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ABSTRACT

Sometimes input probability distributions for stochastic
models are not so simple that standard distributions suit. In
this case, we model with weighted sums of standard distribu-
tions. These composed distributions may have many param-
eters which must be estimated. This is not easy with com-
mon estimation methods like maximum-likelihood. We use
the genetic algorithm for that. The design of the composed
distributions can be done such that the inverse tranformation
method for the generation of random variates is feasible.

1 INTRODUCTION

Stochastic models and discrete simulation are indispensable
means for the quantitative analysis of systems. It is well
known that missing to carefully model the influences from
outside, especially the load, may lead to wrong results and ul-
timately to wrong decisions based on the simulation results.

Influence from outside of the model like load or failure
of system components can be incorporated into the model
using observed traces or input models, namely independent
random variables, random vectors, or stochastic processes.
Data from traces can be used directly.

If input is modeled, input data are realisations of the
model. The use of random variates which are drawn from
common standard distributions, is well understood and com-
mon since long time, see any book on discrete simulation like
(Law and Kelton 2000). The use of generated random vec-
tors and stochastic processes is much more difficult, not so
popular, a topic of current research, see for example (Strelen
and F.Nassaj 2007) and the citations there.

In this paper, we consider independent random variates
with more general distributions which are composed of some

standard distributions, with emphasis on discrete distribu-
tions. We show that such composed distributions are suitable
for the inverse transformation method for generating random
variates.

The common way to select a standard distribution is as fol-
lows. A sample of data is gathered in some real system, and
a standard distribution is searched from which the data could
be realizations. Usually this is done in three steps: In the first
step, a specific standard distribution is hypothesized, for ex-
ample Weibull with two parameters. In the second step, the
distribution is fitted to the data, namely distribution param-
eters are estimated. In the third step, one must decide if the
found distribution is representative for the data, for example
with goodness of fit tests.

The ExtertFit software (Law and Kelton 2000) determines
which of 39 considered probability distributions represent
best some given data. To this end, the distributions are fit-
ted to the data using maximum-likelihood estimators, and the
quality of each fit is judged with goodness of fit tests.

But it may happen that there is no suitable standard dis-
tribution for the observed data. The data may indicate more
than one maximum of the density or the probability function,
but all standard distributions are unimodal, hence none of
them fits. Or, a discrete sample is very irregular, some values
occur often, the others in between seldom.

Under these circumstances, a composed distribution,
namely a weighted sum of standard distributions, may be ap-
propriate. Such a weighted sum is convenient for generating
random variates.

Moreover, a distribution which is composed of standard
distributions with invertible distribution functions may be in-
vertible itself. In this case, the inverse-transform method can
be applied to generating random variates. This allows for
some variance reduction methods.

But such a composed distribution has many parameters
which must be estimated, in general. This is a difficult task,
since the common maximum-likelihood estimators lead to
a system of nonlinear equations which must be solved; the
number of equations equals the number of unknown param-
eters.

In (Strelen 2003), we proposed to apply a genetic algo-
rithm instead which has advantages compared to the tradi-



tional way. We develop this idea further in this paper. Here
we only need to distinguish three slightly different tech-
niques, one for closed-form distribution functions, the sec-
ond with numerical integration of densities, and the third
for discrete probabilities - on the other hand, maximum-
likelihood estimators require many individual solutions for
different distributions. And, even more important, many pa-
rameters can be considered easily with the new technique.

In the first place, the genetic algorithm serves the purpose
to estimate parameters in our technique, but as a byproduct,
standard distributions can be judged if they are suitable, and
one obtaines a measure how good the fit is.

The genetic algorithm (Back, Fogel, and Michalewicz
1997, Davis 1991, Goldberg 1989) is a stochastic global
search method that mimics the metaphor of natural biologi-
cal evolution. We use it to minimize the distance between an
empirical distribution of the observed sample and the (com-
posed) distribution which is to be fitted.

For numerical calculation we use MATLAB (Matlab)
with the Genetic Algorithm Toolbox (Chipperfield, Fleming,
Pohlheim, and Fonseca).

In section 2, we report on the genetic algorithm as far as
important for our method. Section 3 describes the fitting
technique, gives some examples, and points out the appli-
cability of the inverse transformation method. Section 4 is
up to an intricate example: We consider a measured sample
of packet sizes in a computer network from Klemm, Linde-
mann, and Lohmann (2002).

