
Tools for Dependent Simulation Input with Copulas

Johann Christoph Strelen
Rheinische Friedrich–Wilhelms–Universität Bonn

Römerstr. 164
53117 Bonn, Germany

strelen@cs.uni.bonn.de

ABSTRACT
Copulas encompass the entire dependence structure of multivariate
distributions, and not only the correlations. Together with the mar-
ginal distributions of the vector elements, they define a multivariate
distribution which can be used to generate random vectors with this
distribution. A toolbox is presented which implements input mod-
els with this method, for random vectors and time series. Time se-
ries are modeled with some general autoregressive processes. The
copulas are estimated from observed samples of random vectors.
The MATLAB tool calculates the copula, generates random vectors
and time series, and provides statistics and diagrams which indicate
validity and accuracy of the input model. It is fast and allows for
random vectors with high dimensions, for example 100. For this
efficiency an intricate data structure is essential. The generation
algorithm is also implemented with Java methods.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques; B.8.2 [
Performance and Reliability]: Performance Analysis and De-
sign Aids; G.3 [Probability and Statistics]: Distribution Func-
tions, Multivariate Statistics, Random Number Generation, Statis-
tical Software, Time Series Analysis

General Terms
Algorithms

Keywords
Stochastic Simulation, Workload Modeling, Random Variate Gen-
eration, Performance Analysis Tools, Performance Modeling, Stochas-
tic Models

1. INTRODUCTION
Stochastic simulation models are an important means for the

quantitative analysis of systems. These models are often not closed
but must account for influences from the outside. It is well known
that failing to model them carefully, especially the load, may lead

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2009, Rome, Italy
Copyright 2009 ICST 978-963-9799-45-5.

to incorrect results and ultimately to wrong decisions based on the
simulation results. One reason for defective load models may be
the ignoring of dependencies, i.e. using independent random vari-
ables instead of random vectors or stochastic processes.

Influence from outside of the model, such as load or failure of
system components, can be incorporated into the model using ob-
served traces, or with input models: namely random variables, ran-
dom vectors, or stochastic processes. Data from traces can be used
directly. If input is modeled, then the data produced is a realization
of the model.

The use of random variates is well understood and has been com-
monly performed for a long time, but the use of generated random
vectors and stochastic processes are more difficult and less popular,
are a feature of current research.

In [7], copulas are proposed for the analysis of observed data
and for the generation of dependent random variates and time se-
ries. Algorithms for these two aspects are given. This technique
accounts for the complete dependence structure of the considered
sample, and not only for the correlations as in most other methods
found in the literature. The only approximation is a discretization
with selectable granularity: The copula density is assumed to be
piecewise constant. In many examples the authors have found that
these input models are valid and accurate.

The algorithms are quite complex and their implementation as
computer programs is challenging. For these reasons, programs
have been provided in a toolbox, ready for execution. They are
described in this paper: A MATLAB programpwlCopula and
some Java classes, see [14]. The MATLAB program serves three
main purposes: Firstly it analyzes a given sample, namely random
vectors or a time series where the elements may be random vec-
tors as well, and calculates empirical marginal distributions and the
copula. Secondly, it can generate random vectors and time series.
Thirdly, the quality of the input model can be judged.

The use of copulas makes the difficult task of finding a multivari-
ate distribution, more facile by performing two easier tasks. The
first step is modeling the marginal distributions, the second consists
of estimating the copula. Once this is done, it is a straightforward
process to generate random vectors. In this paper the marginal dis-
tributions are modeled as empirical distributions, the copula is es-
timated as a frequency distribution.

The new technique contrasts with other proposed input models.
Autoregressive processes (AR) model time series with Gaussian
random variables. They are conveniently fitted to measured data
with the linear Yule-Walker equations.

ARTA-like models (ARTA [2] for univariate time-series, NORTA
[3] for random vectors, VARTA [1] for processes of random vec-
tors) allow for general distributions by means of a Gaussian AR
or a multivariate Gaussian random variable as a basis whose ran-

dom variables are transformed into the desired distributions. The
correlations of this basic process are different from the desired cor-
relations. Sometimes this results in infeasible correlation matrices
of the basic process [5], thedefective matrix problem. Fitting given
autocorrelations and distributions to an ARTA process is possible
but not a trivial task.

TES processes [10] rely on empirical distributions of the random
variables. They incorporate lag 1 correlations. The interactive soft-
ware system TEStool serves the purpose of fitting measured data to
a TES process.

AR, ARTA-like, and TES processes as input modeling approaches
for random vectors and time-series consider only the correlations
and not the whole dependence structure. In contrast, copulas can
take account of the entire dependency.

In [4, 6] a similar procedure with copulas is proposed. In contrast
to this, the new technique here fits samples of data and therefore
considers all parts of what is available in the dependence structure.
A very efficient data organization allows for high vector dimension
like 100 and fast generation.

