
One Size Does Not Fit All:
A Grounded Theory and Online Survey Study of Developer

Preferences for Security Warning Types
Anastasia Danilova
University of Bonn

danilova@cs.uni-bonn.de

Alena Naiakshina
University of Bonn

naiakshi@cs.uni-bonn.de

Matthew Smith
University of Bonn, Fraunhofer FKIE

smith@cs.uni-bonn.de

ABSTRACT
A wide range of tools exist to assist developers in creating secure
software. Many of these tools, such as static analysis engines or
security checkers included in compilers, use warnings to communi-
cate security issues to developers. The effectiveness of these tools
relies on developers heeding these warnings, and there are many
ways in which these warnings could be displayed. Johnson et al. [46]
conducted qualitative research and found that warning presenta-
tion and integration are main issues. We built on Johnson et al.’s
work and examined what developers want from security warn-
ings, including what form they should take and how they should
integrate into their workflow and work context. To this end, we
conducted a Grounded Theory study with 14 professional software
developers and 12 computer science students as well as a focus
group with 7 academic researchers to gather qualitative insights.
To back up the theory developed from the qualitative research, we
ran a quantitative survey with 50 professional software developers.
Our results show that there is significant heterogeneity amongst
developers and that no one warning type is preferred over all oth-
ers. The context in which the warnings are shown is also highly
relevant, indicating that it is likely to be beneficial if IDEs and other
development tools become more flexible in their warning interac-
tions with developers. Based on our findings, we provide concrete
recommendations for both future research as well as how IDEs and
other security tools can improve their interaction with developers.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
• Security and privacy→ Usability in security and privacy.

KEYWORDS
developer security warnings, software development, code security

ACM Reference Format:
Anastasia Danilova, Alena Naiakshina, and Matthew Smith. 2020. One Size
Does Not Fit All: A Grounded Theory and Online Survey Study of Developer
Preferences for Security Warning Types. In 42nd International Conference
on Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3377811.3380387

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7121-6/20/05.
https://doi.org/10.1145/3377811.3380387

1 INTRODUCTION
Security warnings are a form of a computer dialog communication,
e.g., used to notify users about potential risks of their actions and
security issues [8]. Research into human interaction with security
warnings has been studied for decades in cases such as browser
warnings and phishing alerts for end users. This research shows
that end users often struggle with security warnings, but that tak-
ing human factors into account can improve adherence to these
warnings [6, 7, 13–15, 17, 31, 33–35, 58, 64–66]. Software devel-
opers can also encounter security warnings while programming
and, just like end users, can become frustrated by these messages.
Examples of severe security issues in software development are
the use of deprecated security parameters or functions for end user
password storage in a database endangering a large amount of sen-
sitive user data [4, 52–54] or the misuse of TLS enabling man-in-the
middle attacks [32]. Consequently, improving security warnings
for developers is a desirable research goal [43].

Many tools can be used by developers to spot potential secu-
rity issues, such as compilers or static and dynamic code analyzers
(e.g., [12, 47, 55]) and there is already work underway looking
at these different types of systems. For instance, recent work by
Gorski et al. has shown that warnings shown by the compiler can
improve code security [42]; however, Barik et al. showed that read-
ing compiler warnings takes a significant amount of effort and that
improvements are needed [11, 12].

In the realm of static analysis, Johnson et al. conducted a qualita-
tive study to examine why developers don’t use static analysis tools.
They found that the way in which warnings are presented, lack of
fixing help and the poor integration of warnings into developers’
workflows has a detrimental effect on the use of such supporting
tools [46].

In this paper we build on Johnson et al.’s work and examine
developers’ wishes concerning how and when they would like to
receive security warnings. There are many different ways warnings
can be shown, e.g., in the compiler output, with underlines and
warning markers in the code window, in a stand-alone security
view, or as pop-ups. In the rest of the paper we will refer to these
as different warning types. Warnings can also be shown at different
times during the development process. To help inform how tools
design warning message interaction, we conducted research on
these two aspects of warnings for developers. We specifically did
not study the content of the warnings, the underlying accuracy of
the warnings (i.e., false positive rate), or additional features such
as quick fixes, since these can be applied to all warning types and
are orthogonal to our research.

136

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

https://doi.org/10.1145/3377811.3380387
https://doi.org/10.1145/3377811.3380387


ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Anastasia Danilova, Alena Naiakshina, and Matthew Smith

To this end, we conducted a Grounded Theory (GT) study with 14
professional software developers and 12 computer science students,
to build a working theory as to how developers would like to inter-
act with warnings. We compared the following security warning
types which could be shown in an IDE: markers in the code view,
compiler output, dedicated security view, general warning view,
pop-up warnings, and warnings on committing. As it is recommend-
able when doing this kind of qualitative work, we triangulated the
early results by using a focus group with 7 academic researchers
to include new themes into the GT study. To gather quantitative
insights into the theories developed from our qualitative research
as well as selected themes from Johnson et al.’s qualitative work,
we ran an online survey with 50 professional software developers.

The rest of the paper is organized as follows: First, we discuss
related work (Section 2) and our methodology in detail (Section 3).
Then, we present our explanatory theory in Section 6, whereas our
quantitative analysis can be found in Section 7. In Section 8 we
discuss the implications of our study and provide recommendations
for security warning design for developers.

2 RELATEDWORK
Barik et al. [12] conducted an eye-tracking study with student devel-
opers to investigate Java compiler error messages. They examined
different compiler errors in the Eclipse IDE and found that develop-
ers needed slightly longer to read and understand an error message
than writing source code. They also found that developers actually
read error messages. In a further study, Barik et al. [11] investigated
compiler errors and how developers understood error messages.
They conducted a comparative study of 68 software developers
for two compilers (Jikes and OpenJDK) for Java and examined 210
compiler errors from Stack Overflow. In their study, Barik et al.
focused on the warning message and argumentative structure and
found that developers preferred errors with a clear argumentative
structure of the error or with solutions to the problem.

Wogalter et al. [27] deployed the communication-human in-
formation processing (C-HIP) model describing the interaction
between computers and humans for warnings and risk communi-
cation. This model specified that communication components, like
attitudes and beliefs of the receiver, play a role in communication.
Furthermore, Wogalter et al [67] summarized studies on general
warning design and provided examples to increase the visibility
of a warning, such as coloring, wording, and layout. They also
mentioned the location of warnings as a crucial factor.

Gorski et al. [42] investigated the effect of python compiler warn-
ings on preventing security API misuse. They found that developers
improved their code after seeing the compiler security warnings.
They stated that API designers could include warnings in their
design to trigger compiler warnings.

Moreover, many tools and static analyzers were introduced to
help developers manage security issues. For instance, Christakis
and Bird [23] surveyed 375 developers from Microsoft to investi-
gate their perceptions of automatic program analysis. Their results
summarized the characteristics and functionality a program ana-
lyzer should have. They found that false positives should be limited
to 15-20%. Furthermore, the majority of their participants wanted
program analyzer output to appear in the editor instead of the build

output or code review. Therefore, we concentrated on warnings for
IDEs and editors.

Nguyen et al. [55] proposed the plugin FixDroid, which offered
warnings and quick fix dialogues for security issues in the Android
Studio IDE, and found that developers approved FixDroid, which
helped produce more secure code.

Smith et al. [63] conducted an exploratory study with 10 novice
and experienced software developers to explore how they resolve
security defects while using static analysis tools. Participants used
Find Security Bugs and requested more information on security
vulnerabilities, associated attacks, and fixes, but also on the software
and its social ecosystem, on related resources and tools. Smith
et al. gave recommendations on how future tools could leverage
their findings to facilitate better strategies, e.g., the integration of a
context-informed web search with a specialized search engine.

Johnson et al. [46], who investigated the reasons why developers
rarely used static analyzers, found that large volumes of warnings,
false positives, and poor warning presentation caused developers to
stop using analyzers. Furthermore, Johnson et al. [45] conducted a
qualitative study, in which 26 participants interacted with warnings
from FindBugs, the Eclipse Compiler, and EclEmma. The authors
presented their resulting communication theory, which revealed un-
derstanding the notifications posed multiple challenges, which are
caused by gaps and mismatches between developers’ programming
knowledge and communication methods used by the notifications.
In addition to that, the authors concluded that expectation mis-
match challenges focus on visual communication and that tools
can improve how they communicate to developers if they would
respect developers’ knowledge and experiences.

The related work above examines many different aspects of
security warnings for developers, e.g., how to improve compiler
warnings, how developers interact with static code analyzers, how
to improve static code analyzer warnings, etc. We add to this work
by broadening the scope and examining which form of warnings
developers might prefer, e.g., would they prefer to receive warnings
via the compiler or from a static code analyzer while they are
programming or via a pop-up warning before they commit code.