2 THE GENETIC ALGORITHM

The genetic algorithm (GA) is a stochastic global search
method that mimics the metaphor of natural biological evolu-
tion. It differs from traditional search and optimization meth-
ods, significant differences are:

• Genetic algorithms search generations of approxima-
tions in parallel, not a single sequence

• Genetic algorithms require only the objective function,
no derivatives

• Genetic algorithms use probabilistic transition rules, not
deterministic ones

• Genetic algorithms work on an encoding of the param-
eter set rather than the parameter set itself

Genetic algorithms (Back, Fogel, and Michalewicz 1997,
Davis 1991, Goldberg 1989) operate onpopulationsof indi-
viduals applying the principle of survival of the fittest.Indi-
vidualsare tuples of decision variable values which are en-
coded as strings over the binary alphabet or other alphabets.
The individuals are approximations of the desired solution,
and theirfitnessmeasures the acuracy which is fixed by an
objective function. At eachgeneration, a new population is
created by the process of selecting individuals according to

their level of fitness and breeding them together using opera-
tors borrowed from natural genetics. Therecombination op-
erator is used to exchange parts of the strings between pairs,
or larger groups, of individuals, according to some proba-
bilistic rule. Mutation will cause a single bit to change its
state with some probability, in the binary string representa-
tion. Selectionserves the purpose to select individuals for the
next generation.

This process leads hopefully to the evolution of popula-
tions of individuals that are better approximations to the so-
lution than their parents.

We use the Genetic Algorithm Toolbox (Chipperfield,
Fleming, Pohlheim, and Fonseca) which, broadly speaking,
works as follows. In each problem which is to be solved here,
the genetic algorithm is applied to searching for a minimum
of the objective function. The result is a tuple of values of
the real valued decision variablesdi , i = 1, . . . ,N(var). For
each decision variable, a minimum and a maximum is given
in advance, and the values are encoded withPRECI binary
digits. Grey coding is used, hence adjacent values differ in
just one digit. AnN(var)-tuple of decision values is an indi-
vidual, andN(ind) individuals are a population. The encoded
values of an individual are concatenated, hence form a binary
string of N(var)∗PRECIdigits which is termed the chromo-
some of the individual. The chromosomes of all individuals
of a population are the matrixCHROMwith N(ind) rows, each
a chromosom.

The genetic algorithm works as follows. The matrix
CHROM is initialized with uniformly distributed random
numbers. For each individual, its chromosome is decoded
into a decision variable tupled, and the objective function
Z(d) is calculated.

In a loop,MAXGENpopulations are calculated, one after
the other: For each individual, the fitness with linear ranking
is calculated according to the value of the objective func-
tion Z(d) of its decision variables, as follows. The individu-
als are sorted according to descending values of their objec-
tive function values, i.e. the best individual gets the position
pos= N(ind). Each individual on positionposgets the rank
2(pos−1)/(N(ind)−1), rank 2 is the best, rank 0 the worst.

GGAP, 0 < GGAP≤ 1, is the generation gap: The(1−
GGAP) ∗N(ind) individuals with the best fitness values re-
main unchanged, and the otherGGAP∗N(ind) individuals are
selected for breeding offspring with the method of stochas-
tic universal sampling: Each individuali gets a probability
pi which is proportional to its fitness value. The selection is
according to these probabilities where individuali is selected
at leastbpiN(ind)GGAPc times and at mostdpiN(ind)GGAPe
times (b.c means the floor, andd.e the ceil).

The selected chromosomes are pairwise recombined with
the single-point crossover operator, each pair with probabil-
ity 0.7, and with probability 0.3, the two individuals of a
pair remain unchanged with respect to recombination. If the
number of selected individuals is odd, one more remains un-
changed.

For this crossover, a position within the two chromosomes
of a pair is selected at random, and the left part of one chro-



mosome is concatenated with the right part of the other, and
vice versa. The result are two new chromosomes.

Now on all chromosomes, the mutation operator is ap-
plied. Each binary digit flips with probability 0.7/L(ind)

whereL(ind) = N(var)∗PRECI is the number of binary digits
in each chromosome.

The objective function values are now calculated for off-
spring.

The reinsertion step performs insertion of offspring into
the current population, replacing least fit parents with off-
spring.

Now the next population is ready and the process contin-
ues if the number of populations is less thanMAXGEN.