In [11] the authors propose some kind of nonlinear non-Gaussian
multivariate autoregressive process. The marginal random vari-
ables can have any distribution. The dependence structure is quite
general, where nonlinear dependencies are possible, but this must
be analyzed and modeled explicitly. By contrast, the empirical
copula approach of this paper extracts the dependence structure di-
rectly from the sample data.

This paper begins in Section 2 with a short presentation of the
input model technique [7] for random vectors via copulas: Mod-
eling given samples and generating random vectors efficiently in
simulation models.

Section 3 presents a sophisticated data structure which speeds
up the analysis and the generation of random vectors and is very
space efficient. It is based on hashing and sparse vectors. Section
4 exhibits how the modeling technique applies to time series as
well. Section 5 describes how the tools provide for the analysis of
sample data and for generating random vectors and time series. It
also describes the tools’ features for validating a dependent input
model.

Section 6 is about validating the technique empirically. Exam-
ples which are calculated with the main tool, the MATLAB pro-
grampwlCopula [14], indicate accurate statistical properties of
the new technique. Moreover, simulation results with common in-
dependent input and dependent input from the new technique are
presented and compared.

2. MODELING SAMPLES AND GENERA-
TION WITH PIECEWISE LINEAR EM-
PIRICAL COPULAS

A copula is a multivariate distribution functionC(u), u =
(u1, ...,uD) ∈ [0,1]D, for the random vectorU = (U1, ...,UD) with
univariate uniform margins restricted to the unitD-cube [0,1]D.
The key theorem according to Sklar clarifies the relationship of de-
pendence and the copula of a multivariate distribution. LetF de-
note aD-dimensional distribution function with marginsF1, ...,FD.
Then aD-copulaC exists such that for all realz = (z1, ...,zD),
F(z) = C

(
F1(z1), ...,FD(zD)

)
holds true. If all the margins are

continuous, then the copula is unique; in general, it is determined
uniquely on the ranges of the marginal distribution functions. More-
over, with quasi-inverses of the marginal distribution functions like

F−1
d (u) =

{
inf{z|Fd(z)≥ u} u > 0
sup{z|Fd(z) = 0} u = 0

for everyu = (u1, ...,uD) in the unitD-cube,C(u) =
F

(
F−1

1 (u1), ...,F−1
D (uD)

)
holds true. More details of copulas are

given in the book by Nelsen [12].
Multivariate random vectors can be generated using copulas in

two steps:
1. Generate dependent random numbersu(gen)

1 , ...,u(gen)

D with the
multivariate copula as usual.

2. Transform them into the desired marginal distribution,z(gen)
d =

F−1
d (u(gen)

d), d = 1, ...,D, using the inverse transformation tech-
nique, see the book of Law and Kelton [9], for example.

For step 1, the conditional distribution functions
Cd(ud|u1, ...,ud−1) = P{Ud ≤ ud|U1 = u1, ...,Ud−1 = ud−1},
d = 1, ...,D, are essential. They can be expressed with the copula
densityc(u) and some marginal densities.

For the technique in this paper the empirical copulasC(u) are
linear in each variableud if the other variables are fixed. This lin-
earity holds true within certain regular non-overlapping sub-cubes
of the unitD-cube[0,1]D, but in different sub-cubes the slopes are
different, in general. The densityc(u) of the copula is constant
in each of these sub-cubes. Hence, these copulas are piecewise
(multi-)linear.

The sub-cubes are defined with a positive integergranularity pa-
rameter K, namely with the partitionS1, ...,SK of the interval[0,1],
S1 = [0,1/K], Sj =

(
(j − 1)/K, j/K

]
, j = 2, ...,K, the sub-cubes

areSj = Sj1 × ...×SjD , j = (j1, ..., jD) ∈ {1, ...,K}D.
The empirical copulas are estimated from a given samplezi =

(z1,i , . . . ,zD,i), i = 1, ...,n, using empirical distribution functions of
the marginal distributions of the sample: For each sample valuezd,i ,
the correspondingud,i in the copula space is calculated, basically
with the empirical distribution function, and for each sub-cube the
number ofu-vectors inside are counted. For details see ([7]). The
time complexity for this is O(D2nlogn), wheren is the sample size.

With the up-operator↑: [0,1]→{1, ...,K}, ↑ u = max{1,duKe},
the empirical copula density can be denoted as an arrayf ,

c(u) = f↑u1,...,↑uD
, u ∈ [0,1]D, (1)

since the values within the sub-cubes are constant.
The needed marginal copula densities can be expressed as

cd(u1, ...,ud) = f (d)
↑u1,...,↑ud

/KD−d, d = 1, ...,D−1, (2)

where

f (d)
j1,..., jd

=
K

∑
jd+1=1

. . .
K

∑
jD=1

fj , (j1, ..., jd) ∈ {1, ...,K}d.

