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Abstract. We present a flexibly configurable toolkit for automatically
producing pseudonymizations of data that keep certain utility. We fol-
low a confidentiality-by-default principle. I.e., we identify utility require-
ments for the plaintext data and provide appropriate utility options in
the pseudonymization. All remaining data is kept confidential. This stays
in contrast to common pseudonymization techniques that replace only
personal or sensitive data of a dataset with pseudonyms, while keeping
any other information in plaintext.
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1 Introduction

In times of mass surveillance and mass data collection and storage, preserving the
privacy of individuals is of interest. For that, privacy enhancing techniques have
been studied. On stored data, the goal of applying privacy-enhancing techniques
is to keep the contained privacy-relevant information confidential. On the other
hand, the data should keep some of its original properties for fulfilling the use
case. Consider the following application scenario: multiple sensors want to share
log file content with a centralized analysis entity for obtaining a broader view on
the security situation in their field. They want to hide the privacy-relevant infor-
mation contained in the log file data. On the other hand, they are interested in
the results of the analysis the centralized analysis entity would provide. Hence,
they want to keep some certain utility of the data. In order to solve the result-
ing conflict between privacy and utility requirements, the sensors agree with the
analysis entity on the required utility options the data should fulfill. Then, they
transform the data into a data pseudonymization with utility options that meet
the formulated requirements.

https://link.springer.com/
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Another motivating example is the data processing of IoT devices in smart build-
ings. Consider a simple smart building that consists of actors holding one of the
roles system administrator and employee. The sensors include an access barrier
to the building that permits entrance using an employee’s smart card. For that,
a smart card reader is included. When an employee makes use of the smartcard
reader, it gathers working time data with the employee’s ID eID, the time of
entrance te and the time of leave tl, storing (eID, te) and (eID, tl), respectively.
For simplicity, we assume that presence time equals working time. On receiv-
ing a signal from the smartcard reader’s site, it immediately activates the access
barrier to allow for entrance or leave. The data is stored for three purposes: Work-
ing time data is collected for tracking the total hours of work of each employee
(purpose 1) and for reproducing the exact working times for conflict resolution
(purpose 2). The times employees enter and leave the building are also collected
to be able to reconstruct the presence of individuals in certain time intervals,
e.g. in case of theft detection (purpose 3). While some of the data is processed
and stored locally on sensors side’s registers, e.g. the signals the barrier receives
for activation, some other data, e.g. the working time information is sent to
a centralized database. Despite the fact that not all the data is collected and
stored on a central system, the administrators are allowed to access the data.
Obviously, the collected data is person-identifiable and prone to be misused for
other purposes. A curious administrator may use the working time data to in-
fer the daily routine of an employee, including habits like starting to work the
same time every day [1]. This clearly contradicts the stated purposes the data
have been collected for. Moreover, the use of data containing person-identifiable
information is legally restricted [9].

In this work, we present a tool that transforms data into a representation
that meets certain, purpose-specific utility requirements without revealing the
privacy-relevant plaintext. We call that data transformation pseudonymization
with utility options. Our contribution is as follows:

1. We define a categorization of utility requirements a pseudonymization can
meet.

2. We present an XML-based policy language that allows for a precise definition
and machine-readable formulation of the defined utility requirements in a so-
called utility policy.

3. We present a pseudonymization toolkit that allows for
– a user-friendly definition of utility requirements using the XML policy

language;
– a transformation of a given file that contains semi-structured data into

a data representation in an XML structure that can be referenced by a
utility policy;

– generating a pseudonymization with utility options according to the util-
ity policy.

Note that the goal of this work is not to trade-off privacy for utility. We aim
at providing a pseudonymization that makes it difficult to an attacker to re-
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trieve privacy-relevant information. At the same time, the technique we present
in this work produces pseudonymizations that are utility-preserving. This is
done by carefully selecting utility options that a pseudonymization of a dataset
under consideration should provide. Compared to providing access to the plain-
text data, the resulting pseudonymization keeps most of the contained infor-
mation confidential. Compared to sanitizing data by identifying and removing
any privacy-relevant information, our technique provides only information that
is necessary for the computation. This makes it harder for an attacker to use
such a pseudonymization to re-identify persons.
The rest of this work is structured as follows: After introducing notions and
cryptographic facts required for this work in Section 2, related work is reviewed
in Section 3. We describe the construction of pseudonyms with utility options
in Section 4. The architecture of the pseudonymization toolkit is described in
Section 5. In Section 6, the security requirements for a system that processes
and stores pseudonymizations is discussed. Finally, the work is concluded and
future work is discussed in Section 7.