The individual with the best objective function value is the
result, and this value measures the accuracy of the fitted prob-
ability distribution.

3 FITTING INPUT PROBABILITY
DISTRIBUTIONS

In principle, we proceed as usual but with two main differ-
ences: Our fitted distributions are more complex and, in gen-
eral, have many parameters which must be estimated, and we
search with the genetic algorithm.

As basis, a samplex = (x1,x2, . . . ,xn) of data is given
which was measured for a specific aspect of a real system.
Then a composed distribution is selected and fitted to the
data,

F(x) = q1F1(x)+q2F2(x)+ . . .+qKFK(x),
qk > 0, q1 +q2 + . . .+qK = 1, (1)

whereF1, F2, . . . are standard distribution functions (CDF).
But it may be sensible to modify the standard distributions.

A location parameterβ or a scale paremeterγ may be intro-
duced if not present. Instead of the random variableX with
the CDFFk(x) then we considerY = γX + β with the CDF
Fk((x−β )/γ) and the densityfk((x−β )/γ)/γ where it ex-
ists. Moreover, the distribution may be cut, we consider the
random variableZ with the CDF

FZ(x) =
{

Fk(x)/Fk(η), x≤ η ,
1, η < x.

β , γ, andη are additional parameters.
For the fitting, the parametersqk and parameters for each

standard distributionFk are estimated. We denote the tuple of
these decision variables withd and indicate the dependency
of the distribution function sometimes writingFd(x).

For discrete random variables with integer values, the
composed distribution is

p(x) = q1p1(x)+q2p2(x)+ . . .+qK pK(x),
q1 +q2 + . . .+qK = 1,

x = ...,−1,0,1, ..., (2)

wherep1(x), p2(x), . . . are (modified) standard distributions.

Once the decision variables are estimated one decides if
the fitted distribution (1) is correct.

A random number with such a composed distribution can
be generated as follows: First draw a random numberk with
the discrete distribution(q1, ...,qK). Secondly, draw a ran-
dom number with the distributionFk(x). We will say some-
thing more about generation of random variates in the sub-
section.

For fitting with the GA, we need an empirical distribu-
tion. We use a specific kind of empirical distribution func-
tions, namely step functions. They are defined with the order
statistics as follows:

F̂(x) =


0, x < x(1),
i/n, x(i) ≤ x < x(i+1), i = 1, ...,n−1,
1, x(n) ≤ x.

(3)

Here,x(i), i = 1, ...,n, denotes the ordered sequence with the
elementsxi .

Remark 1. If in the ordered sequencex(i) = x(i+1), then
there is nox for which F̂(x) = i/n, i/n is not in the range of
F̂ . This occurs due to finite accuracy of real numbers in the
computer and with discrete samples.

Remark 2. If all sample valuesx(l), l = 1, ...,n, are dif-
ferent,F̂(x(l)) = l/n holds. If not, this is true only for val-
uesx(l) which occur only once, and for just one of some
equal values. Namely for multiple valuesx(l1) = x(l2) = ...,
F̂(x(l i)) = max{l j/n} holds fori = 1,2, ....

For discrete random variables with integer values, we use
frequency distributions,

p̂(x) = F̂(x)− F̂(x−1), x = ...,−1,0,1, .... (4)

Again we use the notationpd(x) to indicate the dependency
of the parameters.

For continuous distributions, our objective function for the
genetic algorithm is

Z(d) =
n

∑
i=1

[F̂(xi)−Fd(xi)]2 (5)

whereFd(x) is the selected (composed) distribution function
with the parameter tupled.√

Z(d)/n is a L2-norm of the difference between the em-
pirical distribution function and the fitted distribution func-
tion and measures how accurate the distribution function
Fd(x) fits the given data.

Sometimes there is no closed form of a standard distribu-
tion function available, for example if it is Gamma or Log-
normal. Here we use the densityfk(x) and calculate the dis-
tribution functionFk(x) at the valuesxi , i = 1, . . . ,n, approxi-
mately with very simple numerical integration. In particular,
we take

F̃(x1) = 1/n,

F̃(xi) = 1/n+
i

∑
j=2

(x j −x j−1) fk(x j−1), i = 2, . . . ,n,

Fk(xi) ≈ F̃(xi)/F̃(xn), i = 1, . . . ,n.