All f (d)-arrays together have the space complexityO(KD), but
they are generally sparse.f (D) is the biggest and hasKD elements,
most of which will be zero ifKD � n. We could thus store the big
arrays f (d) in a sparse manner, and the storage demand is of order
O(D2n) if KD is not small. Instead, a special hash scheme is used
for storing the arrays. It also has the space complexityO(D2n), but
the access time while generating random vectors is much shorter,
as will be seen in the next section.

There are some alternatives for the inverse transformation of a
random vectoru(gen)of the copula into a random vectorz(gen). Two
of them are based on the estimated empirical distribution functions
which are provided in the tools:

1. The empirical distribution functions are used directly. Here
one can obtain only the values which occur in the sample. This can
be appropriate for integer random variables, in particular.

2. Using a linear interpolation, the flat steps of the step distri-
bution function are replaced by straight lines above them with a

positive slope. This enables the modeler to obtain all real values
between those he defines as smallest and largest.

Of course, fitted standard distributions could be used as well.
An unknown reviewer gave an interesting hint. There is a sim-

pler way to generateu-vectors. Make a list of the nonempty sub-
cubes, in some order, assign each interval of length 1/n to one of
the sub-cubes, and then construct an index mapping each subinter-
val of (0,1) of length 1/n to one of these sub-cubes. Then it suffices
to generate a single uniform over (0,1) and map it to the appropriate
sub-cube with the index. Finally, if we want a continuous distribu-
tion, we just generate one point at random uniformly in the selected
sub-cube. This idea works for vectors but not for the time series as
in Section 4.

3. THE HASH DATA STRUCTURE
This section is about storing and accessing the array elements

f (d)
j1,..., jd

, the f-values, and their cumulative sums

s(d)
j1,..., jd

=
jd

∑
j=1

f (d)
j1,..., jd−1, j

, (j1, ..., jd) ∈ {1, ...,K}d, d = 2, ...,D,

the s-values. The f-values are basically the (marginal) densities of
the empirical copula, and the s-values are the cumulative distribu-
tion functions.

When the f-values and s-values are stored as arrays, even as
sparse arrays, the applicability of the copula method is restricted
with respect to the granularityK and the dimensionD of the random
vectors due to complexity. Something likeK ≤ 1000 andD≤ 3, or
K ≤ 30 andD ≤ 6 must be observed with full arrays, and with
sparse matrices in MATLAB,K ≤ 1000 andD≤ 6, orK ≤ 30 and
D≤ 12. The following elaborated data structure which realizes the
more favorable space and time complexity is much more efficient
and therefore makes greaterK andD possible. The tools are made
with it and allow, for exampleK = 4000 andD = 4, K = 1000 and
D = 40, orK = 100 andD = 100. Moreover, the algorithm is now
much faster. For large valuesK, 30...300 times shorter CPU times
are observed for the set-up phase and 24...90 times faster genera-
tion of random vectors, compared with a MATLAB program which
relies on sparse matrices.

The data structure has features of hashing and of sparse vec-
tors. It allocates sequentially in sparse vectors the cumulative sums

s(d)
j1,..., jd

for givend and(j1, ..., jd−1), in increasing order. This al-
lows for a binary search with logarithmic complexity. Only differ-

ents(d)
j1,..., jd

-elements are stored, together with indexjd and f (d)
j1,..., jd

.
A hash function and collision pointers point to these sparse vectors.

The array elementsf (d)
j1,..., jd

ands(d)
j1,..., jd

are, broadly speaking,
accessed as follows:

1. Givend and(j1, ..., jd), an entry is searched in the hash ta-
ble with the hash key(d, j1, ..., jd−1) and collision pointers. If
no entry is found, thef (d)-element and thes(d)-element are both
0. Otherwise, two pointersbeg(j1, ..., jd−1) andend(j1, ..., jd−1)
are found in the entry which point to a linear list with the triples

(jd, f (d)
j1,..., jd

,s(d)
j1,..., jd

).
2. In this list, the triples are sorted according to increasingjd

which includes increasing cumulative sumss(d)
j1,..., jd

. If there is no

triple for the givenjd-value, the array elementf (d)
j1,..., jd

equals 0.
Since an access to an entry in the data structure consists in a hash

access plus in search, the access time has two components: For
linear searchO(K) steps or for binary searchO(logK) steps, and
for the calculation of the hash address and for comparisonsO(D)
steps sinceD indices must be considered:

THEOREM 1. With the hash scheme, the access time for the
densities and the cumulated densities is O(K+D) with linear search
and O(logK +D) with binary search.

Remark: Because of the sparsity which is often high-grade, there

are generally only a couple off (d)
j1,..., jd

> 0, givend and(j1, ..., jd−1).
Therefore quite often a binary search is not faster than a sequential
search. The tools apply sequential search.

