
student ctf group 2013-11-07

Write Up: Hack.lu 2013 - Internals 250 -

What’s wrong with this?

M. Konrad, M. Lambertz

Abstract

This write up gives a short summary for the Hack.lu 2013 CTF challenge “Internals: What’s
wrong with this?” which was solved by 58 of 413 groups and gave 250 of 5372 points.

1 Description

“We managed to get this package of the robots servers. We managed to determine that it is some kind of
compiled bytecode. But something is wrong with it. Our usual analysis failed - so we have to hand this
over to you pros. We only know this: The program takes one parameter and it responds with “Yup” if
you have found the secret code, with “Nope” else. We expect it should be obvious how to execute it.”
The file hello.tar.gz was given.

2 First Analysis

Besides a few shared libraries the archive contains a Python interpreter (py), an excutable Zip file
(library.zip) and the executable hello which is the one we have to crack. Since we already knew that
the the program outputs “Nope” and “Yup”, we grepped for these strings to get an idea where the output
takes place. However, the command

$ grep -e ’Yup\|Nope ’ *

returned no results. Only after extracting library.zip and running the grep command again, we
obtained the result:

Binary file __main__hello__.pyc matches

This indicates that the bytecode in main hello .pyc seems to be a good starting point for further
analysis.

3 Decompiling the Python bytecode: First attempt

We used Decompyle++ [1] to decompile main hello .pyc and obtained the following result:

1 # Source Generated with Decompyle ++

2 # File: __main__hello__.pyc (Python 2.7)

3

4 import sys

5 import dis

6 import multiprocessing

7 import UserList

8

9 def encrypt_string(s):

10 Unsupported opcode: <255>

11 pass

1



12 # WARNING: Decompyle incomplete

13

14 def rot_chr(c, amount ):

15 None = chr ((( ord(c) + 33) % amount) / 94 % 33)

16

17 SECRET = ’w*0; CNU [\\ gwPWk }3: PWk "#&: ABu/:Hi ,M’

18 if encrypt_string(sys.argv - 1) == SECRET:

19 print

20 print >>’Yup’

21 else:

22 print

23 print >>’Nope’

24 None = None

This looks definitively like what we are looking for. We have a function called encrypt string, a
string variable called SECRET, a check whether some first command line argument when supplied to the
encrypt string function matches SECRET, and output.

Unfortunately, the decompilation is somewhat broken. First, the encrypt string is not decompiled
because of an invalid opcode (a list of valid opcodes and their meanings can be found in [2]). Second,
the generated Python code contains several syntax errors, e.g. in line 16 (you can’t assign to None) or in
line 19 (you can’t subtract 1 from a list).

If we disassemble main hello .pyc, again using Decompyle++, we observe even more oddities. For
instance, every function ends with the instruction IMPORT STAR instead of RETURN VALUE which would
be the proper last instruction of a function. This strongly indicates that the opcodes of the Python
interpreter shipped within hello.tar.gz have been tampered with. A comparison of the opcode map of
the interpreter with the map of our system’s Python interpreter confirms this assumption: the mapping
is different.

4 Decompiling the Python bytecode: Second attempt

Decompyle++ stores the opcode mappings in .map files which are transformed into .cpp files during
the compilation. To teach Decompyle++ how to correctly decompile main hello .pyc, we simply
replaced the original python 27.map with a modified one. We wrote a simple Python script for this task:

1 import opcode

2 import sys

3

4 opmapfile = sys.argv [1]

5

6 with open(opmapfile , "r") as fd:

7 opmap = {}

8 for line in fd:

9 code , op = line.split()

10 op = op.replace("+", "_")

11 opmap[op] = int(code)

12

13 for k,v in opcode.opmap.items ():

14 op = k.replace("+", "_")

15 if opmap.has_key("_".join((op , "A"))):

16 op = "_".join((op , "A"))

17 opmap[op] = v

18

19 with open(opmapfile , "wt") as fd:

20 for k,v in sorted(opmap.items(), key = lambda x: x[1]):

21 fd.write("%-3s %s\n" % (v,k))

2



If we call this script with the modified interpreter and python 27.map as the first argument, we can
successfully decompile main hello .pyc to

1 # Source Generated with Decompyle ++

2 # File: __main__hello__.pyc (Python 2.7)

3

4 import sys

5 from hashlib import sha256

6 import dis

7 import multiprocessing

8 import UserList

9

10 def encrypt_string(s):

11 new_str = []

12 for (index , c) in enumerate(s):

13 if index == 0:

14 new_str.append(rot_chr(c, 10))

15 continue

16 new_str.append(rot_chr(c, ord(new_str[index - 1])))

17

18 return ’’.join(new_str)

19

20

21 def rot_chr(c, amount ):

22 return chr ((( ord(c) - 33) + amount) % 94 + 33)

23

24 SECRET = ’w*0; CNU [\\ gwPWk }3: PWk "#&: ABu/:Hi ,M’

25 if encrypt_string(sys.argv [1]) == SECRET:

26 print ’Yup’

27 else:

28 print ’Nope’

5 Capture the Flag

In order to obtain the secret, we have to write a decrypt string function which implements the inverse
of encrypt string. This is pretty straightforward actually:

1 SECRET = ’w*0; CNU [\\ gwPWk }3: PWk "#&: ABu/:Hi ,M’

2

3 def decrypt_string(s):

4 new_str = []

5 for (index , c) in enumerate(s):

6 if index == 0:

7 new_str.append(rot_chr(c, 10))

8 continue

9 new_str.append(rot_chr(c, ord(s[index - 1])))

10 return ’’.join(new_str)

11

12 def rot_chr(c, amount ):

13 return chr ((( ord(c) - 33) - amount) % 94 + 33)

14

15 print decrypt_string(SECRET)

This gives us the flag: modified in7erpreters are 3vil!!!

3



References

[1] https://github.com/zrax/pycdc

[2] http://docs.python.org/2/library/dis.html

4

https://github.com/zrax/pycdc
http://docs.python.org/2/library/dis.html

	Description
	First Analysis
	Decompiling the Python bytecode: First attempt
	Decompiling the Python bytecode: Second attempt
	Capture the Flag