For discrete samples, the objective function is

Z(d) =
n

∑
i=1

[p̂(xi)− pd(xi)]2. (6)

In the GA algorithm, for each decision variable, the range
of possible values must be given in advance. Sometimes this
is not obvious. The weightsqk in (1) are restricted toq1 +
q2 + . . .+qK = 1 - what is the range ofqk? We consider the
parametersuk instead which have the unit range, 0≤ uk ≤ 1:

q1 = u1,

q2 = (1−u1)u2,

q3 = (1−u1)(1−u2)u3, ...,

qK = (1−u1)(1−u2)...(1−uK−1).

If there are parametersa1 anda2 with 0≤ a1≤ a2, we replace
a1 with b1a2, 0≤ b1 ≤ 1. Moreover, we replace an integer
valued parameterj with j = byc, y real valued.

For the numerical calculation we used MATLAB (matlab)
with the Genetic Algorithm Toolbox (Chipperfield, Fleming,
Pohlheim, and Fonseca) which provides very comfortable
functions for genetic algorithms. It remains mainly to spec-
ify the number of decision variables (parameters), their type
(integer or real), their degrees of accuracy (number of binary
digits), and an objective function. Further specifications con-
cern the features of the genetic algorithm like the number of
generations, the number of individuals in a population, and
others.

Example 1, Fitting Data Drawn from a Two-Mode
Weibull Distribution . The sample consists in 800 realiza-
tions according to the mixed distribution functionF(x) = 1−
0.5exp[−(x/3)2]−0.5exp[−(x/17)5], the fitted distribution
function (figure 1) isF(x) = 1−0.496exp[−(x/3.03)1.90]−
0.504exp[−(x/17.1)5.46]. The accuracy is 0.004, see also
figute 1.

In figures 1 and 3, the smooth curve is the fitted theoret-
ical distribution function, and the scribbling curve which is
shifted by 1 to the right in order to separate the graphs is the
empirical distribution function.

Figure 1: A Fitted Two-Mode Weibull Distribution Function

Example 2, Fitting Data drawn from a Three-Mode
Poisson distribution The sample consists in 64000 realiza-
tions from the distribution

p(x) = 0.333p8(x)+0.333p8(x−16)+0.334p8(x−32),

where

pλ (x) =
{

0, x < 0,

e−λ λ x/x!, 0≤ x,

the Poisson distribution. 16 and 32 are location parameters.
The fitted distribution is

p(x)= 0.342p8.02(x)+0.330p7.06(x−17)+0.328p8.04(x−32),

the accuracy is 0.0014. In the following figure, a “*” marks
some sample probability and a “o” some fitted probabilities.

Figure 2: A Fitted Tree-Mode Poisson Distribution

Example 3, Decision between Gamma and Weibull Dis-
tribution . The sample consists in 800 realizations of a
Weibull random variable with the parameter valuesα = 3
andβ = 3. It is tried to fit these data with a distribution func-
tion, mixed Weibull and Gamma,

F(x) = pF1(x)+(1− p)F2(x)

whereF1 is Weibull andF2 is Gamma. After 400 generations,
the best parameters arep= 0.997, α = 3.00, β = 3.02 where
the accuracy is 0.007, see also figure 3. That means, the
genetic algorithm found out that the data should be fitted with
the Weibull distribution, not with the Gamma distribution,
and calculated the parameters.



Figure 3: Decision in Favour of a Weibull Distribution

Inverse Transformation Method

The inverse transformation method is a technique for gener-
ating random variates. With a uniformly between 0 and 1
distributed (U [0,1]-distributed) random number u, the vari-
atex is F−1(u) whereF−1 is the quasi-inverse of a CDFF ,

F−1(u) =
{

inf{z|F(z)≥ u}, u > 0,
sup{z|F(z) = 0}, u = 0.

This technique has some advantages. For the generation of
a random variatex, right one random numberu is needed,
and x is monotonically increasing withu, hence positively
correlated. Both features are important for some variance
reduction methods.

For continuous distributions, the technique needs an in-
verted CDF.

For discrete distributions, the inverse transformation
method is easily implemented, but not fast, in general:

Algorithm 1 Let {x1, ...,xI} denote the range of the distribu-
tion. The random variate is found by searching the smallest
valuex j whereF(x j)≥ u holds.

With linear search, this needsO(I) steps, with binary search
O(logI) steps.

For some discrete distributions, a fast inverse transforma-
tion method is possible. We assume a random variableX with
an integer range(i, ..., j), probabilitiesP{X = x} = px, x =
i, ..., j, and the CDFF(x) which is in fact a step function.