More precisely, the data structure is as follows: For eachd = 2,
...,D, there is anaccess hash tableand atriple table. Each access
hash table is organized as follows (see Table 5 in the appendix):
The hash function points to the first section with the entries num-
bered 1 tom′. If a collision occurs, a collision pointer points to the
second section with the entriesm′+1 tom for the collision chains.
Otherwise, the collision pointer is 0. Each collision chain is or-
ganized with additional collision pointers, and ends with collision
pointer 0. Each entry consists of two pointers pointing to the triple
table,begandend, the sub-cube indicesj1, ..., jd−1, and a collision
pointerp which can be 0.

For tabled, the hash function is

h : {1, ...,K}d−1→{1 :m′},h(j1, ..., jd−1)= bm′(σθ−bσθc)c+1

wherem′ = dn
2
e,θ = 16

√
5,σ =

j1
K

+
j2

K2 + . . .+
jd−1

Kd−1 . (3)

The triple tabled (Table 6) consists of entries numbered 1,2,...,
no more thann entries. Each entry consists of an indexjd, an f-

value f (d)
j1,..., jd

, and the cumulated values(d)
j1,..., jd

. Entries with the
same index tuple(j1, ..., jd−1) are stored one after the other, or-
dered with increasing indicesjd, say jd,1, ..., jd,end−beg+1.
beg(j1, ..., jd−1) points to the entry with the lowestjd = jd,1,
end(j1, ..., jd−1) to the entry with the highestjd = jd,end−beg+1.

Algorithm 1 is used to look-up f-values:

Algorithm 1. Look-up f (d)
j1,..., jd

, given dimensiond and sub-cube
indices j1, ..., jd.
1. Search the index tuple(j1, ..., jd−1) in the hash table for di-

mensiond: Use the hash addressh(j1, ..., jd−1) and follow
the pointers in the collision chain.

2. if the tuple is not found
then return 0
elsedeterminebegandend

if jd is found betweenbegandend in the triple table
then return the density value
else return0
fi

fi.

For generation of random vectors of the empirical copula, the
inverse transformation method is used with the conditional distri-
bution functionsCd(ud|u1, ...,ud−1). To this end, s-values must be
compared. Algorithm 2 serves this purpose.

Algorithm 2. Search smallestj whereb≤ s(d)
j1,..., jd−1, j+1, givenb,

dimensiond, and sub-cube indicesj1, ..., jd−1.
1. Search the index tuple(j1, ..., jd−1) in the hash table for di-

mensiond: Use the hash addressh(j1, ..., jd−1) and follow the
pointers in the collision chain.

2. if the tuple is not found
then return ∞
elsedeterminebegandend

if b = 0
then return 0
elseSearch smallests(d)

j1,..., jd−1, j+1 ≥ b for 1≤ j +1≤ K
in the triple table (with linear or binary search)
if not found
then return ∞
else return j
fi

fi
fi.

The data structures quoted above with access hash tables and

triple tables are built with a sample where the array elementsf (d)
j1,..., jd

are also accessed with a hash table. In the tool, theseset-up hash
tablesare designed like those above, but allf -values are in the the
hash tables themselves. For a givend and(j1, ..., jd−1)-tuple, all

f (d)
j1,..., jd

> 0 are in the same collision chain, namely the hash func-

tion is (3). Obviously, in such a chain, there can also bef (d)
j ′1,..., j

′
d−1, j

′
d
-

values, namely when a different index tuple(j ′1, ..., j ′d−1) has the
same hash address.

From the set-up hash tables, the access hash tables and the triple
tables can be built with a straight-forward algorithm: For each in-
dex tuple(j ′1, ..., j ′d−1) for which there is anf -value> 0 exactly
one entry remains in the access hash table, and eachf -value to-
gether with itss-value is stored in a triple table entry, in increasing
order. Thef -values and the indicesjd are replaced by thebeg- and
end-pointers. This algorithm is omitted here.

4. AUTOREGRESSIVE MODELING TIME
SERIES

The technique for random vectors can be used for stationary time
series as follows: Consider a time seriest i , i = 1, ...,n+ w− 1,
of D′-dimensional random vectors,t i = (t1,i ,, tD′,i). A moving
window with a width ofw vectorst i , t i+1, ..., t i+w−1 is taken as
sample vectorszi = (t i , ..., t i+w−1), i = 1, ...,n, henceD = wD′ is
the dimensionality of the random vectorszi . With this sample, the
marginal distributions and the copula are estimated as in Section
2. The reader may realize that there are onlyD′ different marginal
distributions.

Heret i , t i+1, ... is assumed to be a general kind of autoregressive
process, namelyt i+w−1 is modeled as a function oft i , t i+1, ...,
t i+w−2 and a random perturbation. The distribution oft i+w−1 is the
conditional distribution functionP{t i+w−1 ≤ t| given a realization
of t i , t i+1, ..., t i+w−2}.