Furthermore, Bailey et al. [10] found that participants performed
worse on interrupted than on non-interrupted tasks. They recom-
mended to notify the user in an appropriate moment in order to
limit the disruptive effect on the main task. Hudson et al. [44]
presented promising results by using sensors (audio and video
recording) to form statistical models to predict the interruptibil-
ity of users in order to assess when a task can be interrupted.
Robertson et al. [59, 60] compared the effects of two interruption
styles on end-user programmers: negotiated-style and immediate-
style interruptions. They found that negotiated-style interruptions
were more accepted than immediate reactions [60] but can differ
in their intensity. In their follow-up study Robertson et al. found
that high-intensity negotiated-style interruptions had a similar
effect as immediate-style interruptions [59]. In our analysis, we
included warnings using both interruption styles (e.g., warning
markers as examples for negotiated-style interruption and pop-ups
for immediate-style interruptions) and found that our participants’
views on the interruption styles reflected the findings of the above
studies.

137



One Size Does Not Fit All:
A Grounded Theory and Online Survey Study of Developer Preferences for Security Warning Types ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

  11 foobar(x,y);

  11 foobar(x,y);

Figure 1: Warning markers yellow and blue

Violations outline

    11        11/9/18        Security      Security-Warning

Pr    Line  created  Rule     Error Message

    50        11/9/18        Code           Wrong intend 

Figure 2: Warning view

3 METHODOLOGY
Our study consists of two parts. First, we conducted a GT study
based on Charmaz [21] with theoretical sampling [26] to get a broad
overview of the problem space.We followed up this qualitative work
with a quantitative survey to test the developed themes and our
explanatory theory [25].

To design and test the semi-structured interview guideline for
the GT study, Dillman’s [30] three-stage pretesting process was
followed. First, to decide which types of warnings to use, related
work on security bugs was reviewed, and the findings were dis-
cussed with eight colleagues from the field of computer science.
Second, the guideline was reviewed by a professional developer
using a think-aloud approach. Third, a pilot study with two com-
puter science students was conducted to test the study design and
to iron out ambiguities. Through this process, some ambiguities
were found and eliminated, and wording was improved. The final
guideline can be found in supplementary material.

All 26 semi-structured face-to-face interviews were conducted
by one researcher and lasted between 30-40 minutes each. In addi-
tion to the interviews, we conducted one focus group with seven
academic researchers using the same guideline. This was done in
order to ensure data reliability and validity by using multiple data-
collection methods (methodological triangulation) [28, 29, 39, 62].
The focus group was moderated by the same researcher who con-
ducted the interviews.

The participants were asked which IDEs they had experience
with and in which areas of software development they had worked
in the past or were still working in. Then, the participants were
shown different types of security warnings, which are introduced
in the following section. Follow-up questions were asked by the in-
terviewer to clarify different statements the interviewee expressed.
All interviews and the focus group session were audio-recorded
and transcribed afterwards.

3.1 Types of Warnings
We created a generic picture of an IDE in which we could illustrate
different types of warnings. The following warning types were
illustrated: (1) underlying code with a yellow line and showing a

Run:
Security-Warning:
In line 11 
You used ...
This can cause ...

Secure-Action:
...
Insecure-Action:

…
Background  Details:
[1] …
INFO: Server started. Service Active.
INFO: Server running.
INFO: Log: Client logged in. 

Figure 3: Compiler warning

warning marker at the left of the line of code (see Figure 1). This
is a common warning marker used by many IDEs. We added one
variation of this using (2) blue as a new color for security warnings.
We also added a lock icon as the warning marker. (3) We illustrated
a warning view inspired by static analyzer plugins, such as Find-
Bugs [36], PMD [57], and SonarQube [61] (see Figure 2). This view
contains both security and non-security related bugs as is done by
these tools. (4) A variation of (3) in which the view contains solely
security warnings. (5) We illustrated a security warning as part of
a compiler output (see Figure 3). (6) We included a pop-up warning
since they are commonly used for warning end users even though
we have not seen them for security issues within the IDE yet (see
Figure 4a). We included two more pop-up warning variants. (7) A
pop-up which warns the developer if she is about to commit code
that contains security issues (see Figure 4b) and (8) a variant of
(7) in which there is an option to create a ticket to delegate the
warning to a colleague. The 8th warning type was added as part
of the GT approach based on feedback from participants from a
security start-up. All warning visualizations were printed out on A4
paper and spread out on a table for the participants to view. Since
a number of warnings contain only slight variations, all warnings
were explained to participants before feedback was elicited. The
warning variations (4) and (8) as well as the interview protocol can
be seen in the supplementary material.

3.2 Recruitment
Qualitative Study. The theoretical sampling approach [26] was used
to recruit the participants. This means that after coding each inter-
view, new participants were sampled either with similar or different
criteria depending on whether categories and themes needed to be
confirmed or extended.

We started the GT process with computer science students sam-
pled from our university, through the mailing lists of several differ-
ent lectures (both security and non-security lectures were sampled).
The student participants were compensated with e15 and had a
median programming experience of 3.5 years (Md = 3.5, µ = 4.25, σ
= 3.72). After we “defined and tentatively conceptualized relevant
ideas that indicate[d] areas to probe with more data” [19, p. 107]),
we moved on to recruit professional software developers with more
programming experience to develop and refine categories. By using
our industry contacts, professionals with a median of 10 years of
programming experience (µ = 11.85, σ = 8.54) were recruited from
different companies including start-ups, government institutions

138



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Anastasia Danilova, Alena Naiakshina, and Matthew Smith

Gender Male: 26 Female: 6 Other: 1
Age min: 19, max: 61 µ: 33, Md: 30 σ : 10.68
University Degree Yes: 28 No: 4 NA: 1
Main Occupation Professional developer: 14, Academic researcher: 7 Graduate student: 9 Undergraduate student: 3
Nationality German: 22, Indian: 3 Bangladeshi: 2, Turkish, Macedonian: 1 each NA: 4
General Development Experience [years] min: 1, max: 30 µ: 9, Md: 5 σ : 7.9

Table 1: Qualitative Analysis: Demographics for n=33

Security Warning

In line 11
You used ..
This can cause ..

 OkDetails >>>

(a) Pop-up warning while coding

Committing Code

You want to commit code which contains security warnings. 

Do you still want to commit? Commit

Details >>>

Cancel

(b) On committing

Figure 4: Pop-up warnings

and financial institutions. Professional developers were compen-
sated with e30.1 During the GT process we also conducted a focus
group with academic researchers from diversified fields of computer
science from our institution. The researchers donated their time to
the study but were offered cake and refreshments during the study.

Demographics Qual. The demographics of our participants can be
found in Table 1. The participants’ nationalities included the fol-
lowing: German, Indian, Bangladeshi, Turkish, and Macedonian
(with the majority of the participants being German). The sample in-
cluded more males than females (male: 26, female: 6, other: 1) and a
wide range of ages (19 - 61 years, µ = 33, Md = 30, σ = 10.68), as well
as a wide range of software development experience (min = 1 year,
max = 30 years, µ = 9 years, Md = 5 years, σ = 7.9). The majority of
the participants (28/33) had a university degree. Nine participants
were graduate students in computer science; 3 were undergraduate
students. Furthermore, 14 participants were professional developers
(4 start-up, 4 financial sector, 5 public sector, 1 freelance developer),
and 7 were academic researchers. We numbered our participants
based on where we recruited them. In the following sections, S1-
S12 denote students, A1-A7 indicate academic researchers, D1-D14
indicate professional developers. Further information on the partici-
pants’ development fields, experiences with IDEs and programming
languages can be found in the supplementary material.

Quantitative Study. The recruitment of a reasonable number of
professional software developers for quantitative research studies
is challenging [5, 9, 49, 52]. Thus, we used multiple channels for
1Two participants rejected the compensation and wanted it to be used for further
research.

recruitment. We recruited developers by using (1) a professional
recruitment service offered by Qualtrics [2], (2) our database of
software developers who previously took part in studies, (3) our
professional and industry contacts and (4) XING [3]. Qualtrics cal-
culated that the filling out the survey should take 15 minutes and
charged use43 per participant2 for recruitment and data collection.
We requested that they recruit up to 50 developers for us. Partici-
pants recruited via the channels (2), (3) and (4) were compensated
with a e20 Amazon gift card.

