypted and encoded.

Being suspicious about that file, we placed monitor-
ing points on several Windows file access functions,

JexO215WuK60H7HgI.j11vh1
HBtJI.zWZtP/e1zcT/nCMAf0Osi.K.vC3lT1
ZC8YD.MBoxJ.wtPW61fAKYi1Vnu6H/yPVda.
YxPgS13wXdq0m4SMh/4NhJj0hN2gw/J/L.W1
...

Figure 5. Encrypted Srvcp config file

;;; - fscanf arguments -
.text:00403732 lea eax, [ebp+input_buf]
.text:00403738 push eax
.text:00403739 push offset "%[ˆ\n]\n"
.text:0040373E push ebx ; File

.text:0040373F call fscanf <----------

...
;;; - decryption arguments -
.text:004036B2 lea eax, [ebp+input_buf]
.text:004036B8 push eax
.text:004036B9 push esi

.text:004036BA call decryption <---------

Figure 6. Srvcp trojan decryption origin

like ReadFile(). Running the trojan in our tool imme-
diately revealed a heap buffer that had been created in
the function starting at 0x73D9C489. Unfortunately,
this address is outside of the address space of the
considered trojan.

Examining the memory regions and call stack of
the malware showed that the function was part of the
CRTDLL.dll. This DLL implements its own, Posix-
based I/O routines. Thus, the monitoring point had not
revealed the data destination in the trojan, but a differ-
ent I/O module that implements its own buffered input.
Our tool revealed the buffer used for the implemented
buffered input. The call stack contained the functions
readbuf() and fscanf(), which are exported by the

dll.
After adapting the monitoring points to the I/O

routines exported by crtdll.dll and especially fscanf(),
our tool located a stack buffer in function sub 40363D
of the trojan for being the destination of the input
operation. An excerpt from this function is shown
in figure 6. After the call to fscanf() the buffer is
immediately passed to another function, which proved
to be the decryption function.

For verification we ran the binary in a debugger. The
decryption candidate returned cleartext strings contain-
ing the configuration details. The number of lines in the
file matched the number of different decryption results.
Differences in length exist because of padding. The
decrypted file shows configuration details for command
& control as well as a list of 34 IRC servers to connect
to. The decrypted text of the file is shown in figure 7.

The time needed to determine the decryption routine



7

NICK=mikey
CHANNEL=mikag soup
SOUPCHANNEL=alphasoup ah
SERVER0=irc.mcs.net:6666
...

Figure 7. Decrypted Srvcp config file

in this sample took longer than that of the Kraken
botnet. The main reason is the intermediate, buffering
I/O. Placing a monitoring point at the Windows API
functions immediately revealed a buffer created from
a function outside of the trojan code. The manual
investigation of the call stack and intermediate Dll
took around 5 minutes. Placing a new monitoring
point at the I/O interface took another 10 minutes.
Running our tool on the intermediate I/O interface
immediately located the function containing the call
to the decryption routine. The overall time for finding
and verification was approximately 20 to 30 minutes.
Knowing the right I/O interface, it took less than 5
minutes.

4.3. Evaluation Summary

We used the two examples above to show the appli-
cability of our approach for finding crypto functions in
malware. We were able to identify the buffer creation
in less than a minute each, which we assume is hardly
possible with manual investigation. As crypto functions
can be of arbitrary structure, manual verification has
to be performed on the identified functions, afterwards.
This step takes far more time.

A challenge is to identify the right I/O interface
for setting monitoring points. Our own implementation
uses standard API functions by default and can easily
be extended to other I/O interfaces. The finding of
intermediate I/O interfaces can also be achieved using
our approach, as described with the second sample.

The software design used in malware is very hetero-
geneous. We have successfully applied our approach
to two different examples. Not mentioned here is the
application to the infamous Storm worm and SdBot
variants because they were similar efficient as the
application to Kraken. We therefore conclude that
our approach is a valuable means in the toolbox for
malware analysts.

5. Discussion

When an approach as the presented becomes public
it may be invalidated. This is normal in the ongoing
arm’s race. Still, we see a large benefit for malware

analysts in the publication. In the following, we will
discuss strengths and weaknesses as well as implica-
tions of intentional assumption breaches by malware
authors. We also present alternative ways for detecting
crypto routines.

5.0.1. Dependence on I/O interface. We have shown
how easy and fast crypto routines can be found with
our approach if the right I/O routines are monitored.
Our assumption that malware is using the OS for
I/O does not always have to be true. Malware may
use custom system calls. Our approach fails for such
custom tailored I/O. The results of such an architecture
is much larger binaries and is architecture dependence.
Therefore, such malware will be less generic and may
not spread well.

5.0.2. Buffer creation and coding functions. Our
approach is based on the observation that coding is
performed close the buffer creation. After reading this,
a malware author may choose to specifically create
buffers far away from the coders that make use of
the buffers. This is a possible but rather unintuitive
development strategy, which complicates the software
design and may increase the memory usage.

Such a software design complicates maintainability,
increases the risk for bugs, and discards modularity.
Since malware and especially botnet development is
becoming more and more professional [10], it has
to be efficient. It is questionable whether malware
developers would take this step instead of improving
packers and obfuscation techniques.

In case the change in design is taken, it would still
be possible to determine usage sets and definition sets.
This results in a larger set of candidates to analyze but
gives direct hints on which functions to investigate.