The reader may note thatzi ,zi+1, ... is some kind of Markov pro-
cess, since the distribution ofzi+1 is completely defined byzi and
some conditional distribution, givenzi .

The idea of this is as follows: The dependency between allt i
may be defined completely between two succeeding vectors, for
examplet i = αt i−1 + (1−α)xi where 0< α < 1, and thexi are
independent random vectors. In fact,t i and t i+∆ are dependent
for ∆ > 1, but this dependency is sufficiently considered with win-
dow widthw = 2. But the dependency between thet i may not be
defined completely between two succeeding vectors, for example
t i = αt i−1 +β t i−2 +(1−α−β)xi where 0< α,β , α +β < 1. In
this case the window widthw must be greater than 2 in order to
cover the complete dependency (actually,w must be at least 3 in
this example).

Remark: There is one exception to the above. Namely, when
the granularity parameterK and the sample sizen are equal, the
complete dependency is considered automatically even with win-
dow widthw = 2. The reason is as follows: When the random vec-
tors t(gen)

i are generated under these circumstances, the sub-cubes
appear in the same order as in the original sample given.

The generation of a time seriest(gen)
i , i = 1,2, ..., is different from

the case of random vectors. In each generation stepi, the first(m−
1)D′ elements for the newz(gen)

i are taken fromz(gen)
i−1 , namely its

last (m−1)D′ elements. Only the lastD′ elements are generated
newly each time:

z(gen)
i−1 =


t(gen)
i−1

t(gen)
i

...

t(gen)
i+w−2

 ↗

...
↗


t(gen)
i

...

t(gen)
i+w−2

t(gen)
i+w−1

 = z(gen)
i

The according explanation holds true for the generatedu(gen)
i -

vectors.
The lastD′ elements of the generatedz(gen)

i series are the desired

generated time seriest(gen)
i , i = 1,2,

The first vectorz(gen)
1 must be initialized somehow, since no older

random vector is available. For this purpose, the whole vector can
be generated. But there is an initial transient phase where the gen-
erated vectorst(gen)

i , i = 1,2, ..., are not generally stationary. The
modeler should not use the generated vectors in the beginning.

It must be mentioned that for this generation method of time se-
ries, two problems must be solved:
1. All parts t j of the vectorszi must have the same empirical
marginal distributions.
2. For eachzi = (t i , ..., t i+w−1), there must be an other vectorz j
with (t i+1, ..., t i+w−1) in the lower places like(t i+1, ..., t i+w−1, tk).
If one of these two conditions is violated it may occur that all
u(gen)

i = F(z(gen)
i) are in sub-cubes with zero density. Hence, no

such vector can be generated, the generation algorithm runs into a
dead end.

Both postulations are not immediately true and must be forced
explicitly. In the tools, the second problem is omitted as follows:
In the sample vectorszi = (t i , ..., t i+w−1), i = 1, ...,n, each vector
t j with j > n is replaced witht j−n. Thereby each vectort j , j =
1, ...,n+w−1, occurs exactly once in each position of the sample
vectors. Hence according marginal distributions are the same, for
example elementszi,1 and zi,1+D′ of all zi , i = 1, ...,n, have the
same empirical distribution, thus postulation 1 is also fulfilled.

5. THE TOOLS
The method [7] for modeling multivariate distributions and time

series seems to work quite well, but programming is complex and
has messy details. Therefore it is important to provide tools which
can be used easily.

The toolbox consists in an interactive MATLAB program
pwlCopula and in Java classes, see [14]. Basically, the MAT-
LAB program calculates the copula, provides some statistics and
diagrams which serve the purpose to examine the validity and ac-
curacy of this model, and can generate random vectors and time
series. The Java classes generate random vectors (methods for time
series will be available soon) using a copula and empirical marginal
distributions which were calculated with the MATLAB program.

For setting the copula up, the MATLAB programpwlCopula
takes as input a sample of independent vectors or a time series
whose elements can be vectors as well. The copula can be stored in

a copula file. During the calculation, the program needs empirical
marginal distributions of the sample vectors. They can be stored,
too. The user must specify some parameters for the calculations:

• K, integer, determines the accuracy, namelyKD is the num-
ber of sub-cubesSj . This is the granularity of the discretiza-
tion, the higher, the more accurate. Values between 10 and
4000 were tried.

• n(by K), integer, defines the sample sizen= n(by K)K. ThusK
dividesn. This is an important condition for the method to
be correct, see [7, Theorem 1].

• The name of the file from which the sample is read.

• The window widthw for time series.

Using this copula,pwlCopula can generate random vectors
or a time series which can be strored in a file for later use in a
simulation model. For the generation, the user specifies

• The random number stream.

• How many vectors are to be generated.