Since compared to end-user surveys the compensation for our
survey was fairly high, we saw the risk of non-developers signing
up for our study and faking it and thus, compromising our dataset.
To counter this problem, we designed a small programming pre-
test with the aim of filtering out non-developers. The test was a
multiple choice question with a code snippet where participants
needed to understand that the program printed out “hello world”
backwards. The question had 6 options of which 2 contained back-
wards text. We tested the suitability of the question by having 56
MTurk [1] participants and 12 computer science colleagues solve it.
Additionally, we asked if participants had programming experience.
Of the 56 MTurk, 31 claimed to have programming experience of
whom 5 picked the correct answer. Of the remaining 25 MTurk-
ers who stated that they had no programming experience, none
picked the right answer. Of the 12 computer science colleagues
only two picked incorrectly. The two colleagues and one MTurker
who stated to have programming experience picked the incorrect
backwards answer. We decided to remove the second backwards
option since we did not want developers to spend more time than
necessary with the discriminator. The final programming question
can be found in the supplementary material with the rest of the
survey. All participants were shown the test, independent of our
recruitment channels. Only if participants were able to solve the
pre-test, we invited them to take part in our online survey. As is
standard practice, we also added an attention check question [48]
to our survey to filter out careless respondents.

Demographics Quant. Through the different channels, we recruited
a total of 176 participants (129 through Qualtrics and 47 through
other channels). Of the 129 respondents from Qualtrics, 96 did not
pass the programming test, 5 failed our attention check question,
and a further 4 were discarded for quality issues. Since a high
number of Qualtrics participants failed the programming test, we
manually inspected all the remaining participants. We conducted
sanity checks to sort out participants with obviously false results,

2We asked Qualtrics how much they pass on to the developers but we did not get a
number. Their statement was: “Our participants are incentivized through an arrange
of different point systems (Airmiles, amazon vouchers, etc). We wouldn’t be able to
disclose the sheer amount of points though, as we have NDAs with all our Panel
Partners.”

139



One Size Does Not Fit All:
A Grounded Theory and Online Survey Study of Developer Preferences for Security Warning Types ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Gender Male: 40 Female: 9 Prefer not to say: 1
Age min: 24, max: 63 µ: 33, Md: 36 σ : 8.9
Teamsize min: 1, max: 50 µ: 9.9, Md: 6 σ : 9.6
General Development Experience min: 2, max: 30 µ: 12.96, Md: 11 σ : 8.21
Country of work German: 25 USA: 18, UK: 4 Europe: 3
Occupation Software developer: 44, Researcher: 2 IT Manager, IT Security consultant: 1 each IT Security researcher, Software security architect: 1 each

Table 2: Quantitative Analysis: Demographics for n=50

e.g., if their indicated years of employment were higher than their
age. Two participants failed the sanity checks and were discarded
from our analysis. Finally, we had 22 valid answers of Qualtrics
participants.

Of the 47 participants recruited through other channels than
Qualtrics, 4 failed the programming test. Thirteen participants
passed the programming test, but did not proceed with the on-
line survey and 2 further participants did not pass our attention
check. Finally, we had 28 valid responses.

The data reported herein is from the 50 valid responses recruited
through Qualtrics and other channels. Average survey completion
time was 21.77 minutes (Md = 17.75, σ = 11.30). The demographics
of our participants are shown in Table 2. Participants are currently
working in development in Germany (n = 25, 50%), the US (n = 18,
36%), the UK (n = 4, 8%) or in Europe (n = 3, 6%). The sample included
40 males and 9 females (other = 1) and a wide range of ages (24 - 63
years, µ = 8.9, Md = 36, σ = 8.9), as well as a wide range of software
development experience (min = 2 year, max = 30 years, µ = 12.96
years, Md = 11 years, σ = 8.21). Forty-two of the 50 participants had
a university degree. Forty-four participants indicated to work as a
software developer, 2 as a researcher and 4 in other IT fields. On
average the team size of participants was 9.9 and ranged from 1-50
(Md = 6, σ = 9.6). More information on participants’ demographics
is available in the supplementary material.

3.3 Evaluation Methodology
Qualitative Study. The interview and focus group transcriptions
were evaluated independently and iteratively by two researchers
using the constructivist grounded theory method of Charmaz [16, 19,
20, 22]. This method is used to establish a theory that is grounded
in qualitative data by coding interview transcripts in a repeating
process while taking memos. The method assumes that researchers
cannot be completely unbiased or without opinions on their re-
search topics: “Rather than being a tabula rasa, constructionists
advocate recognizing prior knowledge and theoretical preconcep-
tions and subjecting them to rigorous scrutiny” [20]. Since our
understanding of the warnings was developed through literature
research and discussions with colleagues, we considered the con-
structivist approach as an appropriate method to evaluate our data.

Based on GT, our codes emerged inductively as themes were
identified during the coding process [40]. After coding each tran-
scription, the codes were updated and the guideline was adapted
according to the results. We used theoretical sampling [26] to es-
tablish new insights about our codes, categories and themes. Data
reliability, validity, and saturation were ensured through triangu-
lation via the application of multiple external analysis methods,
such as having more than one researcher exploring the phenome-
non (investigator triangulation) and using multiple data-collection

methods as interviews and focus groups (methodological triangula-
tion) [28, 29, 39, 62]. Since the focus group was used as a compli-
mentary data acquisition mechanism, we evaluated it accordingly
to the interviews by applying the coding techniques of GT method-
ology [19, 50, 51, 56]. In the following, we present an example for
the GT process applied in our study:

Code: After each interview, we coded the interview transcripts
and extracted different codes. For example, we extracted the
code functionality first, security second from the following
statement: “When the code is not running, I will first try to fix
the code before addressing security warnings... so before saving
my work, let me go through all the warnings, not while I’m
coding” (D5). Another code example for the code if critical,
code is not released is as follows: “If there are security relevant
findings in the code, they are displayed and if they are critical,
the code is not released.” (D13).

Category: The code examples presented above suggested the
category functionality vs. security.

Theme: Based on our memos we prepared during coding, codes
and categories, we extracted different themes [41]. For ex-
ample, the above example demonstrated the presence of
the theme when to address security (action). Other theme
examples presented in our interviews were how and when to
display security warnings, team, and code review.

Theoretical sampling: We started our initial sampling with stu-
dents. After we constructed conceptualized categories from
data, we sampled to develop these categories, i.e. to obtain
more data that helped us to explicate the categories. For
example, while full-time students stated that they would
consider security after their code is running without errors,
student assistants of a security start-up perceived both func-
tionality and security of code as equally important. Thus, the
category functionality vs. security required to be refined and
we continued sampling developers from a start-up company
with security focus.

Theoretical saturation: Saturation was achieved when no new
themes, theoretical insights and properties of categories
emerged. For example, we perceived the category function-
ality vs. security as saturated when we were able to explain
it in a “theoretically sufficient” [19] way, i.e. the idea of
functionality first, security second was not tied to students or
experience but to company culture and thus the organization
has a huge influence on when developers address security.

Theory:We studied “how–and [...] why–participants construct
meanings and actions in specific situations” [19]. As sug-
gested by Charmaz [19], we used the idea of theoretical
sorting to develop a diagram out of our memos, themes and

140



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Anastasia Danilova, Alena Naiakshina, and Matthew Smith

categories offering an initial analytic frame (see supplemen-
tary material). Considering this diagram, memos, categories,
themes, and the experience with participants, we constructed
a resulting theory, which has to be interpreted with respect
to the fact that “both researchers and research participants
interpret meanings and actions” [19].

Due to the fact, that GT themes and theories evolve continuously
throughout the study, we will only present the final themes and
theory. The full GT process including themes and the codebookwith
examples from the interviews can be found in the supplementary
material.

In order to obtain the inter-coder agreement, we followed the ap-
proach of [18]. The coding schemes were compared, and inter-coder
agreement was calculated using Cohen’s kappa coefficient (κ) [24].
The agreement measured 0.81 (a value above 0.75 is considered to
be a high level of coding agreement [38]).

Quantitative Study. Due to the distribution of our data we used
non-parametric tests. We used Friedman’s ANOVA to compare the
preference score among the warning types. This omni-bus test was
followed by pairwise Wilcoxon Rank sum tests with Bonferroni-
Holm correction for multiple testing. Further, we used the Pearson
correlation test in order to examine correlations between two vari-
ables. We chose the common significance level of α = 0.05. We
used Bonferroni-Holm corrections for all tests concerning the same
dependent variable. The corrected p-values are denoted with cor -p.

4 ETHICS
The institutional review board of our university approved our
project. Participants of our qualitative study were provided with
a consent form outlining the scope of the study, the data use and
retention policies. We also complied the General Data Protection
Regulation (GDPR) regulations. The participants were informed
that they could withdraw their data during or after the study with-
out any consequences, as well as the practices used to process and
store their data. The consent form was handed out before the in-
terview, and the participants were asked whether they had any
additional questions. All of the participants received a copy of the
consent form. Participants of our quantitative study were provided
the same consent form (adapted for online studies) at the beginning
of our survey and had to consent before they could proceed with
answering the questions. They were also asked to download the
consent form for their own use.

5 LIMITATIONS
This section describes the limitations of our study, which must be
taken into account when interpreting the results.