2 Preliminaries

To enhance the understanding of the approach presented in this work, we shortly
introduce the relevant basic notions.
We consider a dataset D being a semi-structured set of plaintext data entries
di, 1 ≤ i ≤ n, where n is the number of data entries in D. Each data entry
consists of data items dij , j ∈ {1, · · · ,mi}, where mi is the number of data items
of the data entry di. A pseudonym of a data item dij contained in a data entry
di ∈ D is a sequence of lij utility tags, i.e. (u1(dij), · · ·ulij (dij)). A utility tag is
a sequence of possibly multiple strings. Its construction depends on the utility it
is intentioned to represent. The set of all pseudonyms of all data items dij and
all data entries di contained in D is the pseudonymization superset of D,

P(D) =
n⋃

i=1

mi⋃
j=1

p(dij).

The set of pseudonyms that fulfills a subset of utility requirements is called a
pseudonymization P (D). P (D) ⊆ P(D). Depending on the utility options re-
quired, cryptosystems may be used to generate pseudonyms. A symmetric cryp-
tosystem is a cryptosystem that utilizes one key k for encryption and decryption.
In an asymmetric cryptosystem, a public key kpub and a corresponding, math-
ematically connected private key kpriv are used for encryption and decryption,
respectively. We call original data plaintexts, and encrypted data ciphertexts.
A cryptosystem is called deterministic if, given a plaintext p and a key k, the
output is always the same ciphertext c(p), independently from the execution of
the cryptographic algorithm. Its output only relies on the given input plaintext
and the key. Otherwise, the cryptosystem is called probabilistic [12]. A homo-
morphic cryptosystem produces outputs that allow for executing operations on
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them. These operations produce encrypted results of corresponding homomor-
phic operations on the underlying plaintexts. If the homomorphic operation on
the plaintexts is an addition or multiplication, the cryptosystem is called addi-
tively homomorphic or multiplicatively homomorphic, respectively. Homomor-
phic cryptosystems that allow for the execution of simple operations, like addi-
tion or multiplication, are called partially homomorphic (PH). Somewhat and
threshold homomorphic cryptosystems (SWH) allow for the execution of func-
tions of limited deep on the ciphertexts [4] [3]. Fully homomorphic cryptosystems
(FH) produce ciphertexts that can be used for arbitrary computation [11]. Due
to their impracticability for our use cases, we are not considering SWH FH cryp-
tosystems here and omit an explanation.
The AES is an example of a symmetric, deterministic cryptosystem [7]. The
Paillier cryptosystem is an asymmetric, probabilistic, additively homomorphic
cryptosystem [18]. The RSA cryptosystem in its unpadded version is asymmetric
and deterministic [20]. The ElGamal cryptosystem is asymmetric and probabilis-
tic [10]. Both RSA and ElGamal cyptosystems are multiplicative homomorphic.

