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Abstract

Confidence intervals for the median of estimators or other quantiles were proposed
as a substitute for usual confidence intervals in terminating and steady-state simu-
lation. This is adequate since for many estimators the median and the expectation
are close together or coincide, particularly if the sample size is large. The novel
confidence intervals are easy to obtain, the variance of the estimator is not used.
They are well suited for correlated simulation output data, apply to functions
of estimators, and in simulation they seem to be particularly accurate. For the
estimation of quantiles by order statistics, the new confidence intervals are exact.

1 Introduction

In simulation, confidence intervals tend to be inaccurate, since assumptions con-
cerning the sample and the estimator are not fulfilled literally, more precisely, the
assumed confidence level is not the probability that the real parameter value lies
within the calculated confidence interval.

We proposed in [4, 5] an alternative technique for confidence intervals which
we call median confidence intervals, and min-max confidence intervals which are
more general: Median confidence intervals (MCI) are a special case of min-max
confidence intervals (MMCI), but they seem to be particularly useful. Min-max
confidence intervals are suitable for the estimation of quantiles, and they have
some potential for further development. These confidence intervals are obtained
by means of a small number of replications. They have attractive features and
some minor disadvantages compared to classical confidence intervals.

The variance of estimators is not needed for them, but this is usually a main
difficulty when confidence intervals are constructed because “simulation output
data are always correlated” [1]. Even the variance of an estimator may not exist,
for example in the case of some heavy-tailed distributions [3]. Nevertheless, min-
max confidence intervals can be constructed, whereas classical confidence intervals
cannot.

It is easy to obtain median confidence intervals for functions of two or more
estimators whereas it is difficult to get confidence intervals with other known
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methods, in general, except for jackknife intervals [2]; an example is given in [6,
section 5].

In realistic models which involve dependent simulation output with unknown
distribution, median confidence intervals seem to be more accurate, i.e. the cover-
ages are closer to the predefined confidence level. This is shown in [6].

Some independent estimations of a measure of interest are used for a min-max
or median confidence interval, say w, e.g. 5 or 6. The confidence level depends on
w, only values like 1 − 0.5w, w = 1, 2, . . ., or similar are possible – this becomes
clear later in Theorem 1.

This paper deals with the estimation of quantiles with order statistics. Theo-
rem 2 states that here min-max confidence intervals are exact when the sample is
iid.

2 Min-max and Median Confidence Intervals

Now we explain the technique in detail. The random variables of the sample
X1,1, ..., X1,n may have the common distribution function FX,θ(x) when they stem
from a steady-state simulation run of length n, or from n independent terminating
simulation runs. θ, θ ∈ Θ, is a parameter, for example the mean or a quantile,
and Θ a set of possible parameter values. Or the sample stems form a terminating
simulation and has a common distribution with the parameter θ.

Let T (X1,1, ..., X1,n) denote an estimator for the parameter θ with the distri-
bution function Fθ(x), θ ∈ Θ.

We consider a novel kind of confidence interval

[Tmin, Tmax) (1)

where Tmin = min1≤i≤w Ti and Tmax = max1≤i≤w Ti. Here, the Ti = T (Xi,1, ...,
Xi,n), i = 1, . . . , w, are estimators for w independent replications Xi,1, ..., Xi,n of
the sample X1,1, ..., X1,n. We call (1) a “min-max confidence interval”.

For F = Fθ(θ), the value of the estimator distribution function at θ, the
unknown parameter value, the following theorem holds.

Theorem 1 The interval (1) is a confidence interval for the parameter θ with the
confidence level CL = 1− Fw − (1− F )w, i.e.

P{Tmin ≤ θ < Tmax} = 1− Fw − (1− F )w (2)

holds.

The proof is very simple. The probability that Ti is less than or equal to θ
is P{Ti ≤ θ} = Fθ(θ) = F , the probability that Tmax is less than or equal to
θ is P{Tmax ≤ θ} = P{all Ti ≤ θ} = Fw due to the independency. Similarly,
P{Ti > θ} = 1−Fθ(θ) = 1−F , P{Tmin > θ} = P{all Ti > θ} = (1−F )w. Hence
P{Tmin > θ or Tmax ≤ θ} = Fw + (1− F )w, and (2) follows. 2

Remarks
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1. The distribution function Fθ(x) of the estimator may not be known, only
the value Fθ(θ) is needed. We term this value the confidence-level-determining
(CLD) probability.

2. The variance of the estimator is not needed, the question whether the
random variables Xi,1, . . . , Xi,n are independent does not arise.