Grounded theory and theoretical sampling is not aimed at cre-
ating a representative sample and thus, the qualitative part of our
study can make no claims with respect to generalizability. To get
a broader view of the developer population, we used several re-
cruiting measures to gather developers for our survey. Due to the
difficulty of recruiting developers, we offered a higher payment than
is typical for end-user survey, which could temp non-developers
to take part and lie about their occupation. To minimize the po-
tential for cheating we included a programming knowledge test
to remove non-programmers from our survey. A surprisingly high

Context
is
key

Developer
charac-
teristics

Experiences

Knowledge

Workflow

Security
awareness

Familiarity

Habits

Coding
purpose

TestingRelease

Team

Size
Colleagues’
experience

Company

Security
responsible

entity

Security
policies

Security
focus

Figure 5: Context aspects to consider for security warning
design.

number (96 of 129) of Qualtrics participants failed this program-
ming test. This made us concerned that the remaining 33 Qualtrics
participants might have selected the right answer by chance. How-
ever, in our MTurk counter-sample all participants who selected
the correct answer also stated that they could program. Since the
MTurk participants had no incentive to lie, we feel confident that
the majority of correct Qualtrics answers were made by real de-
velopers. We nonetheless manually double checked all remaining
participants from all samples to check for inconsistencies and did
not find anything out of the ordinary and thus, continued with our
evaluation. However, since other developer studies have been done
using the Qualtrics service e.g., [9], one of the lessons learned from
our study is that it is absolutely necessary to include these kinds of
test-questions.

Finally, interviews and surveys rely on self-reported data and
thus, are subject to self-reporting bias. Therefore, the results of our
paper should only be seen as the first step in this research agenda.
They are meant to be used to inform the design of further studies
in which the participants interact with the different warnings.

6 RESULTS OF QUALITATIVE ANALYSIS
Through evaluation of the interviews, we found that different fac-
tors can influence whether, how, and when developers would like
to be warned about security issues. As suggested by qualitative
research experts [25], we present an explanatory theory that is
grounded in the data collected from our participants:

Context is the key to designing and presenting
securitywarnings to developers. It plays amajor
role in determining how developers will react
to security warnings. We found that the devel-
oper’s stated preferences are based on the cod-
ing purpose, developers’ characteristics, team, and
organization context.

Figure 5 summarizes the relevant aspects of our key theory. We
found that there are a lot of aspects to consider when designing

141



One Size Does Not Fit All:
A Grounded Theory and Online Survey Study of Developer Preferences for Security Warning Types ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

warnings for developers. First, we found that developers’ charac-
teristics play an influential role in security warning preferences.
Developers have different levels of knowledge and experience with
software development and security; therefore, they require varying
levels of support. Moreover, developers cannot stay up to date on
every security issue (D1), nor can they ensure that their work is
constantly free of errors, and sometimes they might lack security
awareness altogether (S1, S5, A4). Additionally, their familiarity
with concepts, habits, and workflows can vary, which implies that
diverse warning approaches may be necessary.

Moreover, the purpose of developing an application can differ
from project to project. For test projects, warnings could be less
intrusive or turned off completely. However, measures will be re-
quired to ensure that projects with existing security issues are not
released by mistake while the security warnings are deactivated
(because of remaining in a test mode).

Finally, the team context is important to consider. For example,
further requirements emerge if delegation of security issues occurs
or a peer review process is possible. On the one hand, more experi-
enced colleagues or a person responsible for security issues could be
helpful during the code review process. On the other hand, the par-
ticipants remarked that it is difficult to work on unfamiliar projects
or snippets of code. Furthermore, if nobody feels responsible for
delegated security issues, they will remain unsolved. Team size is
an especially important factor affecting familiarity with code and
feeling responsible for security issues that arise in other developers’
work.

Based on the GT approach, we separate our findings into three
phases: (1) the display phase; (2) the action phase; and (3) the code-
review phase. The context is relevant for all the three phases. The
following sections provide more insights on the three phases.

6.1 Phase One: How to Display Warnings
We found customizability for security warnings to be a desired
feature: “I need the option to configure everything” (D8) and “I think
it depends on habits. I don’t think there is one IDE to fit everyone” (A4).
In particular, preferences on the different types of security warnings,
color andmarking code passages differed between developers. Some
developers (S5, D9) liked the current yellow warning color, while
others favored a specific color for security (S1-S4, S6-S8, S10-S12,
D1, D3, D4). S2, S8, D2, and D4 even wanted red as warning color,
although red is currently used for syntax errors. Furthermore, A4
proposed looking for different preference profiles and suggesting
them to developers. A detailed analysis of the different types of
warnings can be found in the following sections.

Warning marker. All of our participants had experiences with
the standard warning marker, which appears in yellow. However,
some participants (S2, D1, D2, D4) noted that they tended to ignore
them. The yellow marker allows code to compile and could, there-
fore, be regarded as less important. Furthermore, D13 reported that
it is difficult to find markers in a large code base, and there is not
enough space to display the warning message properly.

By contrast, D9 stated that markers are in-line and can be found
directly in the source code without the necessity for other views or
windows. Therefore, the warning marker was often favored by our
participants. A number of participants (S2-S4, S6, S7, S10, S11, D10)

stated that a warning marker with an individual color for security
(e.g., blue ) is more visible and more specific because security would
be highlighted. The start-up participants especially liked the idea of
an extra symbol to indicate a security issue (e.g., a lock next to the
line). In contrast, D9 and S5 liked the warning marker in general
but did not care about the color.

Warning and security view. Most IDEs allow plugins to add
sub-windows to the IDE and have the option to switch to dedicated
views with a set of windows for a specific purpose, such as debug-
ging or security testing. However, a number of participants (S1,
S6, S8, S9, D2, D6, D9, D10, D14) found that the user interfaces of
IDEs are already overloaded: “There is lots of other stuff [...]. And
sometimes we don’t see those lower left or right corners” (S6). A1,
A4, and D1 also said it was necessary to familiarize themselves
with new plugins because they were not accustomed to looking
at the corners of the screens where the warnings are positioned.
This assumption is supported by the results of Wogalter et al. [67],
who found previously that the location of warnings is crucial for
warning design.

Developers (D7, D8, D11, D14) who previously worked with
plugins, liked them because they provide summaries of important
security issues, which creates a more flexible workflow. Therefore,
plugins and additional views can give developers the convenience
of looking at warnings whenever they have the time to check their
code for issues.

Compilerwarnings.Our participants hadmixed feelings about
compiler warnings. Some participants (S4, D1, D3, D6, S12) found
that compiler warnings could be easily overlooked because the
compiler can produce a lot of information, which can hide warnings.

By contrast, other participants (S1, S2, S9, S11, D4) had positive
feelings about compiler warnings and even stated that they could
be one of their favorite warning approaches. For example, S2 said
that for some developers, compiler warnings could be useful and
comfortable if they check the output regularly. Other participants
(S2, S9) liked compiler warnings because they do not distract from
the programming process. This allowed developers to resolve the
problem on their own schedule.

Pop-ups. The majority of our participants did not like the idea
of pop-ups because they were considered distracting, annoying
(e.g., S1-S3, S5-S12, A1-A4, D1-D9, D11-D14), and disrupted the
programming and workflow (e.g., A1, D3, D8). In addition, “visual
staining” with different pop-ups on the IDE interface was a problem
for D9, meaning that pop-ups are visually distracting and facilitate
frustration instead of compliance. Since use cases can always differ,
false positives could be additionally annoying if they are displayed
through pop-ups.

However, while participants with more programming experi-
ence had negative opinions about pop-ups, participants with less
programming experience (1-4 years of programming experience)
favored pop-ups. Some students (S2-S4, S6, S10) found that in very
important cases, distracting pop-ups could be useful to catch the
attention of the programmer. S6 explained, “Pop-up warnings could
be there for a very important purpose” so that “the user is actually
forced to solve the issue” (S4). Additionally, some of the experienced
participants (e.g., A1-A7, D8) admitted that pop-ups could be useful
in certain situations, such as when a developer initiates an action
like committing code.

142



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Anastasia Danilova, Alena Naiakshina, and Matthew Smith

Warning on committing. The vast majority of our participants
found warnings on committing to be one of the best, or even their
favorite warning approach which we will discuss below.

6.2 Phase One: When to Display Warnings
Most of our participants wanted to get warnings at two distinct
times, once during programming and once before committing.

Many liked the committing warning because it is the most visible
and noticeable (S1, S4, A2, D1, D3). This type of warning also fits
perfectly into their workflow because they are required to look for
bugs and security issues before committing (S8, A2, D1, D3, D5,
D8). They especially liked the idea of “having an additional stop
sign that says: Are you really sure?” (A2) to highlight security issues
they might have forgotten or missed (S6, A1, A2, D1, D3, D8).