3 Related Work

Saving some specific utility of structured data while keeping the plaintext con-
tent confidential has been well-studied for different usage scenarios. For SQL
databases, Popa et al. have introduced CryptDB [19], a confidentiality-preserving
database system that enables for SQL querying encrypted database content. For
that, it provides certain, database-utility preserving encryption schemes. In con-
trast to our work, it only encrypts database entries that have been identified
as sensitive. Any other data is kept in plaintext. Among other reasons, this in-
creases the probability of successful inference and correlation attacks [17].
LidSec [13] is a use-case independent pseudonymization framework for the prepa-
ration of textual data for data sharing. The data consists of so-called entities
of possibly multiple features. One can choose for each entity feature whether it
should be kept or removed. Other possibilities include suppressing, i.e. replac-
ing the value of a feature with a pseudonym, or removing an entity completely.
Different data formats can be used. In contrast to our work, the pseudonyms
generated here provide a very limited variety of utility options, e.g. the ability
to check whether underlying plaintexts are equal. For more utility, the affiliated
data has to be represented in plaintext.
FLAIM [23] is an open-source log data sanitization tool for privacy-respecting
information sharing. Sanitization rules are formulated in an XML anonymiza-
tion policy language and are considered as trade-offs between log data utility
and the confidentiality of the privacy-related information contained in the log
data. Use cases include the generation of shared test data as well as security
and network analysis purposes. For those purposes, the tool modularly supports
multiple log file formats. FLAIM provides a set of sanitization routines, called
anonymization algorithms. An algorithm is applied to a value addressed in a
policy rule. Depending on the defined sanitization, the value is replaced by a
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truncated value, a permutation, a hashed value, an HMAC, a value that results
from sanitizing a substring, or a value that represents the order of the plaintext
value w.r.t. an ordering relation. The remaining utility that is expected to be
provided by a sanitized log file cannot be described in a sanitization rule.
In contrast to our work, the FLAIM rules define utility at a highly technical,
very use-case dependent level. They do not immediately provide information
about the knowledge a curious attacker can gain by accessing the sanitized data.
Moreover, only selected components of the data are sanitized. Instead of keeping
the remaining data confidential, it is provided in plaintext. This makes it hard
to estimate the privacy risk of sharing log files sanitized using FLAIM. All rules
define replacing data items that preserve properties that make the properties of
the replacing data item immediately accessible by accessing the replacing string.
There is no possibility of restricting that access to certain purposes. This im-
plies that access to a sanitized log file comes with a possibly large amount of
information about the plaintext data without further control.
Autocrypt [24] is a tool that utilizes partially homomorphic encryption (PHE)
to enable an untrusted web server to execute a restricted number of trusted
operations on sensitive content. For this, it automatically transforms standard
UNIX utilities into representations that can be used for homomorphic operation
on its variables and values. In the described use case of an untrusted web server
virtual machine and a trusted hypervisor, it includes the possibility to decrypt
values and re-encrypt them using a different PH cryptosystem to achieve certain
utility. Autocrypt can be seen as a compiler that enables programs to process
pseudonymizations with utility options that match the requirements of the pro-
gram.
Several privacy policy languages for various different purposes have been intro-
duced [16][14][25]. To the best of our knowledge, none of the introduced lan-
guages can be utilized for the definition of fine-grained utility requirements for
pseudonymization.

4 Utility Requirements and Construction of Pseudonyms
with Utility Options

Given a semi-structured data file and the utility requirements as an input, the
pseudonymization toolkit automatically generates and outputs a pseudonymized
data file, called pseudonymization.
To construct a pseudonymization of a semi-structured set of data entries D, the
purposes of processing must be identified. Based on the analysis of the purposes,
the utility requirements for each dij are defined. For each dij , one or more utility
tags will be constructed based on the defined utility requirements. This is done
by applying appropriate mechanisms to dij . The resulting pseudonym p(dij) is
then a sequence of all constructed utility tags. For each utility requirement,
p(dij) includes a utility tag ul(dij) that offers the corresponding utility option
of dij . In case cryptographic parameters are required, they will be included in
the belonging utility tags.
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4.1 Utility requirements

In the following, we present a classification of the utility options a pseudonym
can support to meet corresponding utility requirements.

Linkability A pseudonym p(dij) ∈ P (D) of a plaintext dij ∈ D is linkable with
respect to a relation r, i.e. fulfills the utility requirement ”linkability w.r.t. r”,
if, given another pseudonym p(dxy) that is linkable w.r.t. the same relation r,
one can determine whether the underlying plaintexts dij and dxy are in a certain
relation r or not. This can be modeled by a function f : (P, P )→ {0, 1} with

f(p(dij), p(dxy))

{
1, if (dij , dxy) ∈ r (1)

0, else (2)

Linkability w.r.t. a relation r is available on a set of pseudonyms P , if the
aforementioned function f is defined on all pseudonyms of P .

Disclosability A pseudonym p(dij) ∈ P of a plaintext dij ∈ D is disclosable,
i.e. fulfills the utility requirement ”disclosability”, if a mapping p−1(p(dij)) = dij
is defined for p(dij).

Mathematical Operations A mathematical operation + is available on a set
of pseudonyms P , if there is a corresponding operation ∗ that can be applied to
each pair of pseudonyms p(dxy), p(dij) ∈ P with

p(dij) ∗ p(dxy) = p(dij + dxy)

for all plaintexts dxy, dij ∈ D with pseudonyms in P , and there is a mapping
p−1 : P → D with

p−1(p(dij + dxy)) = dij + dxy

for all p(dij), p(dxy) ∈ P .