3. The confidence level cannot be chosen arbitrarily, only the values CL =
1− Fw − (1− F )w, w = 2, 3, . . . are allowed. If a specific confidence level 1− α is
required, the number w of replications is the smallest number for which CL ≥ 1−α
holds.

Given the number w of replications, the confidence level CL is obviously a
function of the CLD probability F which has a single maximum:

Lemma 1 The function 1−Fw−(1−F )w has the maximum 1−0.5w−1 at F = 0.5.

Now we consider the most important special case where Fθ(θ) = 1/2, i.e. the
unknown parameter is the median of the estimator. Therefore we use the term
“median confidence intervals”. This is the case for all unbiased estimators with
symmetric distributions, for example the normal distribution. Here holds

P{Tmin ≤ θ < Tmax} = 1− 0.5w−1. (3)

Symmetry of the estimator distribution, the absence of skewness, is a sufficient
condition for median conficence intervals to be exact. It is not necessary, there are
unsymmetric distributions for which the mean and the median coincide.

If the median is merely close to the expectation of an unbiased estimator, only
F ≈ 0.5 holds, and the median confidence interval is only approximate. The
error of the conficence level is the difference between (2) and (3). This happens
quite often, due to the central limit theorem, when the summed random variables
are not normally distributed, but n, the number of summands, is large. Then
the distribution function of the estimator is approximately a normal distribution,
hence approximately symmetric, and the median is near to the expectation.

A min-max confidence interval is exact if the w replications are independent,
even the estimator may be biased. This sounds very interesting, but the serious
problem is the CLD probability F = Fθ(θ). We do not know how to calculate this
F in general. But there is an interesting application where F can be calculated:
Order statistics as estimates for quantiles. Consider samples X1, . . . , Xn and the
according ordered sequence X(1), . . . , X(n), X(k) ≤ X(j) if k < j, where the Xk

are iid. with the strictly increasing distribution function F (x). The q-quantile
θ = xq, q ∈ (0, 1), F (xq) = q, is estimated by X(r), r ∈ {1, 2, . . . , n}. Let Fθ(x)
denote the distribution function of the estimator, namely X(r). Here, F = Fθ(x)
is known:

Theorem 2 If the q-quantile xq is estimated by X(r), the min-max confidence
interval (1) has precisely the confidence level (2) with

F =
n∑

i=r

(
n

i

)
qi(1− q)n−i. (4)
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Proof For any k, 0 < k < n, the probability P{X(k) ≤ x < X(k+1)} equals
the probability that k of the random variables Xi of the sample are less or equal
x, hence P{X(k) ≤ x < X(k+1)} =

(
n
k

)
F k(x)[1 − F (x)]n−k, k = 1, . . . , n − 1,

and P{X(n) ≤ x} = Fn(x) hold. Using this we conclude Fθ(x) = P{X(r) ≤
x} = P{X(r) ≤ x < X(r+1)} + P{X(r+1) ≤ x < X(r+2)} + . . . + P{X(n) ≤ x} =∑n

i=r

(
n
i

)
F i(x)[1− F (x)]n−i. With F (xq) = q, (4) follows. 2

Remarks
1. Here the CLD probability F = Fθ(xq) is independent of the actual distrib-

ution function of the sample elements Xi.
2. Theorem 2 is not useful for the simulation of the extremes, q = 0 or q = 1.

Here we get the confidence level 0.
3. Usually, r ≈ qn is chosen.
It is common to take r = dnqe. Here dye, y real, denotes the largest integer i,

i ≤ y, hence i = y + δ where 0 ≤ δ < 1 holds. But for our min-max confidence
intervals, we take r slightly different, see section 3. It is interesting to note that
unbiasedness of the estimator is not so important here, a bias only decreases the
confidence level.

For n > 9, the CLD probability F can be approximated with the standard

normal distribution function Φ, F ≈ Φ
(

n−nq+0.5√
nq(1−q)

)
− Φ

(
r−nq−0.5√

nq(1−q)

)
.

The confidence level can be kept near to the maximum which is assumed for
F = 0.5 (Lemma 1), at least when the sample size n is not too small:

Lemma 2 For a fixed probability q, 0 < q < 1, and the estimator X(r), r = dqne,
of the q-quantile, limn→∞ F = 0.5 holds.

Proof limn→∞ F = limn→∞Φ
(

n−nq√
nq(1−q)

)
− limn→∞Φ

(
r−nq√
nq(1−q)

)
holds ac-

cording to the De Moivre-Laplace limit theorem. This is 0.5 since r = nq+δ where
0 ≤ δ < 1. 2

Also for smaller sample sizes n, the confidence level can be kept near to the
maximum 1− 0.5w−1. This can be seen in section 3 and in the following corollary.