However, there was also vocal support for being shownwarnings
as soon as something was done wrong (S1, S2, S4, S6, S7, S11, D1,
D4-D7). However, participants also stated that they would like to
have warnings shown when they find time to deal with the issues
because, as D4 stated, “Quality costs time. That’s the way things are”.
This of course is a lot harder for a computer program to judge, but
it is an interesting research goal. In other words, workflow needs
to be respected when warning developers:

“On one hand, you want to bother people at the right
time. On the other hand, you don’t want to prevent
people from working” (A2).

A common problem most participants in Johnson et al.’s [46] study
faced with analysis tools, was the inability to temporarily ignore or
suppress certain warnings. Our participants had different opinions
onwhether it should be possible to postpone the display of warnings
with security focus. Several participants (S1, S8, S11, D1, D6, D7)
said that disabling security warnings should not be possible because
security is of high importance and forgetting about security issues
can have fatal consequences (S1, D13, D14). Therefore, S11 and A1
liked the idea of handling warnings as errors, which would force
them to fix the issues, while D4 requested blocking commits and
merge requests if security warnings are not fixed.

However, several of our participants (S10-S12, A1-A2, D1, D4,
D12, D14) pointed out the importance of identifying why a specific
application is being developed (code purpose). If developers are
programming an application for test purposes, disabling warnings
should be possible even within a security context. If an application
is released to the public, the programmers definitely have to receive
security warnings. Especially, developers who are not aware of
security issues should be warned before they submit projects in
the “test mode” (A1, A4). Still, the majority (S4, S9, S10, S12, D2-D4,
D6, D8, D9, D11-D14) indicated that ignoring warnings should be
possible because false positives can occur and the tools need to stay
flexible.

6.3 Phase Two - Action
While the characteristics and purpose of an application influence
how and when developers want security warnings to be displayed,

the organization can affect the perceived trade-off between function-
ality and security. Consequently, the organization can determine
when developers act and address security issues.3

We found that participants working in different contexts had
different attitudes about how and when to approach security issues
in their software. First, most of the student participants (S1-S4,
S6, S7-S10) said they would consider security issues after their
program was functional. This observation was also found in a
password storage study conducted with computer science students
by Naiakshina et al. [53]. Usually, computer science students are
programming in a university context where they are not required
to consider security issues outside security lectures and thus, often
instead concentrate on submitting functional solutions in the first
place. It seems that the institutional context can affect when a
computer science student chooses to address security.

Moreover, we found that professional developers from companies
without a strong emphasis on security (A2, A4, A5, D6, D7, D10)
weigh up on organization requirements on when and how to deal
with security issues:

“As soon as [the program] has to pass through quality
control [...], we have to fix the security issues” (A5).

Time restrictions could lead developers to neglect security (D7).
In addition, participants from the public sector (D6-D10) reported
that general security guidelines existed in their organization, but
they were not project specific and did not provide enough technical
guidance (D8, D9). Additionally, nobody in the organization was
responsible for verifying whether these security guidelines were
met (D8, D10). Still, the participants from the public sector (D6-
D10) referred to various static analyzer tools that are used in their
organization, after their programs were finished.

By contrast, companies that place a high emphasis on security re-
quired developers to ensure the security of their software. D11, D12,
and D13 noted that they took extra time to address security issues
because of policies that needed to be fulfilled before submitting their
projects. Accordingly, developers from security-focused companies
reported addressing security issues as soon as they arose (D1-D4)
or at the end of the development process (D11-D14). Consequently,
these participants preferred viewing warnings immediately and on
committing with an automated security ticket.

6.4 Phase Three: Code-Review
S12 stated that in large open-source projects, it is difficult to deal
with warnings because he is not familiar with the code created
by other developers. Therefore, in further interviews, we asked
whether our participants would like to be shown the security issues
of other colleagues. We found that the team context can influence
the code-review process during the software development life cycle.
Thus, perceptions of the various types of warnings differed from
team to team. In order to involve more experienced colleagues in
the review process, participants from the start-up company that
emphasized security, requested an option to create a security ticket
automatically when committing. We also found that this idea was
preferred by developers who were employed by security-focused
companies (D1-D4, D11-D14). For example, D3, D4, and S5 indicated

3We have to note, that developers’ personal traits might also affect their preference
for certain employers and vice versa.

143



One Size Does Not Fit All:
A Grounded Theory and Online Survey Study of Developer Preferences for Security Warning Types ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

that they liked to see the warnings of team members, especially
when code was merged with unsolved security issues. In their orga-
nization, a maintainer reviews merge-requests, and they thought it
was important for the code reviewer to see their unsolved warnings
as well.

However, developers working for companies without an em-
phasis on security and those working alone or in a big team said
that such an option could lead to unsolved issues (D8-D10). D10
provided an example of someone who could take advantage of such
an situation: “Reporting frees me of responsibility! [...] I have reported
[security issue], so I will never have to work on it again!” The partici-
pants pointed out that project organization (D8 and D14) and the
team size (D9) should also be considered. D9 argued that with 5 or
6 developers on a team, it could be possible to realize an effective
delegation process. However, he also identified problems that could
arise:

“We have frequent changes among the staff, and hire
external developers [...] so it doesn’t make sense here. [...]
If you have a security team it would make sense” (D9).

Delegating a warning can create a situation where nobody feels
responsible for solving the issue because responsibility is not clearly
defined (D9, D10, D12).

7 QUANTITATIVE STUDY
Based on our qualitative findings, we wanted to test our main
hypothesis, that no one warning type dominates all others.

7.1 Survey Design & Warning Preference Score
To gather further insights and test our hypothesis, we designed
and ran an online survey. The full survey can be found in the
supplemental material.

Since we wanted to keep the survey below 20 minutes, we de-
cided to combine the similar warning types from the qualitative
study. Our qualitative findings revealed that the related types of
warnings warning view and security view were similar evaluated
by our participants. Therefore, they were only shown one warning
and simply asked whether they wish to have a global or a security
specific warning view. We also showed three different warning
markers in yellow, blue and red in a single image and let partici-
pants additionally choose their color of preference. To make the
warnings easier to see on a computer screen and particularly mobile
devices, we cropped out the IDE leaving only the actual warning
in the image. Participants were shown the different types of warn-
ings in a randomized order and were asked to rate the following 6
statements on a 7-point Likert-Scale [37] for each type of warning:

S1 I would like to be informed about security issues in my code
with this type of warning.

S2 I would be quickly annoyed by this type of warning.
S3 It would be easy to overlook this type of warning.
S4 IDEs already have too many warnings of this type.
S5 I am familiar with this type of warning.
S6 This type of warning would fit into my workflow.

The statements were extracted based on participants’ views of
different warnings types from our qualitative research. Further,
we asked questions about the different context aspects which we

established in our qualitative analysis like organization policies and
participants’ characteristics.

In order to compare the warning preference of our participants,
we calculated a warning preference score for each type of warning.
We included 4 of the 6 statements to the score, which could be
evaluated as a positive (S1 and S6) or a negative (S2 and S3) attitude
towards a security warning. S4 and S5 were not included in the
preference score since they cannot be assessed as either positive
or negative statements. For instance, not being familiar with one
type does not make the type automatically more or less liked. We
calculated the score of at most 24 points as follows: ((S1 + (7-S2) +
(7-S3) + S6) - 2).

7.2 Results of Quantitative Analysis
Our analysis of the quantitative study is structured in the following
way. First, we provide an analysis on how developers want to be
warned comprising our hypothesis. Then, we give insights on when
developers want to be shown the warnings, at which time they want
to deal with the warnings and how the different types of warnings
fit in their workflow. Finally, we discuss the committing warning
with security ticket based on the reported team sizes.

One Size Does Not Fit All. Looking at themean values of thewarning
preference scores for our warning types, we can provide a ranking.
The minimum score was 0 and the maximum score was 24.

(1) Warning marker (mean = 16.9, σ= 4.06)
(2) Warning view (mean = 16.6, σ= 3.86)
(3) Compiler warning (mean = 14.7,σ= 4.91)
(4) Warning on committing (mean = 14.68, σ= 4.7)
(5) Warning on committing with security ticket (mean = 14.46,

σ=4.97)
(6) Pop-up warning (mean = 12.8, σ= 5.5)

For the warning marker participants favored different colors: 22%
chose blue, 22% favored red, 18% preferred orange 14% fancied
violet and 14% yellow, 4% picked pink, 1 participant chose green, 1
grey and 1 answered "configurable no fixed color". One participant
noted “Please consider color blinds or different color schemes when
designing. A few of my teammates are color blind and IDEs are like
hell for them.”

