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ABSTRACT

Confidence intervals around the median of estimators
are proposed as a substitute for confidence intervals
around the expectation. This is adequate since for
many estimators the median and the expectation are
close together, or even coincide, particularly if the
sample size is large. Median confidence intervals are
easy to obtain, the variance of the estimator is not
used. They are well suited for correlated simulation
output data, apply to functions of estimators, and
in simulation they seem to be particularly accurate,
namely they follow the confidence level better than
other confidence intervals. Grouping data into batches
which is known from the batch means method is also
useful for median confidence intervals.

INTRODUCTION

Stochastic simulation profits from fast computers,
many more and much longer simulation runs than a
decade ago can be carried out in reasonable time, es-
timation can rely on many data. This increases the
trustworthiness in the statistical simulation results,
and in many situations, the distributions of estimators
can be expected to be close to a normal distribution, in
which the expectation and the median coincide. This
observation motivates us ([8]) to consider confidence
intervals around the median as a substitute for confi-
dence intervals (CI) around the expectation.

These median confidence intervals (MCI) are easier
to obtain than usual confidence intervals, and further-

more they even apply in situations where usual confi-
dence intervals cannot be used, in general, namely for
functions of two or more estimators, or when the vari-
ance of the estimator does not exist.

Median confidence intervals are obtained by means
of a small number w of replications, typically w =4,
5, or 6. They have attractive features and some
minor disadvantages compared to classical confidence
intervals:

1. The variance of estimators is not needed. Here
is a main difficulty when confidence intervals are
constructed because “simulation output data are
always correlated” (Law and Kelton [5]). Spe-
cial procedures must be applied for this variance,
the replication/deletion approach, batch means,
the regenerative method, autoregressive processes,
the spectral estimation method, or the standard-
ized time series method, all of which are not free
from obstacles, see Fishman [4], Bratley, Fox, and
Schrage [3], Banks [2], or Law and Kelton [5]. This
is omitted for median confidence intervals.

2. Even the variance of an estimator may not ex-
ist, for example in the case of some heavy-tailed
distributions ([7]). Nevertheless the median confi-
dence intervals can be constructed, whereas clas-
sical confidence intervals cannot.

3. It is easy to obtain median confidence intervals
for functions of two or more estimators whereas it
is difficult to get confidence intervals with other
known methods, in general, except for jackknife
intervals ([6]). For example, in a queueing sys-
tem, the mean waiting time in the queue, E[W ],
and the arrival rate λ are estimated. The mean
number of jobs in the queue is λE[W ] (Little’s
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law). Hence this number can be estimated indi-
rectly with a product of estimates for which a me-
dian confidence interval can be given.

4. If in a simulation a median confidence interval is
too wide it can be narrowed. A smaller median
confidence interval can be obtained when the w
replications are augmented, the runs are continued
from the last state. Sometimes this is called a
“sequential procedure”.

5. For some simple examples, e.g. the sum of inde-
pendent normally distributed random numbers,
we found median confidence intervals which are
slightly wider than classical confidence intervals,
but not too much ([8]).

6. In more realistic examples which involve depen-
dent simulation output with unknown distribu-
tion, the width of median confidence intervals and
classical confidence intervals did not differ signif-
icantly. More important, the median confidence
intervals seem to be more accurate, i.e. the cover-
ages are closer to the predefined confidence level.
That means, in repeated simulations of the same
model, the proportion of median confidence inter-
vals which contain the real value of the estimated
parameter is nearer to the theoretically expected
value, the confidence level.

7. It must be remarked that not each level of con-
fidence is possible with the new technique, only
values like 1 − 0.5j , j = 1, 2, . . ., or similar – this
becomes clear in the theorem in the next section.

Some independent replications (simulations) are per-
formed for median confidence intervals, say w. If
steady state measures are to be estimated, in each
replication the statistical equilibrium must be reached
before data can be collected. The median confidence
interval technique shares this drawback with the repli-
cation/deletion approach.