Theorem 1 If there is a CDFF̃(x) which has the inverse
F̃−1(u), and for which F(x) = F̃(x), x = i, ..., j, holds, then
the random variable

Y =
{

bF̃−1(U)c+1, U < 1,
j, U = 1,

has the distribution P{Y = x} = px, x = i, ..., j, if U is
U [0,1]-distributed.

Proof For 0≤U < F̃(1) = F(1) = p1, Y = 1 holds. For
F̃(x−1) < U ≤ F̃(x), Y = x, x = 2, ..., j, andP{F̃(x−1) <
U ≤ F̃(x)}= P{F(x−1) < U ≤ F(x)}= px hold. 2

Example 4 Consider the geometric distribution with pa-
rameterp, 0 < p < 1. The probabilities arepx = p(1−
p)x, x = 0,1, ..., and the CDF isF(x) = 1− (1− p)bxc+1 for
x≥ 0. The CDFF̃(x) = 1− (1− p)x+1 equals the CDFF(x)
atx= 0,1, ..., and has the inversẽF−1(u) = ln(1−u)/ ln(1−
p)−1 for u < 1.

Now we define a subclass of composed distributions,
namely composed distributions with non-overlapping com-
ponents which allow for the inverse transformation method
provided that the the inverse functions of the components are
available.

Definition 1 A composed distribution with non-overlapping
componentsis a composed distribution (1) where the follow-
ing holds.

1. LetXk denote the the range of the random variable Xk

of the component CDF Fk(x), k = 1, ...,K. For these ranges,
{X1, ...,XK} is a partition of the range of the composed dis-
tribution. This partition is sorted as follows, namely for each
x∈X j and each y∈Xk, x< y⇒ j < k holds.

2. The quasi-inverses of the components are available.

It is well known how to generate a random variate from a
composed distribution (1):

1. Generate aU [0,1]-distributed random numberu1. Ap-
ply algorithm 1 with the discrete distribution(q1, ...,qK) for
generating the random variatek.

2. Generate the desired random variatex with the CDF
Fk(x), using one or more different, independentU [0,1]-
distributed random numbersu2,u3, ....

For composed distributions with non-overlapping com-
ponents, the inverse transformation method can be imple-
mented as follows.

Algorithm 2
1. Generate aU [0,1]-distributed random numberu. Ap-

ply algorithm 1 with the discrete distribution(q1, ...,qK) for
generating the random variatek.

2. With theU [0,1]-distributed random numberu′ = (u−
(q1 + ...+ qk−1))/qk, generate the desired random variatex
from the CDFFk(x) with the inverse transformation method
(we define(q1 + ...+q0) = 0).

We want to show that this algorithm is correct and is an im-
plementation of the inverse transformation method. To this
end we note that only a single random numberu is used and
we show that

1. u′ is a realization formU [0,1]
2. This realization is independent from the variatek
3. The generated random variatesx are monotone in the

random numbersu.
First, letU be aU [0,1]-distributed random number. De-

fine the random variablesL andU ′ such thatq1+ ...+qL−1 <
U ≤ q1+ ...+qL,U ′ = (U−(q1+ ...+qL−1))/qL. 0<U ′≤ 1
follows.



Moreover, for 0< u0 ≤ 1

P{0 < U ′ ≤ u0|L = k} =
P{0 < U ′ ≤ u0,L = k}/P{L = k} =

P{0 < (U − (q1 + ...+qk−1))/qk ≤ u0,L = k}/qk =
P{0 < (U − (q1 + ...+qk−1))≤ u0qk,L = k}/qk =

P{q1 + ...+qk−1 < U ≤ q1 + ...+qk−1 +u0qk}/qk =
u0qk/qk =

u0. (7)

Hence,U ′ is U [0,1]-distributed.
Secondly, from (7), P{U ′ ≤ u0,L = k}= u0P{L = k} fol-

lows, henceU ′ andL are independent.
Thirdly, consider two random variatesx and y, x <

y, which are generated by algorithm 2 with theU [0,1]-
distributed random numbersu andv. Thenu< v holds which
can be seen as follows. Either,x andy are elements of the
same subrangeXk. Thenu < v holds becausex andy are
generated with the inverse transformation method using the
CDF Fk(x). Or they are from different subranges,x ∈ Xk

andy ∈ Xl . Then,k < l holds according to the definition
of composed distribution with non-overlapping components,
andq1 + ...+ qk−1 < u≤ q1 + ...+ qk andq1 + ...+ qk−1 +
qk + ...+ql−1 < v≤ q1 + ...+ql . Hence,u < v holds.