No one warning type dominates all other. In order to assess our
main hypothesis that different warning types appeal to different
developers, we used a Friedman’s ANOVA omnibus test to examine
the differences of the means of our 6 warning types (p <0.000*, χ2f
= 481.49). Afterwards, we calculated post-hoc pairwise Wilcoxon
Rank Sum tests and corrected them with the Bonferroni-Holm cor-
rection. After the correction, the results show that the best (warning
marker) and worst (pop-up warning) rated warning types have sig-
nificant different scores (cor -p = 0.003*) as well as pop-up compared
to warning view (cor -p = 0.007*). Figures 6a and 6b display the fre-
quencies for the preference scores for warning markers and pop-up
warnings. Figure 6a shows that while the majority of participants
rated the warning marker with a higher preference score, how-
ever, there are some low ratings as well. For the pop-up warnings
(Fig. 6b) the opinions split into a positive and negative camp. And
despite pop-up warnings having the lowest overall score, 11 out of
50 participants ranked it higher than the marker warnings, which

144



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Anastasia Danilova, Alena Naiakshina, and Matthew Smith

Preference Score 

F
re

qu
en

cy

5 10 15 20

0
5

10
15

(a) Warning marker: warning preference score

Preference Score 

F
re

qu
en

cy

5 10 15 20

0
5

10
15

(b) Pop-up warning: warning preference score

Figure 6: Histograms of warning preference scores (0-24)

was the most popular warning type. But the easiest way to see
that no one or even two warning types would suit all developers is
shown in Figure 7. Here we plotted the preference score ranking of
10 random participants for each type of warning. Each spike in the
graph indicates a preference jump within one participant and the
spread of point shows that all warning types have low, high and
medium scores. This shows that the preferences our participants
reported cannot be met by any tool that only offers one or even
two warning types.

Years of programming experience and warning preferences. While our
qualitative results suggested that the more experience developers
had, the more positive they were about the different warning types
(except for pop-ups where the reverse was true), our tests did not
reveal any significant correlation for any of the warning types.

We tested whether there is a correlation between the years of
programming experiences and the preference for warnings, but
found no correlation. Warning preferences could depend on devel-
opers’ experience level but we found no evidence in our sample for
a negative or positive correlation.

Personal security focus is correlated with higher preference score for
at least one warning type. We asked our participants to rate their
personal focus between security and functionality using a slider
with the mid-point indicating equal focus. We coded a security
leaning focus as a positive value for security focus. We found that
the self-reported security focus followed a normal distribution over
our participants. We selected the preference score of the favorite
warning type of each participant and tested whether this score

5
10

15
20

25

Commit
Commit SecTicket

Compiler Marker Pop−up View

W
ar

ni
ng

 P
re

fe
re

nc
e 

S
co

re

2.5

5.0

7.5

10.0
Participant

Figure 7: Preference scores for 10 random participants

correlated with the security focus. We used the maximum prefer-
ence score instead of a combined score since it could be that one
participant favors one type of warning in particular while disliking
all other types of warnings. We found a small positive correlation (r
= 0.343) between the self-reported security focus and the preference
score for the most favored warning type (cor -p = 0.01*, confidence
interval (CI) = [0.07, 0.56]). Participants who reported to have a
higher security focus, were more likely to rate one or more warning
types with a higher preference score. We can make no claim as to
the causal relationship between these two variable, however, we
believe it is worth exploring whether positive experiences with
warnings could increase the security focus of developers.

While coding - right away 42%
While coding - after completing a function 44%
While coding - in regular intervals 20%
Before running 56%
Before committing 64%
Before release 40%
On demand (e.g. by clicking a button or opening a view) 60%
Never 0 %

Table 3: Time preference of warnings

When to Display Warnings. Table 3 summarizes the time points
when our participants preferred to be warned. Multiple answers
were possible and as above it is clear that no one time is the clear
winner. It is likely that configurability would be beneficial.

Snoozing warnings. Figure 8 shows participants’ views on how they
would like to be able to ignore warnings. As can be seen most
features are fairly well balanced, again showing the heterogeneity
of developers’ wishes. The least popular option by overall weight
is turning off security warnings entirely, but even there almost 50%
expressed a positive view.

Action - Secure coding policies and responsibility. Almost one half of
our participants (46%) reported to have no security coding policies
from their organization. We found that the security focus appeared
to be normally distributed, showing that developers have different
security focuses. Further, the security focus of the organizations

145



One Size Does Not Fit All:
A Grounded Theory and Online Survey Study of Developer Preferences for Security Warning Types ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

32%

36%

34%

40%

50%

56%

52%

50%

50%

38%

12%

12%

16%

10%

12%

block merge requests when sec issues
treat sec issues as blocking errors

turn off sec warnings entirely
disable sec warnings for periods of time

snooze sec warnings

100 50 0 50 100
Percentage

Response
1 − Strongly Disagree

2

3

4

5

6

7 − Strongly Agree

Figure 8: Handling security warnings

was also reported to vary across our participants. While the security
focus of the organization is indeed important, 39 (78%) reported to
feel responsible for security bugs.

Workflow. Confirming Johnson et al.’s [46] qualitative finding that
workflow concerns matter, we found that the statement that a
warning type suits a developers workflow (S6, Section 7.1) has
a strong positive correlation with participants stating that they
would like to be warned with this type of warning (S1,Section 7.1)
(p<0.000*, CI = [0.73, 0.81]) with r = 0.77. This emphasizes that
workflow compatibility is of upmost importance.

Code-Review. We found that opinions on committing with auto-
matic security tickets vary a lot. 36% said that committing with
a security ticket would not fit into their workflow. 58% reported
that they would write a security ticket for themselves while 17/50
reported that the security ticket should be for another colleague
responsible for solving security issues. 60% said that they do not
have a team or person responsible for code security in their orga-
nization. However, 82% reported to have a colleague whom they
could ask in cases of security issues on an informal base.

8 DISCUSSION AND RECOMMENDATIONS
In this work we explored developers’ perceptions about different
warning types and times at which warnings should be shown to
warn them of security issues with their code. Our results are very
clear. The current practice of many tools to offer a single type of
warning always shown at the same time, does not offer the best user
experience for a large percentage of developers. While previous
work has suggestedmore flexibility inwarning configurationwithin
a single warning type, our work suggests that this flexibility needs
to go further and span multiple warning types. Our work also
confirms Johnson et al.’s qualitative work [46] and shows a high
level of correlation between developers perceived compatibility of
warning types with their development workflows and their rating
of these warnings.

However, our work also cautions against some suggestions made
in previous work. Wurster and van Oorschot [68] have suggested
handling security warnings as blocking errors to enhance security.
This is also an idea expressed by some of our interviewees. However,
the majority of our participants favored configuration that allowed
warnings to be to snoozed or disabled (e.g., during testing).

In the following we summarize recommendation we have drawn
from our data.
Warning type. Tools should offer developers the choice of which

warning type or types they would like to receive for security
issues, e.g., marker, view, pop-up, commit, etc.

Warning time, snooze and delegation. Developers should be able
to specify when they want to deal with security warnings
and have the ability to snooze or delegate them. This is inline
with Johnson et al.’s [46] qualitative results.

Context is key: Workflow Taking the workflow of developers
into account is highly important but can be complex in some
cases. While it is easy to show warnings before developers
commit code, other wishes of developers are less straightfor-
ward to implement and require further research. For instance,
a simple time based snooze is most probably not an ideal so-
lution. A more intelligent snooze functionality that can take
into account the current programming context and workflow
of the developer holds more potential.

Context is key: Environment Team composition, rolewithin the
team, company policies and personal knowledge level all play
important roles in how developers want to be warned. Cur-
rent warning designs try to create the single best warning.
Our research suggest that warnings will need different form,
content and workflow integration based on the environmen-
tal context.

9 CONCLUSION
We conducted a qualitative grounded theory based study with 33
participants (26 face-to-face interviews and a focus group with
7 participants) from different fields of software development and
evaluated their opinions on diverse security warning approaches.
We developed the theory that context is the key to designing and
presenting security warnings to developers. It plays a major role in
determining how developers will react to security warnings. We
found that the developers’ stated preferences are based on the cod-
ing purpose, developers’ characteristics, team, and organization
context. We followed this up with an online survey with 50 pro-
fessional developers to develop a more detailed understand and
develop recommendations for warning design. The quantitative
results confirm that context and in particular workflow play a major
role and that developers have very different wishes where it comes
to warning interaction. Our take away message is that one size does
not fit all and it would be beneficial if tools not only give developers
more configuration options within a single warning type but offers
a selection of warning types and times.