But this can be omitted: A single simulation run
is produced instead with only one transient phase
and w consecutive batches each of which is taken as
a substitute of a distinct replication. We call this
approach “batch median confidence intervals (BMCI)”.
The idea to consider consecutive batches of output data
as independent is similarly applied in the well-known
batch means method.

MEDIAN CONFIDENCE
INTERVALS

Let X1,1, ..., X1,n be random variables with the distri-
bution function FX,θ(x) where θ, θ ∈ Θ, is a param-
eter, for example the mean or the variance, and Θ a
set of possible parameters. Let T (X1,1, ..., X1,n) denote
an estimator for this parameter with the distribution
function Fθ(x), θ ∈ Θ.

We consider a novel kind of confidence interval

[Tmin, Tmax) (1)

where
Tmin = min

1≤i≤w
Ti

and
Tmax = max

1≤i≤w
Ti.

Here, the Ti = T (Xi,1, ..., Xi,n), i = 1, . . . , w, are
estimators for w independent replications Xi,1, ..., Xi,n

of the sample X1,1, ..., X1,n.
For F = Fθ(θ), the value of the estimator’s distribu-

tion function at θ, the following theorem holds.
Theorem The interval (1) is a confidence interval

for the parameter θ with the confidence level 1−Fw−
(1− F )w, i.e.

P{Tmin ≤ θ < Tmax} = 1− Fw − (1− F )w (2)

holds.
Remarks
1. The distribution function Fθ(x) of the estimator

may not be known, only the value Fθ(θ) is needed.
2. The variance of the estimator is not needed, the

question whether the random variables Xi,1, . . . , Xi,n

are independent does not arise.
3. The confidence level cannot be chosen arbitrarily,

only the values 1 − Fw − (1 − F )w, w = 2, 3, . . . are
allowed.

Now we consider the most important special case
where Fθ(θ) = 1/2, i.e. the unknown parameter is
the median of the estimator. Therefore we speak of
“median confidence intervals”. This is the case for all
estimators with symmetric distributions, for example
if the estimator is unbiased and normally distributed.
Then,

P{Tmin ≤ θ < Tmax} = 1− 0.5w−1 (3)

holds, the confidence level can be one of the values
1− 0.5w−1, w = 2, 3, . . ..



If the median is merely close to the expectation,
the median confidence interval is only approximate.
The skewness of the distribution is the reason for the
error of the MCI, more precisely for the error of the
conficence level, namely the difference between (2) and
(3). This happens quite often, due to the central
limit theorem, when the summed random variables
are not normally distributed but n, the number of
summands, is large. Then the distribution function of
the estimator is approximately a normal distribution,
hence approximately symmetric, and the median is
near to the expectation.

Confidence intervals for estimates in simulation are
usually approximate since some assumptions for the
applied method are not satisfied, for example

• the estimator has not the assumed distribution

• variables which are assumed to be independent are
dependent.

For the constructionn of the confidence interval it
is often assumed that the estimator has a normal
or Student distribution and that it is based on an
independent sample or some independent replications
of the simulation.

For median confidence intervals the assumptions are
weaker, only independency of the w replications and
symmetry of the estimators distribution are required.

This last assumption needs not to be satisfied if the
confidence level is determined with (2). Under these
circumstances we speak of “min-max confidence inter-
vals” (MMCI). An MMCI is exact if the w replications
are independent, even the estimator may be biased.
This sounds very interesting, but the serious problem
is the value F = Fθ(θ), the value of the estimator’s dis-
tribution function at θ, the unknown parameter which
is to be estimated. We do not know how to calculate
this F in general. It is known for some toy simulations,
in [8] we consider min-max confidence intervals for the
estimation of the variance of normally distributed ran-
dom variables. Or it can be estimated in a very long
and expensive simulation, in the section “numerical ex-
perience” we present an example in 5.