• The kind of inverse transformation. One method generates
only values which occur in the sample. The other, with linear
interpolation, also generates intermediate values with linear
interpolation of the empirical distribution function.

pwlCopula can also generate independent random numbers
with the marginal distributions of the vector components of the
sample. They can be used to evaluate the benefit of modeling de-
pendency. To this end, simulation results obtained from using sam-
ple data as inputs are compared both with simulation results using
generated inputs using the independent model, and with simulation
results obtained from generated inputs using the dependent model.
Thus one can decide which model is valid. This is a highly credible
validation method.

pwlCopula provides statistics and plot diagrams with the gen-
erated random vectors or the time series, and corresponding statis-
tics and diagrams with the given sample. The modeler can com-
pare these in order to obtain insight into validity and accuracy of
the copula model.

The statistics deal with the means and the variances in each di-
mension, and correlations between pairs of dimensions. They are
not only calculated for the original sample, but also for the gener-
ated vectors. The absolute values of the differences are taken as a
measure of accuracy. The difference of means is considered abso-
lute if at least one of the absolute values of the means is less than
10−5. If both values are greater or equal, then the difference of
means is considered relative. The difference of two coefficients of
variation is considered if both corresponding absolute values of the
means are greater than 10−5. If one of them is lower, then the dif-
ference of standard deviations is considered. The difference of two
correlations is considered if both corresponding standard deviations
are greater than 10−5. If one of them is less, then the difference of
the covariances is considered. The greatest absolute value of these
differences, themaximum statistical deviation, is a combined mea-
sure of accuracy.

If one replicates the generation process, sayr times, the smallest
observed maximum statistical deviation and the greatest observed
maximum statistical deviation are an (approximate) confidence in-
terval to the confidence level 1−2−(r−1), see [13].

Scatter diagrams are provided for visual inspection. In each of
them, the value pairs of two different elements of the vectors are

plotted as points. Looking at the diagram, one gains insight into
the structure of dependency of these two dimensions: There may
be regions with no points - obviously the corresponding value pairs
do not occur at all, or with rather small probabilities. In the other
regions, the points may be variously dense which indicates different
probabilities of occurrence in this region.

The modeler can compare corresponding scatter diagrams of the
original sample and also of the generated vectors. An indication
that the copula model is accurate is when regions without points
correspond and when the impression of the frequency is similar.

For time series, correlations are calculated between two vector
elements in the same dimension, but at different timesi1, i2 with
the lag |i1− i2|. Again, these correlations are calculated for the
original sample and for the generated vectors. The absolute value
of their difference is taken as a measure of accuracy. These differ-
ences generally increase with a widening lag for lags greater than
w, because only dependencies with smaller lags are modeled ex-
plicitly by the method in Section 4. Thus it makes no sense to
consider only their maximum value, diagrams with differences for
different lags are provided instead.

The Java classes are only for the generating of random vectors
(and shortly for time series), they implement the same algorithms
as the according part of the MATLAB programpwlCopula . A
copula and empirical marginal distributions which were calculated
and stored in a file before withpwlCopula must be imported.
The Java classes are not interactive, the parameters must be passed
to the Java objects via method calls.

6. EMPIRICAL VALIDATION
Many numerical examples indicate validity and good accuracy

of the new input model technique with copulas. A couple of them
are in [7], and further aspects are discussed in the sequel:

• Nonlinear dependency (Example 1).

• Many dimensions (Example 1).

• What is the influence of the window width (Example 2 and
3)?

• How accurate can long distance dependence be modeled with
a small window width (Example 2 and 3)?

• Is it worth modeling dependency, or can one assume inde-
pendent input (Example 4)?

For all experiments, the CPU times for generation were observed
on a Pentium 4 computer of 3 GHz. Sometimes the generation
process is replicated 5 times. Then the smallest observed maxi-
mum statistical deviation and the greatest observed maximum sta-
tistical deviation are an (approximate) confidence interval to the
confidence level 1−0.54 ≈ 0.93, see [13].

Inverse transformation was done with empirical distribution func-
tions for the integer-valued distributions and with interpolated em-
pirical distribution functions for real-valued distributions.

Example 1 is with random vectors. The sample is artificial,
namely realizations from a given distribution where the vector el-
ements are more or less dependent and their dependency is non-
linear. In scatter diagrams, one observes that this nonlinear de-
pendency is covered by the model. High dimensionality is tried,
D = 5, 40, 100.

The common distribution is defined as follows:Z1,i =Y1,i , Zd,i =
Zdd/2e,i(1−Zdd/2e,i)+Yd,i , d = 2, ...,D, i = 1, ...,n, where theYd,i

are independent andU(0,1)-distributed.