We see two interesting avenues for future research. Firstly, the
data we gathered in this study is self-reported. We plan to run
several lab and field studies to test the effects configuration op-
tions. In particular, we are interested to see real world interaction
with security pop-up warnings and to tie in warning content with
warning types. Furthermore, we think it is an interesting field of
research to find the right time to warn developers without clear cut
preferences. Using machine learning it might be possible to detect
times when developers would be particularly receptive to warnings
or when they are in the flow and should not be disturbed.

ACKNOWLEDGMENTS
This work was partially funded by the ERC Grant 678341: Frontiers
of Usable Security.

146



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Anastasia Danilova, Alena Naiakshina, and Matthew Smith

REFERENCES
[1] [n.d.]. Amazon Mechanical Turk (MTurk). https://www.mturk.com/ Accessed:

August 2019.
[2] [n.d.]. Qualtrics. https://www.qualtrics.com Accessed: August 2019.
[3] [n.d.]. XING. https://www.xing.com/ Accessed: August 2019.
[4] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon Kim,

Michelle L Mazurek, and Christian Stransky. 2017. Comparing the usability of
cryptographic apis. In Security and Privacy (SP), 2017 IEEE Symposium on. IEEE,
IEEE, Piscataway, NJ, USA, 154–171.

[5] Yasemin Acar, Sascha Fahl, and Michelle L Mazurek. 2016. You are not your
developer, either: A research agenda for usable security and privacy research
beyond end users. In 2016 IEEE Cybersecurity Development (SecDev). IEEE, 3–8.

[6] Devdatta Akhawe and Adrienne Porter Felt. 2013. Alice in Warningland: A Large-
Scale Field Study of Browser Security Warning Effectiveness. In Presented as part
of the 22nd USENIX Security Symposium (USENIX Security 13). USENIX, Wash-
ington, D.C., 257–272. https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/presentation/akhawe

[7] Hazim Almuhimedi, Adrienne Porter Felt, Robert W Reeder, and Sunny Consolvo.
2014. Your reputation precedes you: History, reputation, and the chrome malware
warning. In 10th Symposium On Usable Privacy and Security ({SOUPS} 2014). 113–
128.

[8] Ammar Amran, Zarul Fitri Zaaba, and Manmeet Kaur Mahinderjit Singh. 2018.
Habituation effects in computer security warning. Information Security Journal:
A Global Perspective 27, 4 (2018), 192–204.

[9] Hala Assal and Sonia Chiasson. 2019. ’Think Secure from the Beginning’: A
Survey with Software Developers. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems (CHI ’19). ACM, New York, NY, USA, Article
289, 13 pages. https://doi.org/10.1145/3290605.3300519

[10] Brian P Bailey, Joseph A Konstan, and John V Carlis. 2000. Measuring the ef-
fects of interruptions on task performance in the user interface. In Smc 2000
conference proceedings. 2000 ieee international conference on systems, man and cy-
bernetics.’cybernetics evolving to systems, humans, organizations, and their complex
interactions’(cat. no. 0, Vol. 2. IEEE, 757–762.

[11] Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin. 2018. How
Should Compilers Explain Problems to Developers?. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2018). ACM, New York, NY,
USA, 633–643. https://doi.org/10.1145/3236024.3236040

[12] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emer-
son Murphy-Hill, and Chris Parnin. 2017. Do Developers Read Compiler
Error Messages?. In Proceedings of the 39th International Conference on Soft-
ware Engineering (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 575–585. https:
//doi.org/10.1109/ICSE.2017.59

[13] Cristian Bravo-Lillo, Lorrie Cranor, Saranga Komanduri, Stuart Schechter, and
Manya Sleeper. 2014. Harder to Ignore? Revisiting Pop-Up Fatigue and Ap-
proaches to Prevent It. In 10th Symposium On Usable Privacy and Security (SOUPS
2014). USENIX Association, Menlo Park, CA, 105–111. https://www.usenix.org/
conference/soups2014/proceedings/presentation/bravo-lillo

[14] Cristian Bravo-Lillo, Lorrie Faith Cranor, Julie Downs, and Saranga Komanduri.
2011. Bridging the gap in computer security warnings: A mental model approach.
IEEE Security & Privacy 9, 2 (2011), 18–26.

[15] Cristian Bravo-Lillo, Saranga Komanduri, Lorrie Faith Cranor, Robert W. Reeder,
Manya Sleeper, Julie Downs, and Stuart Schechter. 2013. Your Attention Please:
Designing Security-decision UIs to Make Genuine Risks Harder to Ignore. In
Proceedings of the Ninth Symposium on Usable Privacy and Security (SOUPS ’13).
ACM, New York, NY, USA, Article 6, 12 pages. https://doi.org/10.1145/2501604.
2501610

[16] Antony Bryant and Kathy Charmaz. 2007. The Sage handbook of grounded theory.
Sage.

[17] Ross Buck, Mohammad Khan, Michael Fagan, and Emil Coman. 2018. The user
affective experience scale: A measure of emotions anticipated in response to pop-
up computer warnings. International Journal of Human–Computer Interaction 34,
1 (2018), 25–34.

[18] John L Campbell, Charles Quincy, Jordan Osserman, and Ove K Pedersen. 2013.
Coding in-depth semistructured interviews: Problems of unitization and inter-
coder reliability and agreement. Sociological Methods & Research 42, 3 (2013),
294–320.

[19] Kathy Charmaz. 2006. Constructing grounded theory: A practical guide through
qualitative analysis. sage.

[20] Kathy Charmaz. 2008. Constructionism and the grounded theory method. Hand-
book of constructionist research 1 (2008), 397–412.

[21] Kathy Charmaz. 2014. Constructing grounded theory. sage.
[22] Kathy Charmaz and Linda M McMullen. 2011. Five ways of doing qualitative anal-

ysis: Phenomenological psychology, grounded theory, discourse analysis, narrative
research, and intuitive inquiry. Guilford Press.

[23] Maria Christakis and Christian Bird. 2016. What developers want and need from
program analysis: an empirical study. In Automated Software Engineering (ASE),

2016 31st IEEE/ACM International Conference on. IEEE, IEEE, Piscataway, NJ, USA,
332–343.

[24] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and psychological measurement 20, 1 (1960), 37–46.

[25] Juliet Corbin, Anselm Strauss, and Anselm L Strauss. 2014. Basics of qualitative
research. sage.

[26] Imelda T Coyne. 1997. Sampling in qualitative research. Purposeful and theoreti-
cal sampling; merging or clear boundaries? Journal of advanced nursing 26, 3
(1997), 623–630.

[27] David M DeJoy, Kenneth R Laughery, and Michael S Wogalter. 1999. Warnings
and risk communication. Taylor & Francis.

[28] NK Denzin. 1970. The Research Act in Sociology (London, Croom Helm). Denzin
The Research Act in Sociology 1970 (1970).

[29] Norman K Denzin. 2017. The research act: A theoretical introduction to sociological
methods. Routledge.

[30] Don A Dillman. 2011. Mail and Internet surveys: The tailored design method–2007
Update with new Internet, visual, and mixed-mode guide. John Wiley & Sons.

[31] Serge Egelman, Lorrie Faith Cranor, and Jason Hong. 2008. You’ve been warned:
an empirical study of the effectiveness of web browser phishing warnings. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 1065–1074.

[32] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd
Freisleben, and Matthew Smith. 2012. Why Eve and Mallory Love Android:
An Analysis of Android SSL (in)Security. In Proceedings of the 2012 ACM Confer-
ence on Computer and Communications Security (CCS ’12). ACM, New York, NY,
USA, 50–61. https://doi.org/10.1145/2382196.2382205

[33] Adrienne Porter Felt, Alex Ainslie, Robert W Reeder, Sunny Consolvo, Somas
Thyagaraja, Alan Bettes, Helen Harris, and Jeff Grimes. 2015. Improving SSL
warnings: Comprehension and adherence. In Proceedings of the 33rd annual ACM
conference on human factors in computing systems. ACM, 2893–2902.

[34] Adrienne Porter Felt, Serge Egelman, and David Wagner. 2012. I’ve got 99
problems, but vibration ain’t one: a survey of smartphone users’ concerns. In
Proceedings of the second ACM workshop on Security and privacy in smartphones
and mobile devices. ACM, 33–44.

[35] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and
David Wagner. 2012. Android permissions: User attention, comprehension, and
behavior. In Proceedings of the eighth symposium on usable privacy and security.
ACM, 3.

[36] FindBugs. 2018. FindBugs - Find Bugs in Java Programs. http://findbugs.
sourceforge.net/. Accessed: 28-01-19.

[37] Kraig Finstad. 2010. Response interpolation and scale sensitivity: Evidence against
5-point scales. Journal of Usability Studies 5, 3 (2010), 104–110.

[38] Joseph L Fleiss, Bruce Levin, and Myunghee Cho Paik. 2013. Statistical methods
for rates and proportions. John Wiley & Sons.