Corollary 1 If the sample size n is odd, r = dn/2e and q = 0.5, i.e. the median
is estimated, F = 0.5 holds.

Proof Here F =
∑n

i=dn/2e
(
n
i

)
0.5i(1 − 0.5)n−i = 0.5n

∑n
i=dn/2e

(
n
i

)
. Due

to
(
n
i

)
=

(
n

n−i

)
, we have also F = 0.5n

∑n
i=dn/2e

(
n

n−i

)
= 0.5n

∑n−dn/2e
j=0

(
n
j

)
=

0.5n
∑bn/2c

j=0

(
n
j

)
. We add these two equations: 2F = 0.5n

∑n
j=0

(
n
j

)
= 0.5n2n = 1.

F = 0.5 follows. 2

The CLD probability F is also known for some toy simulations, see [4]. More-
over, it can be estimated in a very long and expensive simulation, see [6, section
6].
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3 Numerical Studies on the Confidence Level

We present numerical values for the confidence level according to Theorem 2. The
main conclusions from this are as follows:

1. The conficence level can be kept near to the maximum 1− 0.5w−1.
2. The common estimator should be modified.
First, we consider r = dqne versus r = dq(n + 1)e. In Figure 1, for q =

r/n, r = 1, . . . , n − 1, and for q = r/(n + 1), r = 1, . . . , n, the confidence level is
presented. Obviously, one should prefer q = r/(n + 1), hence the estimator X(r)

with r ≈ (n + 1)q, since for all values r the confidence level is near to the possible
maximum; in the other case with the common estimator this is not true.

Now we consider the case where nq and (n + 1)q are not integer. In the
following figures we draw the confidence level for q = (r+∆r)/(n+1) where ∆r =
−0.9, . . . , 1.0, r = 1, . . . , 5 (small q, Figure 2), ∆r = −0.9, . . . , 0.9, r = bn/2c
(medium q, Figure 3), and ∆r = −0.9, . . . , 0.9, r = n − 4, . . . , n (large q, Figure
4).

We first conclude from the figures that r = bq(n+1)c is reasonable for medium
and large q, but for small q, r = dq(n+1)e is better. Secondly, r should be at least
4 or 5, and at most n−4 or n−3. This can be accomplished with sufficiently large
sample sizes n. A closer look indicates the following. For small values q ≈ 4/n,
r ≈ b(n + 1)q + 0.75c is good, for medium values q ≈ 0.5, r ≈ b(n + 1)q + 0.4c is
good, for large values q ≈ 1− 4/n, r ≈ b(n + 1)q + 0.1c is good. Accordingly, we
tried the estimator X(r), r = b(n + 1)q + 0.1 + 0.65(1− q− 4/n)/(1− 8/n)c where
n ≥ 4/q and n ≥ 4/(1− q).
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4 Numerical Experience with the Accuracy

We performed simulation studies where we looked at the accuracy of min-max
confidence intervals for order statistics, and compared it with two other techniques.
As measure for the accuracy we considered the difference betwee the predefined
confidence level CL and the observed coverage. The coverage C is the fraction of
a number of simulations where an estimated parameter whose exact value must
be known in advance here lies within the confidence interval.

We applied the following models: For independent samples Pareto distributed
random variables with the cumulative disribution function (CDF) FP (x) = 1 −
x−a, 1 < a ≤ 2, x ≥ 1, or random variables Zi, i = 1, . . . , n, with a uniform
distribution and some probability at x = 0 with the CDF FU (x) = P0 + x(1 −
P0), 0 ≤ P0 < 1, 0 ≤ x ≤ 1.

For dependent samples we considered the stochastic process Yi = Yi−1 if Ui ≤
corr, Yi = Zi otherwise, i = 1, . . . , n, where Y0 has the CDF FU (x), Ui has a 0-
1-uniform distribution, and corr, 0 ≤ corr < 1, determines the correlation.

An other stochastic process are the delays in an M/M/1 queueing system with
load ρ, 0 < ρ < 1.

