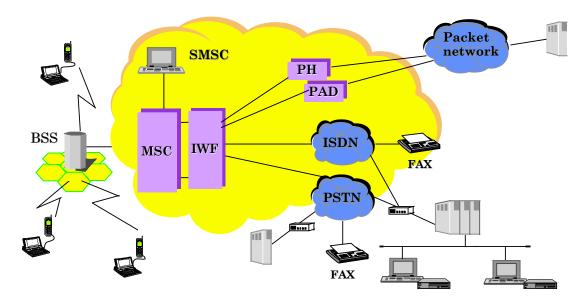
6.3 GSM Data Services

Connection MS - PC


via cable und PC-card via Infrared (IrDA) via Bluetooth **MT** = Mobile Termination **TAF** = Terminal Adapter Function **TE** = Terminal Equipment TE (PC) Application Router TCP MT/TAF IP IP IP PPP PPP GSM bearer IP "V.24" "V.24" network

MS + PC as the data terminal

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Mobile Communication 35 Chapter 6.

GSM Data Services

The IWF (Interworking Function) allows communicating with any "data network"

- PH = Packet Handler, transition to synchronous data network, e.g. X.25
- PAD = Packet Assembler/Disassembler, e.g. transition to the Internet
- via PSTN/ISDN to a Fax
- via PSTN/ISDN to a modem dial-up server

36

Properties of GSM Data

Circuit-Switched Operation

- Channels are allocated collectively for Uplink and Downlink during the entire dial-up time
- Billing is based upon the dial-up time and not the amount of data transmitted

Time for establishing a connection

• approx. 20...25 seconds (end-to-end via PSTN/ISDN)

Link Capacity

• 9.6 kbits/s (each with uplink and downlink)

Connection possibilities

• to any **modem dial-up server** (in PSTN/ISDN)

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Mobile Communication 37 Chapter 6.

Properties of GSM Data

Connecting to the Internet

- ISP (Internet Service Provider) registration is necessary
- Data call to dial-up number of the ISP is necessary
- Communication with the ISP's Terminal Server
- Using PPP (**Point-to-Point Protocol**) or SLIP (**Serial Line Internet Protocol**)
- Billing and Authenfication of the user is done separately for the GSM bearer service and the ISP service
- Alternatively: mobile network provider and ISP are identical

Performance

- 9.6 kbits/s nominal data rate (decreased by error correction)
- round-trip delay 400...500 ms
- The transparent mode as well as the non-transparent mode is possible,
 - transparent: no error correction/ack-retransmission on link layer
 - non-transparent: with error correction on link layer

Improving Circuit-Switched Data Services

Without modifying the radio interface

Using an ISDN connection instead of a PSTN modem connection

- decreases the time for connection establishment to approx. 5 seconds
- supports the caller's identification
- most GSM MSCs support ISDN Interworking
- the ISP must allow ISDN connections from MSC to Terminal Server

Compression of user data according to V.42bis

- Increases user data rate up to 32 kbit/s
- Compression between MS and MSC/IWF
- Compression of text is typically 4:1 (does not apply to already compressed or encrypted data)
- high processor usage

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

ETSI Work Items (1)

GSM 14.4 kbit/s Data

• standard completed in 1997

High-Speed (Circuit Switched) Data (HSCSD)

standard completed in 1997

=> combining both

39

Mobile Communication

ETSI Work Items (2)

GSM Packet Radio System (GPRS)

- Phase 1 completed in 1998
- Phase 2 completed during UMTS (Release 1999, March 2000)

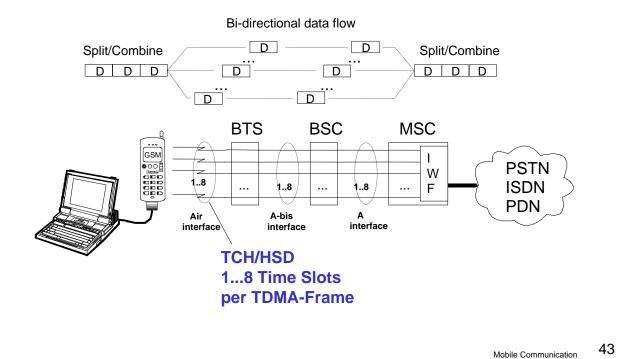
GSM 384 or EDGE (Enhanced Data-rates for Global Evolution) (formerly Enhanced Data for GSM Evolution)

- Phase 1 completed in 2000 (also E-GPRS: Enhanced GPRS)
- Phase 2 completed during UMTS (Release 2000)
- since July 2000 new 3GPP TSG GERAN (GSM/EDGE Radio Access Network) to be released with future Releases

UMTS uses Wideband-CDMA as concept for multiple access

- Standardization process started, first Release (Rel 1999) March 2000
- Release 2000 (renumbered to release 4) March 2001
- Release 5 March/June 2002
- Release 6 December 2004 March 2005
- Release 7 "Stage 3 freeze December 2007"
- Release 8 "Stage 3 freeze December 2008 ?" Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Mobile Communication Chapter 6.