BATCH MEDIAN
CONFIDENCE INTERVALS

Batch median confidence intervals serve the purpose
to estimate steady state measures. To this end, a
single simulation run is performed. It begins with a
transient phase which continues until the steady state
is nearly reached, and w phases follow, the batches.
They are considered to be independent as with the
batch means method. With each batch, the desired
parameter is estimated, and the minimum and the
maximum of these estimates are considered for the
median confidence interval (1).

NUMERICAL EXPERIENCE

Many simulation studies were accomplished in which
median confidence intervals and classical confidence
intervals are compared. We summarize some results.

In these studies, simulation experiments were done
with different models. In each experiment confidence
intervals were calculated with well-known methods and
(batch) median confidence intervals.

Especially the replication/deletion method is com-
pared with median confidence intervals. For both tech-
niques some independent replications of the simulation
must be done. In steady-state simulations each repli-
cation begins with a transient phase.

Batch median confidence intervals are compared
with the classical methods, particularly with the batch
means method. For both of these techniques only one
transient phase at the beginning of the single run must
be simulated before data are considered for steady-
state simulations.

In each study, many independent experiments were
performed. In each experiment we noticed if the true
value of an estimated parameter (which was known
here) was contained in the (median) confidence interval
or not. So we estimated the “coverage” C, i.e. the frac-
tion of (median) confidence intervals which contained
the true value. This coverage should be near to the the-
oretical confidence level CL if the confidence intervals
are accurate. The error CL − C measures the accu-
racy of the confidence interval technique, the smaller
the better. These errors serve the purpose to compare
the accuracy of different techniques.

Compared confidence intervals are calculated with
equal total sample sizes but for the regeneration
method this is possible only approximately.



1. An M/M/1 queueing system is considered. The
arrival rate is 1.0 and the service rate 1.25, hence the
system is heavily loaded with utilization 0.8. Law
and Kelton [5, p. 535] performed a comparative study
in order to see how accurate the confidence intervals
are. They applied different well known methods for
confidence intervals: Batch means (B), autoregres-
sive method (A), spectrum analysis(SA), regenerative
method (R) (classical (C) and jackknife (J)), and stan-
dardized time series (STS). 90 percent confidence inter-
vals were constructed for the steady-state mean delay
which is known to be 3.2.

For each of the methods and for different simulation
run lengths, confidence intervals are considered. The
total sample sizes are n = 320, 640, 1280, 2560. For
batch means and standardized time series, the number
of batches is 5, hence the batch sizes are m = 64,
128, 256, 512 (10 and 20 batches were also tried, but
with worse results). These batch sizes m are also
the numbers of regeneration cycles because the mean
length of these cycles here is 5.

Law and Kelton performed 400 independent simula-
tion experiments with all indicated sample sizes n and
each method (they took the results for the standard-
ized time series method from another source). They
counted how often the known value of the mean de-
lay was inside the confidence interval and thus got the
coverages C and the errors CL− C where CL = 0.9.

As the authors remark, this model is known to be
statistically difficult. This means that the assumptions
for the methods are not strictly satisfied, hence the
confidence intervals are not very accurate, the coverage
differs a good deal from the theoretical confidence level,
at least for small sample sizes.

The longer the run was, the more accurate were the
confidence intervals, as one would expect.

We conducted an according simulation study with
the same model and the same run lengths. Batch me-
dian confidence intervals were constructed with w = 5
batches in each simulation. This implies a 93.75 per-
cent confidence level CL. We counted the proportion of
400 similar simulations for each run length which con-
tained the true value and thus obtained the coverages
C and the errors CL− C.

In all cases, the coverages of the batch median
confidence intervals were nearer to the theoretical value
of 93.75 percent than all coverages of the Law and
Kelton study to 90 percent, the BMCI errors were
smaller. That means, in the considered examples,

the new technique is more accurate than all the other
methods.