Binding the Accessibility of the Utility Options In order to enable a
system to apply a fine-grained process-based access control on the utility of a
pseudonymization of a dataset, the accessibility of a utility option can be bound
to certain roles a subject in the system may hold, or to a purpose that has to be
fulfilled. Hence, the utility of a pseudonym p(dij) can only be accessed in certain
cases.

In the Smart Building example stated in the Introduction, the utility require-
ments of the stated purposes are as follows:

– Purpose 1: ”How many hours has employee x worked?”
Utility requirements 1:
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• The accountant must be able to disclose the employee’s ID eID to create
the payroll.

• The accountant must be able to calculate the working hours of each day
by calculating the differences between the corresponding entrance and
leaving times te, tl to create the payroll.

– Purpose 2: ”At what time has employee x entered and leaved the building,
respectively?” (conflict resolving).
Utility requirements 2:
• The conflict resolver of the company must be able to disclose eID, te

and tl to prove the entrance and leaving times used for calculating the
working hours in case an employee has not consented the payroll.

– Purpose 3: ”Who of the employees has been present during a time interval
T?” (theft detection).
Utility requirements 3:
• When a theft is detected to happened in a certain time interval T =

[ti, tj ], the security responsible of the company must be able to disclose
te and tl to identify the presence of employees in that time interval, i.e.
all employees with last te < tj and last tl > ti . He also must be able to
disclose all eID that correspond to suspicious timestamps.

4.2 Pseudonym Construction

The pseudonyms are constructed as sequences of utility tags, where each utility
tag is used to provide a certain, well-defined utility option. We give example
mechanisms that can be used to generate utility tags of a pseudonym.

Pseudonyms with Linkability options Selecting an appropriate mechanism
for generating pseudonyms that are linkable depends on the relation r that has
to be considered. A simple example for the linkability option is linkability with
respect to equality. Here, pseudonyms are generated such that for two given
pseudonyms p(dij) and p(dxy) of dij and dxy, f(p(dij), p(dxy)) = 1 implies
dij = dxy, and f(p(dij), p(dxy)) = 0 implies dij 6= dxy. Pseudonyms that are
linkable w.r.t. equality can be obtained by generating a utility tag u(dij) of dij
using a symmetric block cipher. For a fast and secure utility tag and pseudonym
generation, AES may be selected. To prevent the disclosure of dij , the symmetric
key has to be made inaccessible.
The notion for a pseudonym with a utility tag for linkability w.r.t. equality for
dij would be p(dij) = (· · · , u=(dij), · · ·). In case AES is used for the generation,
u=(dij) = (AESk=

(dij)). Note that the key k= is not rolled out with the utility
tag.

Pseudonyms with the Disclosability option To generate a disclosable
pseudonym of dij , one may utilize a symmetric encryption scheme using a key
kdiscl. To obtain a unique disclosable pseudonym for each dij , randomization
is included. One possibility is to append a nonce ndij

of fixed, known length to
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each plaintext under consideration before encrypting. The key is made accessible
to an entity that is responsible for managing the disclosure of the plaintext of
dij . This is to ensure that only making use of the disclosability option makes
plaintext information available.
The notion for a pseudonym with a utility tag for disclosability for dij would be
p(dij) = (· · · , udiscl(dij), · · ·). In case AES is used for the generation, udiscl(dij) =
(AESkdiscl

(dij |ndij
), kdiscl). Note that the key kdiscl is rolled out within the util-

ity tag. There is the need for a secure handling of the key on the processing
system.

Pseudonyms with the Mathematical Operation option In this work, the
utility option for a utility requirement ”mathematical operation” is implemented
using homomorphic encryption. For the utility option of the mathematical op-
eration ”addition” on data items dij from a subset D+ ⊆ D, one may apply the
Paillier cryptosystem [18] using the same public key k+pub

for generating the
corresponding utility tags of all the dij . The resulting pseudonym pij includes a
utility tag u+(dij) that can be homomorphically added with other utility tags
u+(dxy). The result of the homomorphic addition is an encrypted sum. To de-
crypt the sum, access to the private key k+priv

that corresponds to k+pub
is

required.
The notion for a pseudonym with a utility tag for the addition operation for dij
would be p(dij) = (· · · , u+(dij), · · ·). In case the Paillier cryptosystem is used
for the generation, u+(dij) = (Paillierk+pub