Welch [7] proposes a confidence interval technique (WelchCI) for q-quantiles
which are taken from an ordered iid. sample X(1), . . . , X(N), P{X(l) ≤ xq ≤
X(h)} =

∑h−1
i=l

(
N
i

)
qi(1 − q)N−i ≥ 1 − α where l and h are chosen symmetrically

about qN until the sum first exceeded 1 − α. Usually, if N > 9, the approxi-
mations l = bqN + 1/2 + Φ−1(α/2)

√
Nq(1− q)c and h = dqN + 1/2 + Φ−1(1 −

α/2)
√

Nq(1− q)e are applied.
For dependent samples, Welch proposes to consider w replicated ordered sam-

ples Xi,(1), . . . , Xi,(n), i = 1, . . . , n. The q-quantile is estimated with the mean
of the idependent Xi,(r), r = dqne, and a confidence interval is calculated as
usual with the Student distribution (MVCI). Min-max confidence intervals are[
mini Xi,(r), maxi Xi,(r)

)
with the confidence level CL according to Theorem 2.

For our comparative studies we adopted this confidence level CL and the same
overall sample size for all three techniques, i.e. N = wn.

Broadly speaking, the result is as follows. Welch confidence intervals are very
accurate for iid. samples, only for small samples, min-max confidence intervals
are often slightly more accurate. But the independence assumption is essential.
For small sample sizes n, quite large or quite small values q, skewed distributions
of the sample random variables, or high correlation of them, min-max confidence
intervals are more accurate than mean value confidence intervals; for large sample
sizes, both seem to be similarly accurate. In the M/M/1 model, mean value
confidence intervals are quite inaccurate, min-max confidence intervals are better
but also not really good.

These differences can be seen in the following examples.
In each example, a model with some specific parameter values was simulated

100000 (Tables 1,2,3) or 40000 (Table 4) times, and the error CL−C, namely the
mean difference between the confidence level and the observed coverage, the mean
width of the confidence intervals, and the empirical variance of this was calculated.
For the errors CL − C, 90% confidence intervals ±ε were calculated. The reader
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may note that CL−C = 0.08 could mean: The predefined confidence level is 90%
but the coverage is only 82%, the confidence intervals are too optimistic. And
CL − C = −0.05 is not accuate as well, but pessimistic, the confidence intereval
is too wide but safe.

In Table 1, independent Pareto distributed random variables are the model,
and the half width ε of the confidence intervals for the errors CL−C is smaller than
0.002. In Table 2, independent FU (x) distributed random variables are the model,
and ε is smaller than 0.002, in Table 3, dependent FU (x) distributed random
variables are the model, and ε is smaller than 0.0021, and in Table 4, the delays
in an M/M/1 queueing system are the model, and ε is smaller than 0.004.

Table 1, Independent Pareto: Errors CL− C, avg. Half Length, var. Half Length
a q n MMCI MVCI WelchCI
2 0.9 40 0.001 0.813 0.163 0.064 0.617 0.094 -0.030 0.665 0.051
2 0.05 100 0.000 0.013 0.000 0.017 0.012 0.000 -0.023 0.010 0.000
1.1 0.5 20 0.000 0.438 0.047 0.029 0.369 0.033 -0.025 0.342 0.010
1.1 0.01 401 0.002 0.005 0.000 0.040 0.005 0.000 -0.019 0.003 0.000

Table 2, Independent FU (x): Errors CL− C, avg. Half Length, var. Half Length
P0 q n MMCI MVCI WelchCI
0 0.5 10 0.001 0.168 0.003 0.062 0.129 0.002 -0.037 0.128 0.001
0.7 0.8 20 0.001 0.252 0.006 0.089 0.199 0.004 -0.003 0.204 0.002
0.7 0.9 40 0.001 0.193 0.006 0.064 0.146 0.003 -0.030 0.124 0.001

Table 3, Dependent FU (x): Errors CL− C, avg. Half Length, var. Half Length
P0 corr q n MMCI MVCI
0 0.8 0.5 10 -0.036 0.313 0.008 0.015 0.245 0.005
0.4 0.8 0.5 10 -0.036 0.326 0.015 0.028 0.272 0.010
0.8 0.5 0.9 40 -0.001 0.342 0.008 0.095 0.271 0.006

Table 4, M/M/1 Delays: Errors CL− C, avg. Half Length, var. Half Length
ρ q n MMCI MVCI
0.5 0.7 20 0.040 0.687 0.239 0.094 0.587 0.177
0.5 0.99 400 0.024 1.227 0.366 0.160 0.937 0.224
0.2 0.8 20 -0.086 0.080 0.007 -0.054 0.070 0.006
0.2 0.95 80 -0.032 0.212 0.012 0.077 0.148 0.006
0.9 0.7 20 0.082 0.997 0.359 0.153 0.846 0.263
0.9 0.95 1000 0.184 1.153 0.357 0.241 1.068 0.313
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