An overview of the errors of the Law-and-Kelton
study and our study is given in the following table.
Here the entries are the errors CL−C. For example, for
the batch means method (B) and sample size n = 320
the error is 0.210. This means, the observed coverage
is 69% since the theoretical confidence level was chosen
to be 90%. Or for batch median confidence intervals
(BMCI) and sample size n = 1280 the error is 0.060.
This means, the observed coverage is 87.75% since the
theoretical confidence level was chosen to be 93.75%.

n(m) 320(64) 640 (128) 1280 (256) 2560 (512)

B 0.210 0.177 0.120 0.102
STS 0.380 0.272 0.170 0.102
SA 0.187 0.140 0.117 0.067
A 0.212 0.177 0.147 0.145

RC 0.340 0.217 0.195 0.155
RJ 0.230 0.172 0.152 0.137

BMCI 0.127 0.102 0.060 0.045

Errors CL− C

We had the impression that the statistical relevance
from 400 independent experiments is not sure. There-
fore we compared the batch means method and batch
median confidence intervals in a study with 25600 in-
dependent experiments and 90 percent confidence in-
tervals for the errors.

Here again the new technique is more accurate,
especially for short sample sizes, as can be seen in the
following table.

n(m) B BMCI

320(64) 0.195 ± 0.005 0.153 ± 0.005
640 (128) 0.133 ± 0.005 0.104 ± 0.005
1280 (256) 0.091 ± 0.004 0.071 ± 0.004
2560 (512) 0.063 ± 0.004 0.045 ± 0.004

Errors CL− C

2. In another study, median confidence intervals
and classical confidence intervals which were achieved
with the replication/deletion approach were compared.
The M/M/1 queue was simulated with light, medium,
and heavy load ρ (arrival rate 1.0, service rate 4.0,
2.0, 1.25). For each load, short simulations with
run lengths 150, 200, and 500 delays, respectively,
and long simulations with 2,400, 3,200, and 8,000
delays, respectively, were performed. We did 25,600
independent simulation experiments for each case, in
order to obtain statistically significant comparisons.



In the short simulations, the obtained median con-
fidence intervals are more accurate than the classi-
cal confidence intervals from the replication/deletion
approach, the observed coverages were all closer to
the confidence level. In the long simulations for light
and medium load, no statistically significant differences
were observed: The coverages were all close to the con-
fidence level, both techniques yielded accurate confi-
dence intervals. We conjecture that here the estima-
tor is nearly normally distributed, and for normally
distributed estimators, both techniques provide exact
confidence intervals which contain the true value with
the confidence level probability.

ρ Run RD MCI

Short 0.023 ± 0.003 0.017 ± 0.003
0.25

Long 0.003 ± 0.003 0.002 ± 0.003
Short 0.032 ± 0.004 0.022 ± 0.003

0.5
Long 0.000 ± 0.003 0.004 ± 0.003
Short 0.056 ± 0.004 0.043 ± 0.004

0.8
Long 0.012 ± 0.003 0.004 ± 0.003

Errors CL− C

3. In study 2. we compared also median confidence
intervals and jackknife intervals for ratios of estimators.
In particular, we estimated the expected throughput,
λ̂(r), as the ratio of the mean number of jobs in the
waiting room, Q̂, and the mean delay, Ŵ , λ̂(r) = Q̂/Ŵ
(Little’s law), and we estimated the mean delay Ŵ (r)

by Ŵ (r) = Q̂/λ̂. For these ratios, Q̂, Ŵ , and the
throughput λ̂ were estimated directly.

For the ratios, we calculated median confidence in-
tervals and jackknife intervals. In all examples, the
median confidence intervals are much more accurate
than the jackknife intervals.