(dij), k+ = (k+pub
, k+priv

)). Note

that the key k+ = (k+pub
, k+priv

) is rolled out within the utility tag. Due to the
construction of homomorphic cryptosystems, k+priv

can be used to decrypt the
pseudonyms and hence, allows for disclosure of the plaintexts dij . k+pub

can be
used to malleableize u+(dij), i.e. for a known plaintext x, generating a utility
tag u+(x) and homomorphically add it to a given u+(dij), yielding u+(dij + x).
Subtracting x from the decrypted sum will reveal dij . Thus, there is the need
for a secure handling of the public and private key on the processing system.
For the utility option of the mathematical operation ”multiplication”, the El-
Gamal cryptosystem is utilized similarly.

Pseudonyms with utility options bound to roles or purposes To bind the
accessibility of a utility option of a pseudonym P (dij) to a role or purpose, the
matching utility tag u(dij) is probabilistically encrypted. The decryption key is
made accessible only to a subject holding that certain role, or is proving to fulfill
the dedicated purpose, respectively. This additional encryption introduces a layer
of access control on the pseudonyms. To obtain a probabilistic encryption of a
utility tag, we use a symmetric block cipher, e.g. AES, together with a nonce of
fixed known length for generating each utility tag. The goal of using probabilistic
encryption is to prevent a possible attacker from detecting duplicate plaintexts
by checking encrypted utility tags and hence, gaining a benefit that might rise
the success probability of a correlation attack using background knowledge.
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d11 d12 d13                     …             .      d1,m1 
d21 d22 d23                     …             .      d2,m2 

.      .     .                  …             .       . 
di1 di2 di3     .     dij     …             .      d2,mi 
.     .      .                  …             .       .    
.     .      .                  …             .       .   
dn1 dn2 dn3               …             .     dn,mn 

dataset D 

                ,                ,      …        ,               

utility requirements of p(dij) 

ur1(dij) ur2(dij) urlij (dij) 

p(dij)              ,                ,        …     ,                  = u1(dij) u2(dij) ulij(dij) 

pseudonym of dij 

utility tags of p(dij) .     .     .                   …             .        .     .    
.     .     .                   …             .        .     .    
.     .     .                   …             .        .     .   
.     .     .                   …             .        .     . 
.     .     .        p(dij)  …             .        .     . 
.     .     .                   …             .        .     .    
.     .     .                   …             .        .     .    

P(D): pseudonymization of D 

Fig. 1. Structure of a pseudonymization with utility options.

The key used for role or purpose binding of the availability of a utility option of
a utility tag must be securely stored and processed in the system.
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Summarizing, a pseudonymization P (D) of a dataset D can be considered as
a set

P (D) ⊆
n⋃

i=1

mi⋃
j=1

p(dij).

The utility options of each dij addressed in the utility policy are represented in
the pseudonymization as a sequence of utility tags. This results in a pseudonym
of dij being a sequence of utility tags uk(dij), i.e.

p(dij) = (u1(dij), · · · , ulij (dij)),

where lij is the number of utility tags required for meeting all utility requirements
defined for p(dij). I.e., lij equals the number of utility requirements. The strings
required to offer a single utility option are summarized in one utility tag. Fig.1
shows the structure of a pseudonymization with utility options.
Note that for each utility tag, corresponding cryptographic parameters may be
required for security reasons. In order to prevent a misuse of the utility options
offered by a pseudonymization P (D), the parameters have to be treated carefully
in the processing systems.
Note that generating pseudonyms with utility options may have side effects that
lead to a disclosure of unwanted information by combining the knowledge gained
out of different utility options. For that, the definition of the utility requirements
has to be done very carefully and respecting the principle of data minimization
and purpose binding [9] together with a strict access control.

In the example of the Introduction, data produced in a simple smart building
could be pseudonymized according to each described utility requirement stated
in section 4.1. This would result in utility tags constructed as follows:

– Req. 1: Tracking the total number of hours of an employee.
Utility tags:

• mID is probabilistically encrypted using a purpose-specific key k1 that
is only accessible for that purpose. The result is e1k1(mID).

• Every working day, te and tl are used to generate pseudonyms that pre-
serve distances within a limited time interval, e.g. using the functions
described in [15]. The result is ed(te) and ed(tl), respectively. As soon
as the smartcard reader gathers an employee’s leave, it calculates the
difference of ed(te) and ed(tl), yielding ed(tl − te). For purpose binding,
the result is encrypted using k1 to e1k1(ed(tl − te)).