GSM 14.4 kbit/s Data

- new channel coding for data TCH
- less protection (more data) with good radio reception
- results in reduced coverage of the radio cells
 => mechanisms should switch back to a more efficient channel coding (9.6 kbit/s) at the border of a radio cell
- compatible with High-Speed Data and V42.bis compression
- V34 modems (28.8 kbit/s) may be realized by using 2 Time Slots (2 TCHs) each with 14.4 kbit/s.
- Standardization completed in 1997

High-Speed Circuit-Switched Data

Principle of Multi-Slot Access

• Multiple Time-Slots (2..8) are allocated to a single MS

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

High-Speed Circuit-Switched Data (2)

Multi-Slot Access

- Multiple (2...8) Time-Slots are allocated to a single MS
- the normal traffic channels (n x TCH/F9.6) are combined to a single (logical) High-Speed Channel (TCH/HSD)
- Using the channel coding 14.4 allows multiples of n x 14.4 kbit/s
- Splitting/Combining data from higher layers need to be done in the MS and the MSC/IWF
- BTSe does not require any knowledge of the multi-slot access
- BSCs need to control all sub-channels as a single channel, e.g. during handover
- The transparent mode as well as the non-transparent mode is possible,

As with GSM Data:

- transparent: no error correction/ack-retransmission on link layer
- non-transparent: with error correction on link layer

Data services in GSM (HSCSD rates summary)

- Data transmission standardized with only 9.6 kbit/s
 - advanced coding allows 14,4 kbit/s
 - not enough for Internet and multimedia applications
- HSCSD (High-Speed Circuit Switched Data)
 - mainly software update
 - bundling of several time-slots to get higher AIUR (Air Interface User Rate) (e.g., 57.6 kbit/s using 4 slots, 14.4 each)
 - advantage: ready to use, constant quality, simple
 - disadvantage: channels blocked for voice transmission

AIUR [kbit/s]	TCH/F4.8	TCH/F9.6	TCH/F14.4
4.8	1		
9.6	2	1	
14.4	3		1
19.2	4	2	
28.8		3	2
38.4		4	
43.2			3
57.6			4

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Summary of Circuit-Switched Data

- GSM data services enable Wide-Area Mobile Data Applications
- Improvements to conventional 9.6 kbit/s data services have been specified and are in use
- **Circuit-switched data** is suited for applications with a **continuous data flow** (e.g. file transfer of large files)
- Billing is based on the dial-up time, and not the amount of transmitted data
- A limited number of mobile users can be supported per frequency
- Not well suited for packet-oriented protocols (such as IP) and their typical applications (bursty and asymmetric data traffic)

=> Demand for GPRS is obvious

GPRS = GSM Packet Radio System GPRS = General Packet Radio Service

46

Mobile Communication Chapter 6.

6.4. Overview of GPRS

Design goal: Network

- GPRS uses a packet-oriented allocation of resources
 - resources are only allocated when data is to be sent or received
- flexible channel allocation
 - one to eight time slots of TDMA may be allocated
 - available resources are shared by all active users
 - Uplink and downlink are allocated individually
 - GPRS and circuit switched GSM may use the same frequency/time slots (allocated dynamically)
- Connections with data networks
 - TCP/IP Internet (and also X.25)
- More efficient transmission of SMS over GPRS

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Overview of GPRS

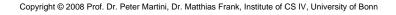
Design goal: Applications

Conventional applications for data networks:

- TCP/IP: WWW, E-Mail, FTP, Telnet, ...
- WAP (Wireless Application Protocol) over GPRS
- X.25: Packet Assembly/Disassembly (PAD) Applications

GPRS-specific applications:

- Point-to-point (PTP) Applications: toll billing for roads, ...
- Point-to-multipoint (PTM) Applications: weather information, traffic information, news, ... push-to-talk