ρ What Run RD, Jackknife MCI

Short 0.105 ± 0.005 0.002 ± 0.003
λ̂(r)

Long 0.077 ± 0.004 0.002 ± 0.003
0.25

Short 0.091 ± 0.004 0.015 ± 0.003
Ŵ (r)

Long 0.076 ± 0.004 0.001 ± 0.003
Short 0.125 ± 0.005 0.008 ± 0.003

λ̂(r)
Long 0.076 ± 0.004 -0.001 ± 0.003

0.5
Short 0.100 ± 0.005 0.019 ± 0.003

Ŵ (r)
Long 0.073 ± 0.004 0.003 ± 0.003
Short 0.172 ± 0.005 0.018 ± 0.003

λ̂(r)
Long 0.083 ± 0.004 0.002 ± 0.003

0.8
Short 0.121 ± 0.005 0.037 ± 0.003

Ŵ (r)
Long 0.085 ± 0.004 0.003 ± 0.003

Errors CL− C

4. Law and Kelton present in their book [5, p. 535]
another study where they compare the different confi-

dence level techniques except the standardized time se-
ries technique for the model of a time-shared computer
system. Although the model is more complicated than
the M/M/1 queue, it is statistically friendly: The con-
fidence intervals are much more accurate compared to
the M/M/1 model. We do not cite the results because
they rely only on 200 independent replications each.

Instead we took the model for a comparative study
between the batch means method and batch median
confidence intervals.

The model which is due to Adiri and Avi-Itzhak
[1] consists of a single central processing unit (CPU)
and K terminals. The think times at the terminals
are independent exponential random variables with
mean 25 seconds. After the think time, the jobs are
sent to the CPU and demand there a service time,
exponentially distributed with mean 0.8 second. In
the CPU, there is a queue, and the jobs are served
in a round-robin manner. The CPU allocates to each
job at the head of the queue a service quantum of
length q =0.1 second. If the (remaining) service time
of a job, s seconds, is no more than q, the CPU
spends s seconds, plus a fixed overhead of τ=0.015
second, processing the job, which then returns to its
terminal, where another think time begins. However,
if s > q, the CPU spends q + τ seconds processing
the job, which then joins the end of the queue, and its
remaining service time is decremented by q seconds.
For K=35 terminals, the steady-state mean response
time is known to be 8.25 seconds.

In our study we considered sample sizes n = 320,
640, 1280, 2560. For batch means the number of
batches was 5, hence the batch sizes were m = 64,
128, 256, 512. Batch median confidence intervals were
constructed with w = 5 batches, each with sample size
m. This implies a 93.75 percent confidence level CL
which we also adopted for the batch means confidence
intervals.

The coverages C and the errors CL − C were es-
timated with 50,200 independent simulations. In the
table, errors are given with 90 percent confidence in-
tervals. The figures indicate that for smaller sample
sizes the new method is again more accurate than the
batch means method. For longer simulations, m = 256
and 512, there is no statistically significant difference.



n(m) B BMCI

320(64) 0.060 ± 0.003 0.050 ± 0.003
640 (128) 0.030 ± 0.003 0.023 ± 0.002
1280 (256) 0.013 ± 0.002 0.012 ± 0.002
2560 (512) 0.004 ± 0.002 0.007 ± 0.002

Errors CL− C

5. Now we present an example where the estimator
has a very skewed and nonnormal distribution. Hence,
confidence intervals and median confidence intervals
are quite inaccurate, but again the latter are better.

The considered reliability model from Law and Kel-
ton [5, p. 508] consists of three components and will
function as long as component 1 works and either com-
ponent 2 or 3 works. If G is the time to failure of the
whole system and Gi is the time to failure of compo-
nent i, i = 1, 2, 3, then G = min{G1,max{G2, G3}}. It
is further assumed that the random variables Gi are in-
dependent and that each Gi has a Weibull distribution
F (x) = 1− exp(−x/b)a, x > 0, with shape parameter
a = 0.5 and scale parameter b = 1. This particular
Weibull distribution is extremely skewed and nonnor-
mal.