– Req. 2: Resolving conflicts about the working hours between an employee
and the company:
Utility tags: mID, te and tl are probabilistically encrypted using a purpose-
specific key k2 that is only accessible for that purpose. The result is
(e1k2

(mID), e1k2
(te), e1k2

(tl)). On conflicts, only resolving subjects in the
system can access the key and decrypt and access the values.
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– Req. 3: Suspect identification after theft detection:
Utility tags: mID, te and tl must be probabilistically encrypted using a
purpose-specific key k3. The result is (e1k3(mID), e1k3(te), e1k3(tl)). To iden-
tify suspects, only security responsible subjects can access the key and de-
crypt and access the values.

The pseudonymization is then

– for the time stamps te and tl:
u1(te, tl) = (e1k1(ed(te)), e1k1(ed(tl)), e1k1(ed(tl − te)), k1))
u2(te, tl) = (e1k2

(te), e1k2
(tl)), k2). u3(te, tl) = (e1k3

(te), e1k3
(tl)), k3). Note

that each value of the utility tag is generated as soon as the corresponding
plaintext value occurs.
The result is p(te, tl) = (u1(te, tl), u2(te, tl), u3(te, tl));

– for the employee’s ID eID: p(mID) = (u1(mID), u2(mID), u3(mID)).
u1(mID) = (e1k1(mID), k1),
u2(mID) = (e1k2

(mID), k2), and
u3(mID) = (e1k3

(mID), k3);

For all utility tags generated, k1 is only accessible to the accountant for payroll
generation, k2 is only accessible to the conflict resolver in case of conflicts, and
k3 is only accessible to the security responsible in case of theft detection.

5 Architecture

The pseudonymization toolkit consists of a policy builder, an input transforma-
tion tool, and a pseudonymization tool that utilizes pseudonymization functions.
Given a semi-structured data file and the utility requirements as an input, the
pseudonymization toolkit automatically generates and outputs a pseudonymized
data file.

The Transformation Tool

The toolkit accepts data of arbitrary semi-structured data formats as an input.
In order to allow the pseudonymization tool to address the data items and ap-
ply the corresponding pseudonymization rules on each addressed data item, the
transformation tool generates an XML structured representation of the input
dataset. It identifies the data entries and generates an XML node for each data
entry. Each data item of a data entry is identified and a corresponding sub-node
is generated in the XML representation.
The transformation tool includes Python scripts [21] as plug-ins for different
semi-structured data formats, including JSON [6], YAML [2], CSV [22] and the
content of electronic health records written in HL7 compatible formats [8]. In
the example given in Table 4.2, a CSV file consisting a column of timestamp-
representing values is transformed to an XML structure. The first row of the
CSV file is interpreted as containing the identifier of each data item of a row.
Each row is considered to be a data entry consisting of possibly multiple data
items.
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CSV XML

time

422875
278522

<dataset id="h1">

<dataentry id="0">

<time>422875 </time>

</dataentry >

<dataentry id="1">

<time>278522 </time>

</dataentry >

</dataset >

Table 1. Example of data represented in CSV and the corresponding XML transfor-
mation.

Fig. 2. Dataflow of the toolkit.

The Policy Builder

The policy builder is the human interface to the toolkit. It provides a GUI
for passing the file that contains the plaintext data D and inserting the utility
requirements that have to be provided by each data item. With the input, it
generates a machine-readable policy using the specific XML based policy lan-
guage.

The Policy Language

A utility policy has two purposes. Firstly, it serves as a machine-readable, yet
human-comprehensible documentation of the utility requirements for a pseu-
donymization of a dataset D. Secondly, the pseudonymization tool infers the con-
figuration required for generating a pseudonymization that meets the formulated
utility requirements from the policy. Here, a configuration of the pseudonymiza-
tion tool is the selection of appropriate mechanisms and parameters, e.g. cryp-
tographic keys, to generate an appropriate pseudonymization of D.
For the example given in the Introduction, the utility requirements formulated
in Section 4.2 are formalized as a policy using the policy language.