Table 1: Results for Example 1
D K n n(gen) Max.Stat.Diff. CPU[sec]

5 4000 4000 64000 0.007±0.002 29
40 1000 1000 16000 0.028±0.004 74
100 100 1000 16000 0.031±0.004 210

In Table 1 the model parameters and the results are given. Figure
1 shows scatter diagrams for the vector elements 1 and 2, the left
diagram for the sample, the right one for the generated vectors.
Their similarity indicate that the dependency structure is modeled
accurately.

Figure 1. Sample and Generated Points, Dimensions 1 and 2

Example 2 is a time series of scalars,D′ = 1, also an artifi-
cial model. Ti depends explicitly onTi−1, Ti−2, andTi−3: Ti =
0.2Ti−1+0.3Ti−2−0.4Ti−3+Yi , i = 4, ...,n0+n, whereT1, T2, T3,
and theYi areU(0,1)-distributed. The autocorrelations are between
-0.3 and 0.3. Modeled window width isw =2 and 4.

The first random variablesT1, T2, ... are not stationary; this is
why the firstn0 = 100 realizations are skipped, assuming that the
stochastic process is then nearly stationary.

Table 2: Results for Example 2
K 1000 1000
w 2 4
n 16000 16000

n(gen) 16000 16000
Max.Stat.Diff. 0.016 0.0001
Dev.Autocorr. 0.3 <0.003

CPU[sec] 1.7 14.6

In Table 2 the model parameters and the results are given. For
window widthw = 2, the autocorrelations are modeled poorly for
time lags 1,...,200, namely with absolute values of deviations up to
nearly 0.3. This is not surprising since the explicit dependence of
the time series elements goes back three steps. With widthw = 4,
the maximum statistical deviation is very low and the autocorrela-
tions are also accurate.

Example 3 is a time series. The sample is measured IP-traffic
data from [8], inter-arrival times in the first, and packet sizes in the
second dimension,D′ = 2. The marginal distributions are irregular
and no suitable standard distributions are available; this is no prob-
lem with empirical distributions. The dependence structure is not
obvious, however, this is accounted for automatically if the window
width is not too small.

In Table 3 the model parameters and the results are given. With
window widthw = 2 in column 1, the results are good, withw = 4
the results in column 2 are better, namely the maximum statistical
deviations are smaller by one order of magnitude. The deviations of
the autocorrelations are even smaller by two orders of magnitude.

The scatter diagrams, figure 3, show a very irregular dependency
structure. The comparison of the sample and the generated points
indicate good accuracy:

Table 3: Results for Example 3
K 4000 4000 1000 1000
w 2 4 2 4
n 16000 16000 1000 1000

n(gen) 16000 16000 16000 16000
Max.Stat.Diff. 0.037 0.001 0.0077 0.0074

±0.002 ±0.004 ±0.0009 ±0.0008
Dev.Autocorr. 0.4 0.004 0.06 0.06

CPU[sec] 6 13.7 6.2 13.5

Figure 2. Sample and Generated Points, Dimensions 1 and 2

In the special case where the sample sizen and the granularity
parameterK are equal in columns 3 and 4, the observed accuracy
does not differ significantly for different window widths. This is
in line with the remark in Section 5 about the special case where
K = n.

Example 4considers the same sample as Example 3, granularity
K = 4000, window widthw = 4, but with sample size 60000. Here
the benefit of modeling dependency is evaluated by means of three
simulations with similar simulation models. They are equal except
for different input models:

1. Some performance or reliability measure is evaluated with
the sample as input.

2. The same is done for dependent input data which is generated
with pwlCopula , and the results are compared with those
from 1.

3. The same is also done with independent input data which is
generated with the empirical marginal distributions, and the
results are compared with those from 1.

The simulation model is a queueing system. The service times
are commensurate with the packet sizes, service time = packet size
/ rate. The rate is such that the server utilization is about 53%. The
inter arrival times and the packet sizes are taken directly from the
sample or from the input model. The performance measures are the
numberNbr of packets in the queue, the probabilityP26 that there
are less than 26 packets in the waiting queue, and the delayDelay
of the packets in the queue.

The simulation with sample data consists in a single run with
60000 arrivals. The simulations with dependently and indepen-
dently generated arrivals, both consist in five replications with 12000
arrivals each. In this case 95%-confidence intervals are given.

Table 4: Simulation Results for Example 4

Input Model Nbr P26 Delay

Sample 3.97 0.967 0.048
Dependent 4.54± 3.57 0.959± 0.045 0.048± 0.029
Independent 1.25± 0.06 1.0± 0.00 0.015± 0.0004

Table 4 gives an overview of the results: For the dependent input
model, the means of the simulated measures are quite near to the

simulated means for the simulation with sample data. These means
are within the confidence intervals. The model seems to be valid.

For the independent input model, the contrary is true: The means
are unacceptably distant, the confidence intervals do not contain
the means which were simulated with sample data. This model is
invalid.