5.0.3. General assumptions. A general problem is
that the creation functions of global buffers does not
reveals where it is used. Using global buffers has
implications on the software design and memory us-
age as discussed above. In addition, it significantly
complicates the organization and synchronization of
multiple threads. In this case this step is taken, memory
monitoring can be used as decribed above, too.

Our approach assumes that a single function is re-
sponsible for performing or initiating the coding. This
could be split into multiple functions. It is likely that
those functions would still be close but complicates the
analysts’ manual verification of the coding function.

Monitoring memory accesses may be used in cases,
in which our assumptions do not hold. For now,
malware breaking with our assumptions must be very



8

sophisticated. Such a sample would be a very interest-
ing study object for malware analysts.

6. Conclusions and Future Work

We have shown the applicability of our approach.
With a practical implementation, we were able to
identify the crypto routines of the Kraken botnet and
the decryption function of the Srvcp trojan, as well as
others not shown in detail. We therefore conclude it to
be a valuable means in the malware analysis toolchain.

The examples presented are not necessarily repre-
sentative for all malware in-the-wild. A more compre-
hensive evaluation is needed in order to harden the
assumptions and to verify the wider usability of our
approach. This is includes larger numbers of malware.

Furthermore, it would be beneficial to automate
more of the analysis process in order to reduce manual
work. This includes a pre-analysis for finding possible
I/O interfaces and adding monitoring points for track-
ing accesses on buffers.

Acknowledgments

The authors would like to thank the anonymous
reviewers of this paper for discussions and comments.
We are also thankful for the people who supported us
and gave valuable suggestions for our work.

References

[1] P. Amini, PyDbg - A pure Python win32 debugging ab-
straction class, http://pedram.redhive.com/PyDbg/, last
visit: Oct. 2009

[2] P. Amini, Kraken Botnet Infiltration, Blog on DVLabs,
http://dvlabs.tippingpoint.com/blog/2008/04/28/kraken-
botnet-infiltration, Apr. 2008

[3] P. Amini, PaiMei - Reverse Engineering Automization,
http://pedram.redhive.com/research/reverse

engineering automation/, last visit: Oct. 2009

[4] U. Bayer and C. Kruegel and E. Kirda, TTAnalyze: A
Tool for Analyzing Malware, In 15th Annual Confer-
ence of the European Institute for Computer Antivirus
Research (EICAR), 2006

[5] F. Bellard, QEMU, a Fast and Portable Dynamic Trans-
lator, USENIX Annual Technical Conference, 2005

[6] N. Brulez, Unpacking Storm Worm,
http://securitylabs.websense.com/content/Blogs/3127.aspx,
last visit: Aug. 2009

[7] M. Christodorescu et al., Semantics-aware malware de-
tection, IEEE Symposium on Security and Privacy, 2005

[8] D. Dittrich and S. Dietrich, Command and control struc-
tures in malware, Usenix magazine, Vol. 32, No. 6, Dec.
2007

[9] R. Russinovich and B. Cogswell, Windows
Sysinterals, http://technet.microsoft.com/en-
us/sysinternals/default.aspx, last visit: Oct. 2009

[10] D. Fisher, Storm, Nugache lead dan-
gerous new botnet barrage, Article,
http://searchsecurity.techtarget.com/news/article/0,289142,
sid14 gci1286808,00.html, last visit: Oct. 2009

[11] M. Hale Ligh, Kraken Encryption Algorithm, Blog,
http://mnin.blogspot.com/2008/04/kraken-encryption-
algorithm.html, last visit: Oct. 2009

[12] Immunity Inc., Immunity Debugger,
http://www.immunitysec.com/products-immdbg.shtml,
last visit: Oct. 2009

[13] C. Linn and S. Debray, Obfuscation of executable code
to improve resistance to static disassembly, Proceedings
of the 10th ACM conference on Computer and commu-
nications security, 2003

[14] M. Oberhumer and L. Molnar. The Ultimate Packer
for eXecutables (UPX), http://upx.sourceforge.net/. Last
visit: Oct. 2009

[15] C. Pierce, Owning Kraken Zom-
bies, a Detailed Dissection, Blog on
DVLabs,http://dvlabs.tippingpoint.com/blog/2008/04/28/
owning-kraken-zombies, last visit: Oct. 2009

[16] P. Royal and M. Halpin and D. Dagon and R. Edmonds
and W. Lee, PolyUnpack: Automating the Hidden-Code
Extraction of Unpack-Executing Malware, ACSAC ’06:
Proceedings of the 22nd Annual Computer Security
Applications Conference on Annual Computer Security
Applications Conference, 2006

[17] P. Royal, On the Kraken and Bobax Botnets, Whitepa-
per, Damball, Apr. 2008

[18] Shadowserver Foundation, ShadowServer Homepage,
http://shadowserver.org, last visit: Oct. 2009

[19] P. Szor, The Art of Computer Virus Research and
Defense, Addison-Wesley, Feb. 2005

[20] Symantec Coorp. Symantec Internet Security Threat
Report Volume XIII, Whitepaper, Apr. 2008

[21] G. Wicherski, botsnoopd - Sniffing on Botnets, Blog,
http://blog.oxff.net/2006/10/botsnoopd-sniffing-on-
botnets.html, last visit:Oct. 2009

[22] C. Willems and T. Holz and F. Freiling, Toward Au-
tomated Dynamic Malware Analysis Using CWSandbox,
Ieee Security & Privacy, 2007

[23] O. Yuschuk, OllyDbg Debugger,
http://www.ollydbg.de/, last visit: Oct. 2009