Addressing a dataset and data entries The policy language consists of
XML-based syntax. A utility policy has the parent tag <utility policy>. The
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dataset is addressed with the child tag <dataset id="f">, where f is the iden-
tifier of the dataset’s file. Each data entry di that contains data items to be
represented in the pseudonymization by pseudonyms is addressed by an anno-
tating child tag <dataentry>. The data item dij is represented by the XML tag
of the column it belongs to. To define a utility requirement for a single dij , the
id attribute of the tag <dataentry> is set to the number of the containing data
entry. We call this referencing method individual addressation. To address all
data items of the same type in a dataset, e.g. all data items of the type <time>,
the tag <time> is used. The id attribute of <dataentry> is set to all. We call
this referencing method tag-based addressation. Note that a data item can only
be referenced by its position and tags, and not by its value. To address data by
value-based properties, appropriate tagging is required.
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<utility_policy id="all">

<dataset id="h1">

<dataentry id="all">

<time>

<utility >

<option >

mathematical operation

</option >

<operation >

addition

</operation >

<binding type="role">

analyzer

</binding >

</utility >

</time>

</dataentry >

</dataset >

</policy >

Listing 1.1. Example of an XML utility policy for the dataset of table 4.2.

Formulation of the policy rules The rules that define the utility requirements
for a pseudonym of dij are annotated with the child tag <utility>.

Utility options. A <utility> rule contains the child tag <option> that defines
whether the utility option is of the type linkability, disclosability or mathe-
matical operation. To annotate these utility options, the values linkability,
disclosability, or mathematical operation are included, respectively.
For denoting the relation of linkability options, the child tag <relation> of
<utility> is used. The child tag <operation> indicates the intended mathe-
matical operation.

Binding a utility option to a role or purpose. The utility option defined in a
<utility> rule can be bound to a role or purpose using the child tag binding of
utility. For role binding, the binding is extended with an attribute type. The
value of type is either set to role or purpose. The value of the <binding> tag
is set to a system-based identifier of the intended role or purpose, respectively.

Example In listing ??, an XML utility policy is exemplified. The scope of the
example policy is a dataset with the identifier h1. Any data entry dij of the
dataset under consideration that is tagged with <time> is pseudonymized in a
way that the resulting pseudonym of the data entry dij includes a utility tag
that allows for performing the mathematical operation ”addition” on it. This
utility option is bound to the role analyzer. Any data entry of the dataset h1

that is tagged with a tag different from <time> is omitted and not included in
the resulting pseudonymization. A utility policy can be addressed by extending
the <utility policy> tag with the id attribute.
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The Pseudonymization Tool

The input of the pseudonymization tool is a utility policy file and an XML struc-
tured input plaintext dataset file. The tool is configured based on the utility re-
quirements. For each utility requirement, it selects an appropriate pseudonymiza-
tion function from the available pool of pseudonymization functions. It applies
the functions to each data entry mentioned in the policy and writes the result-
ing output into an XML structured output file. Only data entries with matching
rules in the utility policy are pseudonymously included in the pseudonymization
output file. For the example described in Section 4.2, the pseudonymization tool
selects a function that generates Paillier-encrypted ciphertexts as utility tags of
the plaintext values. Note that the XML tags of the input file are not considered
to be pseudonymized. The resulting data pseudonymization file content is listed
in the example of Listing ??.
Note that the provided mathematical operation ”addition” is homomorphic and
requires access to the corresponding Paillier public and private key. For that,
the key is included in the utility tag. On deployment, it must be ensured that
the key is stored and accessed securely.

<dataset id="h1">

<dataentry id="0">

<time>

bfYUlqPrasuAdDN0grrBzuLalY

...

Bo3IQw6PhGJqEdvac/oZZ0gZ

</time>

</dataentry >

<dataentry id="1">

<time>

23L/n3AzjS1M0Gou3DaA4ak32Z

...

AG9j7KnwHg5QJu4TgjX4Ut89

</time>

</dataentry >

</dataset >

Listing 1.2. Pseudonymization of the dataset of Table 4.2 according to the utility
policy of Listing ??.

6 Security Requirements

The goal of this work is to present a flexible, almost use-case independent
pseudonymization toolkit. The system architecture must provide means that
provide security against a realistic, well-defined attacker model. Here, we assume
the honest-but-curious adversarial model. For that, the system architecture must
fulfill the following conditions:

Data minimization. Depending on the usage scenario, (possibly multiple) parties
may be involved in the definition of the utility requirements a pseudonymization
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P (D) should fulfill. We assume that the parties agree on the minimum set of
utility requirements possible. This includes that the data holder would only
provide pseudonyms of data entries of D with utility options that are required for
fulfilling the computation purpose. I.e., the parties under consideration strictly
follow the principle of data minimization.