CONCLUSION
Incorrect simulations may result from poor modeling practices, par-
ticularly overlooked dependencies. This is well known, and our Ex-
ample 4 confirms this once again. There are a couple of modeling
techniques for dependent input, but they have several draw-backs:
most of them solely consider correlations, or only random vectors
with low dimension are feasible, or else they are difficult to apply.
The proposed empirical copula approach comprises the complete
dependence structure, and is both general and suitable for large di-
mensions. The proposed tools overcome the method’s dependency
upon intricate programming. With these ready-to-use programs, in-
put models can be set up, and random variates and time series can
be generated immediately without resorting to the complexities of
the empirical copula technique.

7. REFERENCES
[1] B. Biller and B. Nelson. Modeling and generating

multivariate time-series input processes using a vector
autoregressive technique.ACM Transactions on Modeling
and Computer Simulation, 13:211–237, 2003.

[2] M. Cario and B. Nelson. Autoregressive to anything:
Time-series input processes for simulation.Operations
Research Letters, 19:51–58, 1996.

[3] M. Cario and B. Nelson. Modeling and generating random
vectors with arbitrary marginal distributions and correlation
matrix. Tech. rep., Northwestern University, Department of
Industrial Engineering and Management Sciences, Evanston,
Ill, 1997.

[4] S. Ghosh and S. Henderson. Chessboard distributions and
random vectors with specified marginals and covariance
matrix.Operations Research, 50:820–834, 2001.

[5] S. Ghosh and S. Henderson. Properties of the NORTA
method in higher dimensions. In E. Yücesan, C. Chen,
J. Snowdon, and J. Charnes, editors,Winter Simulation
Conference Proceedings, pages 263–269. IEEE, Piscataway,
N.J., 2002.

[6] S. Ghosh and S. Henderson. Patchwork distributions.
Contributed to Festschrift for George Fishman, 2008.

[7] J.Ch.Strelen and F. Nassaj. Analysis and generation of
random vectors with copulas. In S.G.Henderson, B.Biller,
M.-H.Hsieh, J.Shortle, J.D.Tew, and R.R.Barton, editors,
Proceedings of the 2007 Winter Simulation Conference,
pages 488–496. Omnipress, Washington DC., 2007.
http://www.informs-sim.org/wsc07papers/058.pdf.

[8] A. Klemm, C. Lindemann, and M. Lohmann. Traffic
modeling of IP networks using the batch Markovian arrival
process. InProceedings of the 12th Int. Conf. on Modelling
Tools and Techniques for Computer and Communication
System Performance Evaluation, pages 92–110. Springer,
London, 2002. LNCS 2324.

[9] A. M. Law and W. D. Kelton.Simulation Modeling and
Analysis. McGraw-Hill, New York, third edition, 2000.

[10] B. Melamed. The empirical TES methodology: Modeling
empirical time series.J. of Applied Mathematics and
Stochastic Analysis, 10(4):333–353, 1997.

[11] F. Nassaj and J.Ch.Strelen. Dependence input modeling with
the help of non-Gaussian AR models and genetic algorithms.
In J. Teixera and A.E.Carvalho-Brito, editors,Modelling and
Simulation 2005, Proceedings of the European Simulation
and Modelling Conference, Porto, 2005, pages 146–153.
Eurosis-ETI, Ghent, 2005.

[12] R. Nelsen.An introduction to copulas. Springer, New York,
1998.

[13] J. C. Strelen. The accuracy of a new confidence interval
method. In R. Ingalls, M. Rossetti, J. Smith, and B. Peters,
editors,Proceedings of the 2004 Winter Simulation
Conference, pages 654–662. Omnipress, Washington DC.,
2004. www.informs-sim.org/wsc04papers/079.pdf.

[14] J. C. Strelen. Generating random vectors and time series with
copulas - the tools.
http://web.cs.uni-bonn.de/IV/strelen/Algorithmen, 2008.

Appendix

Table 5: Access Hash Tables
Address Triple Table Sub-Cube Coll.

Pointers Indices Ptr.

1→
.

h(d, j1, ..., jd−1)↘
h(d, j ′1, ..., j ′d−1)→ beg end j1 . . . jd−1 p
h(d, j ′′1, ..., j ′′d−1)↗

.
m′→

m′+1→
(Overflow Section)

p→ beg′ end′ j ′1 . . . j ′d−1 p′

.
p′→ beg′′ end′′ j ′′1 . . . j ′′d−1 0

.
m= m′+n→

Table 6: Triple Tables
Address jd = f -value s-value

1→
.

beg(j1, ..., jd−1)→ jd,1 f (d)
j1,..., jd

s(d)
j1,..., jd

jd,2 f (d)
j1,..., jd

s(d)
j1,..., jd,

.
end(j1, ..., jd−1)→ jd,end−beg+1

.
beg′→
end′→

.
beg′′→
end′′→

.
n→