Thus we have

Theorem 2 Algorithm 2 implements the inverse transforma-
tion method.

Before closing this subsection about the inverse trans-
formation method, we consider two standard distributions
which are suitable as components of composed distribu-
tions with or without non-overlapping components, the sin-
gle point distribution and the discrete trapezoid distribution
which are not very common in simulation.

Definition 2 A random variable X issingle point distributed
if the probability mass is concentrated at a single value
x(single), P{X = x(single)}= 1.

Definition 3 A random variable X has adiscrete trapezoid
distributionif the probabilities are

P{X = x}= p0 +∆(x−x0), x = x0, ...,x0 + l −1. (8)

As parameters, we usex0, l ≥ 1, integer, anda, 0≤ a≤ 1,
real. Forl > 1, we setp0 = 2a/l and∆ = 2(1−2a)/l/(l −
1). For l = 1, a must be 1/2, and we set∆ = 0. Then all
probabilities sum to 1 and are non-negative.

Remark The probabilities are linear inx, the parametera
determines the slope which is positive fora < 1/2 and neg-
ative for a > 1/2. Fora = 1/2, this is the discrete uniform
distribution.

The discrete trapezoid distribution is invertible, see theo-
rem 1. For∆ 6= 0,

F−1(u) = x0 +{ ⌊
− p0

∆ + 1
2 +sign(∆)

√
( p0

∆ − 1
2)2 + 2u

∆

⌋
, u < 1,

l −1, u = 1,

and for∆ = 0,

F−1(u) = x0 +
{

blu−1c+1, u < 1,
l −1, u = 1.

4 EXAMPLE: MODELLING A
MEASURED DISCRETE SAM-
PLE

In this section, we consider a sample of measured packet
sizes in an IP-network, see Klemm, Lindemann, and
Lohmann (2002). We model the empirical data with a com-
posed distribution, since the distribution has a quite irregular
shape. The range is 32,...,1500 with 52 holes, some values
occur much more often than the values surrounding them.

For a first analysis, we plotted the empirical probabilities
in different scales. Thus we found the values which are not
existent or which are prevalent. We model the prevalent value
probabilities with 26 single point distributions. The follow-
ing figure shows the empirical probabilities with logarithmic
scale (but “0” means value zero). The circled points are the
identified prevalent values.

Figure 4: Empirical Probabilities in Logarithmic Scale

For all other range values, we provided six discrete trape-
zoid distributions, over six subranges which constitute a par-
tition of the range. Thus we get a composed distribution with
32 components. Since the 26 prevalent values are elements
of the subranges, the composed distribution is not with non-
overlapping components.

Prevalent probabilities can be identified looking into the
plots. Actually, we selected them algorithmically. Broadly
speaking, we compared all probabilities with a moving aver-
age, and if they are considerably bigger (twofold or more),
we marked them as prevalent, if they are also bigger than
0.0013.

For the discrete trapezoid distributions, we looked into the
plots and defined points where we had the impression that
the slope should change: They became the boundaries of the



subranges with different trapezoid distributions: 32, 75, 200,
350, 550, 800, 1500.

The fitted composed distribution, based on 40000 sample
points, has a very good accuracy of 0.0002. The following
figures also exhibit the accuracy.

The next figure presents the empirical CDF and the fit-
ted CDF which is augmented by 0.1 in order to separate the
graphs.

Figure 5: Empirical CDF and Fitted CDF plus 0.1

Figure 6 is a P-P plot with the fitted CDF values versus the
empirical CDF values. For perfectly equal values, all points
would lie on a straight line with an intercept of 0 and a slope
of 1.

Figure 6: Probability-Probability Plot

Now we present two figures with differences, first beween
the fitted CDF values and the empirical CDF values, and then
beween the fitted probabilities and the empirical probabili-
ties.

Figure 7: Differences between Fitted and Empirical CDF
Values

Figure 8: Differences between Fitted and Empirical Proba-
bilities

CONCLUSION

We presented a new technique for modelling and fitting com-
plex input distributions for stochastic models which has some
advantages compared to common techniques. These ideas
are intended to be brought in a fitting tool.
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