In simulations we constructed median confidence
intervals with w =5 replications. This implies a 93.75
percent confidence level CL which we also adopted
for classical confidence intervals. Each replication
consisted in m = 1, 2, 3, 4, or 5 outcomes, hence the
total sample sizes were n = wm = 5, 10, 20, 40.

The coverages C and the errors CL − C were esti-
mated with 8000 independent simulations. In the table
the errors are given for classical confidence intervals
(CI) and median confidence intervals (MCI). The 90
percent confidence intervals for the errors are ±ε with
ε < 0.008.

Again the MCIs are clearly more accurate than the
CIs.

n(m) 5 (1) 10 (2) 20 (4) 40 (8)

CI 0.191 0.143 0.105 0.069
MCI 0.147 0.079 0.049 0.032

Errors CL− C

Now we present the dream of min-max confidence
intervals (MMCI): If the modeller were able to obtain
in an efficient way Fθ(θ), the value of the estimator’s
distribution function at θ which is the value of the un-
known parameter to be estimated, the real confidence
level could be determined according to (2).

In very long and expensive simulations we estimated
first the empirical distribution of G and then the
distribution of the estimator F̂θ(x) which is essentially
the m-fold convolution of this empirical distribution.
Using θ̂, the estimation of the unknown parameter θ,
we obtained F̂ = F̂θ(θ̂). With this F̂ we calculated
the confidence level ĈL according to (2). In the table
it can be seen that these estimated confidence levels
are very close to the observed coverages C, even in this
pathological example.

n(m) C ĈL

5 (1) 0.791±0.002 0.791
10 (2) 0.852±0.002 0.848
20 (4) 0.886±0.002 0.884
40 (8) 0.909±0.002 0.907

Coverages and Estimated Confidence Levels

This is a brute force appoach which we cannot
recommend due to the needed high effort - until now
min-max confidence intervals remain a dream except
in some special cases.

6. In our last example we consider the heavy-
tailed Pareto distribution with the distribution func-
tion F (x) = 1−(b/x)a, 0 < a <= 2, 0 < b <= x where
a is a shape parameter and b a skale parameter. The
expectation is ab/(a − 1) if a > 1, the median 21/ab,
and the variance does not exist. This distribution is
very skewed.

In simulations we constructed median confidence in-
tervals with w =5 replications for the expectation and
the median. This implies a 93.75 percent confidence
level CL which we also adopted for classical confidence
intervals for the median. For the expectation these
classical confidence intervals do not exist due to the
non-existing variance.

Each replication consisted in m = 1000 observations,
hence the total sample size was n = wm = 5000.

The coverages C and the errors CL − C were esti-
mated with 1000 independent simulations.

For shape parameter a = 2 and scale parameter
b = 1, the accuracy of the median confidence intervals
for the expectation of the Pareto distribution was quite
good, CL − C = 0.016 ± 0.014, for a = 1.5 quite bad,
CL − C = 0.107 ± 0.020, for a = 1.1 inacceptably
bad, even for much bigger sample sizes. These results
confirm the general observation that the mean may
converge poorly towards the expectation for heavy-
tailed distributions.

Here one should resort to alternative estimators;



we chose the suitable order statistic for the median
and found very accurate estimates and very accurate
median confidence intervals.

In the table the errors are given for classical confi-
dence intervals (CI) and median confidence intervals
(MCI) for this order statistic (with 90 percent confi-
dence intervals for the errors).

a CI MCI

2 0.082 ± 0.018 0.000 ± 0.013
1.5 0.079 ± 0.018 0.000 ± 0.013
1.1 0.086 ± 0.019 0.005 ± 0.013

Errors CL− C

Again the MCIs are clearly more accurate than the
CIs.

CONCLUSION

All example results, and the inherent advantages of
the median confidence interval technique which are
quoted at the beginning of the paper indicate that this
new technique is accurate, easy to apply, efficient, and
generally applicable.
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