[39] Patricia Fusch, Gene E Fusch, and Lawrence R Ness. 2018. Denzin’s paradigm
shift: Revisiting triangulation in qualitative research. Journal of Social Change
10, 1 (2018), 2.

[40] Barney G Glaser and Anselm L Strauss. 2017. Discovery of grounded theory:
Strategies for qualitative research. Routledge.

[41] G Glaser Barney and L Strauss Anselm. 1967. The discovery of grounded theory:
strategies for qualitative research. New York, Adline de Gruyter (1967).

[42] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke, Christian Stransky, Se-
bastian Möller, Yasemin Acar, and Sascha Fahl. 2018. Developers Deserve Se-
curity Warnings, Too: On the Effect of Integrated Security Advice on Cryp-
tographic API Misuse. In Fourteenth Symposium on Usable Privacy and Se-
curity (SOUPS 2018). USENIX Association, Baltimore, MD, 265–281. https:
//www.usenix.org/conference/soups2018/presentation/gorski

[43] Matthew Green and Matthew Smith. 2016. Developers are not the enemy!: The
need for usable security apis. IEEE Security & Privacy 14, 5 (2016), 40–46.

[44] Scott Hudson, James Fogarty, Christopher Atkeson, Daniel Avrahami, Jodi Forl-
izzi, Sara Kiesler, Johnny Lee, and Jie Yang. 2003. Predicting human interruptibil-
ity with sensors: a Wizard of Oz feasibility study. In Proceedings of the SIGCHI
conference on Human factors in computing systems. 257–264.

[45] Brittany Johnson, Rahul Pandita, Justin Smith, Denae Ford, Sarah Elder, Emer-
son Murphy-Hill, Sarah Heckman, and Caitlin Sadowski. 2016. A Cross-tool
Communication Study on Program Analysis Tool Notifications. In Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE 2016). ACM, New York, NY, USA, 73–84. https:
//doi.org/10.1145/2950290.2950304

[46] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?.
In Proceedings of the 2013 International Conference on Software Engineering (ICSE
’13). IEEE, Piscataway, NJ, USA, 672–681. http://dl.acm.org/citation.cfm?id=
2486788.2486877

[47] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden,
Florian Göpfert, Felix Günther, Christian Weinert, Daniel Demmler, et al. 2017.
CogniCrypt: supporting developers in using cryptography. In Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software Engineering.

147

https://www.mturk.com/
https://www.qualtrics.com
https://www.xing.com/
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/akhawe
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/akhawe
https://doi.org/10.1145/3290605.3300519
https://doi.org/10.1145/3236024.3236040
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1109/ICSE.2017.59
https://www.usenix.org/conference/soups2014/proceedings/presentation/bravo-lillo
https://www.usenix.org/conference/soups2014/proceedings/presentation/bravo-lillo
https://doi.org/10.1145/2501604.2501610
https://doi.org/10.1145/2501604.2501610
https://doi.org/10.1145/2382196.2382205
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
https://www.usenix.org/conference/soups2018/presentation/gorski
https://www.usenix.org/conference/soups2018/presentation/gorski
https://doi.org/10.1145/2950290.2950304
https://doi.org/10.1145/2950290.2950304
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877


One Size Does Not Fit All:
A Grounded Theory and Online Survey Study of Developer Preferences for Security Warning Types ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

IEEE Press, IEEE, Piscataway, NJ, USA, 931–936.
[48] Franki YH Kung, Navio Kwok, and Douglas J Brown. 2018. Are attention check

questions a threat to scale validity? Applied Psychology 67, 2 (2018), 264–283.
[49] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining Mental

Models: A Study of DeveloperWorkHabits. In Proceedings of the 28th International
Conference on Software Engineering (ICSE ’06). ACM, New York, NY, USA, 492–501.
https://doi.org/10.1145/1134285.1134355

[50] Manuel Mora, Ovsei Gelman, Annette Steenkamp, and Mahesh S Raisinghani.
2012. Research methodologies, innovations and philosophies in software systems
engineering and information systems. IGI Global Hershey, PA.

[51] David L Morgan. 1996. Focus groups. Annual review of sociology 22, 1 (1996),
129–152.

[52] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel von Zezschwitz,
and Matthew Smith. 2019. “If You Want, I Can Store the Encrypted Password”: A
Password-Storage Field Study with Freelance Developers. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). ACM, New
York, NY, USA, Article 140, 12 pages. https://doi.org/10.1145/3290605.3300370

[53] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Herzog, Sergej
Dechand, and Matthew Smith. 2017. Why Do Developers Get Password Storage
Wrong?: A Qualitative Usability Study. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’17). ACM, New York,
NY, USA, 311–328. https://doi.org/10.1145/3133956.3134082

[54] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, and Matthew Smith.
2018. Deception Task Design in Developer Password Studies: Exploring a Stu-
dent Sample. In Fourteenth Symposium on Usable Privacy and Security (SOUPS
2018). USENIX Association, Baltimore, MD, 297–313. https://www.usenix.org/
conference/soups2018/presentation/naiakshina

[55] Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes, Charles
Weir, and Sascha Fahl. 2017. A Stitch in Time: Supporting Android Developers
in WritingSecure Code. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’17). ACM, New York, NY, USA,
1065–1077. https://doi.org/10.1145/3133956.3133977

[56] Richard A Powell and Helen M Single. 1996. Focus groups. International journal
for quality in health care 8, 5 (1996), 499–504.

[57] PMD Open Source Project. 2018. PMD- An extensible cross-language static code
analyzer. https://pmd.github.io/. Accessed: 28-01-19.

[58] Robert W. Reeder, Adrienne Porter Felt, Sunny Consolvo, Nathan Malkin, Christo-
pher Thompson, and Serge Egelman. 2018. An Experience Sampling Study of

User Reactions to Browser Warnings in the Field. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI ’18). ACM, New York,
NY, USA, Article 512, 13 pages. https://doi.org/10.1145/3173574.3174086

[59] TJ Robertson, Joseph Lawrance, and Margaret Burnett. 2006. Impact of high-
intensity negotiated-style interruptions on end-user debugging. Journal of Visual
Languages & Computing 17, 2 (2006), 187–202.

[60] TJ Robertson, Shrinu Prabhakararao, Margaret Burnett, Curtis Cook, Joseph R
Ruthruff, Laura Beckwith, and Amit Phalgune. 2004. Impact of interruption style
on end-user debugging. In Proceedings of the SIGCHI conference on Human factors
in computing systems. 287–294.

[61] SonarSource SA. 2018. SonarQube - The leading product for Continuous Code
Quality. https://www.sonarqube.org/. Accessed: 28-01-19.

[62] Clive Seale. 1999. Quality in qualitative research. Qualitative inquiry 5, 4 (1999),
465–478.

[63] Justin Smith, Brittany Johnson, Emerson Murphy-Hill, Bei-Tseng Chu, and
Heather Richter. 2018. How developers diagnose potential security vulnera-
bilities with a static analysis tool. IEEE Transactions on Software Engineering
(2018).

[64] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lorrie Faith
Cranor. 2009. Crying Wolf: An Empirical Study of SSL Warning Effectiveness.
In Proceedings of the 18th Conference on USENIX Security Symposium (SSYM’09).
USENIX Association, Berkeley, CA, USA, 399–416. http://dl.acm.org/citation.
cfm?id=1855768.1855793

[65] Joel Weinberger and Adrienne Porter Felt. 2016. A week to remember: The
impact of browser warning storage policies. In Symposium on Usable Privacy
and Security. https://www. usenix. org/system/files/conference/soups2016/soups2016-
paper-weinberger. pdf.

[66] Tara Whalen and Kori M Inkpen. 2005. Gathering evidence: use of visual security
cues in web browsers. In Proceedings of Graphics Interface 2005. Canadian Human-
Computer Communications Society, 137–144.

[67] Michael S Wogalter, Vincent C Conzola, and Tonya L Smith-Jackson. 2002.
Research-based guidelines for warning design and evaluation. Applied Ergonomics
33, 3 (2002), 219 – 230. https://doi.org/10.1016/S0003-6870(02)00009-1 Funda-
mental Reviews in Applied Ergonomics 2002.

[68] Glenn Wurster and Paul C van Oorschot. 2009. The developer is the enemy. In
Proceedings of the 2008 New Security Paradigms Workshop. ACM, ACM, New York,
NY, USA, 89–97.

148

https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/3290605.3300370
https://doi.org/10.1145/3133956.3134082
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://doi.org/10.1145/3133956.3133977
https://pmd.github.io/
https://doi.org/10.1145/3173574.3174086
https://www.sonarqube.org/
http://dl.acm.org/citation.cfm?id=1855768.1855793
http://dl.acm.org/citation.cfm?id=1855768.1855793
https://doi.org/10.1016/S0003-6870(02)00009-1