Access control on the pseudonyms. Whenever required, the parties of the system
agree on clear purposes the utility options should be used for. This implies
purpose-based access control on the utility tags of a pseudonym, i.e. purpose
binding. If necessary, the utility options should be made accessible to certain,
well-defined roles. This lead to a role-based access control on the utility tags of
the pseudonyms. The access control comprises keys, salts and nonces contained
in utility tags. We assume that the system architecture provides means of secure
key storage and access.

Secure decryption management. The system ensures that the private keys are
only used for enabling a utility of a pseudonym according to the formulated
utility policy. This includes trusted means that ensure that no plaintexts of D are
revealed unless it is required to meet a well-defined defined disclosure condition.
In order to fulfill this security requirement, hardware security modules may be
utilized.

7 Evaluation

The goal of our evaluation was to elaborate the overhead of using the technique
described in this paper in general. For that, we have considered the time and
space consumption of the pseudonymizations of different utility options dur-
ing generation and usage. We have examined the utility options disclosability,
mathematical operation ”addition”, mathematical operation ”multiplication”,
and the mathematical operation ”conditional distance preservation” [15]. Each
of the utility options has been considered with binding to a purpose/role, and
without binding. We have run our experiments on a Microsoft Windows 10 Home
64-bit system with a Intel(R) Core(TM) i7-4500U CPU and a 1.80 GHz clock
rate, a 8 GB RAM and a hard disk drive. The results are shown in table 1.

We consider pseudonyms that consist of one single utility tag. The pseudonym
generation without binding takes between 0.06 and 1.7 seconds, without key
generation. With additional binding, it takes between 0.12 and 2.2 seconds. The
pseudonym generation is a process that is performed once before data deploy-
ment. Thus, we consider these times acceptable.
The utility processing takes between 0.009 and 0.118 seconds. Except for the
decryption-performing disclosure, all the utility processing operations take less
than 0.02 seconds. Taking into account that the plaintext disclosure is consid-
ered to be done in very special cases, we consider the time consumption to be
practical.
The space consumptions lie between less than 16% and 23−fold of the plaintext
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Time consumption in seconds Space consumption

Pseudonym generation Utility processing Plaintext/pseudonym in
%

no binding with binding no binding with binding

Disclosability 0.0608 0.1207 0.1184 100.00% 115.87%

Linkability w.r.t.
equality

0.0904 0.1479
f(dij , dxy) = 1:

0.0039 147.62% 249.21%

f(dij , dxy) = 0:
0.0009

Mathematical Op.:
Addition

1.7469 2.2908 0.0151 973.57% 2455.71%

Mathematical Op.:
Multiplication

0.1551 0.2373 0.0099 977.86% 2455.71%

Mathematical Op.:
Conditional distance
preservation

0.0808 0.1477 0.0098 290.71% 627.14%

Table 2. Comparison of time and space consumption of different utility options.

size. These are constant sizes resulting from the block lengths of the executed
ciphers. In this work, we have followed the BSI1 recommendations for key and
block sizes [5]. To reduce the space magnitude, making a trade-off between se-
curity and storage consumption is required.
In our opinion, the evaluation results show the practicability of our approach.

8 Conclusions and Future Work

We have presented a toolkit for pseudonymization with utility options. It pro-
vides an easy way for the formulation of utility requirements in a machine-
readable utility policy of a pseudonymization. Based on the utility policy, it
generates an XML structured, the utility requirements fulfilling pseudonymiza-
tion.
in this work, we have presented how the availability of the utility option of
a utility tag can be bound to a specific purpose or role using symmetric en-
cryption. Utilizing asymmetric cryptography may ease the key deployment and
management. However, it may imply higher storage and processing costs. Some
combinations of utility options a pseudonymization can offer may be prone to
correlation attacks. Building upon the presented work, one may develop tech-
nologies that enhance privacy-respecting selections of utility requirements.
When decryption is required for making a utility option of a pseudonym avail-
able, mechanisms that ensure that the decryption key is securely accessed and
utilized are required as well.
More utility requirements with corresponding utility options may be identified

1 Bundesamt für Sicherheit in der Informationstechnik: German Federal Office for
Information Security



18

and implemented in the policy language and the pseudonymization tool, respec-
tively.
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