47

Mobile Communication

Overview of GPRS

Design restrictions

- Changes to Hardware at BTSs should be prevented
- Scalability of GPRS networks
- there may/should be also GPRS-only mobile terminals (no speech)
- Billing should be based on the actual amount of transmitted data
- A typical "Connection" may last several hours
- Several applications may be active simultaneously
- HLR should not be contacted for every single GPRS-packet

User's view of a GPRS Network Host Mobility of a GPRS user 155.222.33.55 in a GSM network from IP's point GPRS SUBNETWORK of view is transparent, i.e. it's regulated **SUBNETWORK** 155.222.33.XXX within the GSM/GPRS network Router 155.222.33.1 SUBNETWORK SUBNETWORK 131.44.15.XXX 191.200.44.XXX Corporate 2 Corporate 1 Data Router network Router (Internet) Local Local area HOST HOST area 191.200.44.21 network network 131.44.15.3 Communication in the Internet between two hosts Communication of a GPRS host (in GSM) with an arbitrary host in the Internet

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

50

GPRS Mobile Station

Three classes of different GPRS mobile stations:

Class A

• simultaneous usage of packet-oriented and circuit-switched services

Class B

- Simultaneous logging into GSM and GPRS system is possible
- no simultaneous traffic is possible (automatic sequential changeover)

Class C

- Logging into either GSM or GPRS is possible
- may be a "GPRS-only" MS

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

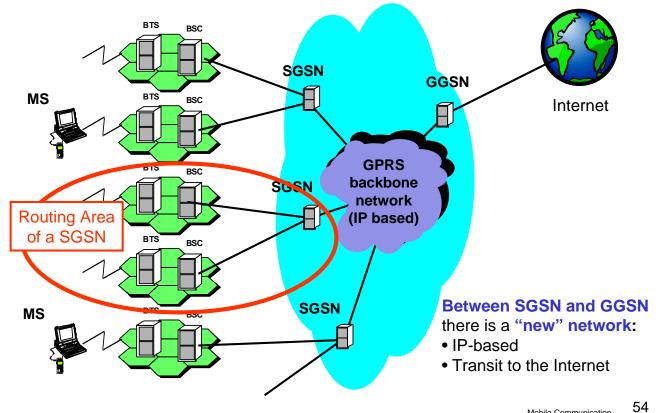
Examples for GPRS device classes

Class	Receiving slots	Sending slots	Maximum number of slots
1	1	1	2
2	2	1	3
3	2	2	3
5	2	2	4
8	4	1	5
10	4	2	5
12	4	4	5

JS

51

Mobile Communication


Coding scheme	1 slot	2 slots	3 slots	4 slots	5 slots	6 slots	7 slots	8 slots
CS-1	9.05	18.1	27.15	36.2	45.25	54.3	63.35	72.4
CS-2	13.4	26.8	40.2	53.6	67	80.4	93.8	107.2
CS-3	15.6	31.2	46.8	62.4	78	93.6	109.2	124.8
CS-4	21.4	42.8	64.2	85.6	107	128.4	149.8	171.2

Different/new coding schemes compared to GSM data CSD/HSCSD

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

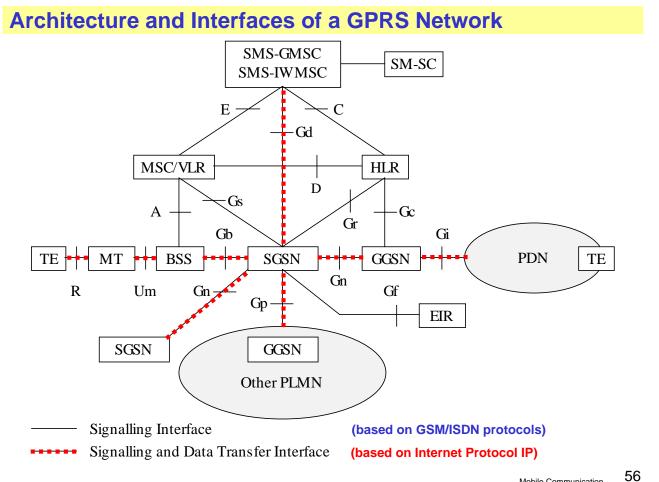
Between MS and SGSN "conventional" GSM network (minor modifications)

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Mobile Communication

Chapter 6.

JS


GGSN - Gateway GPRS Support Node

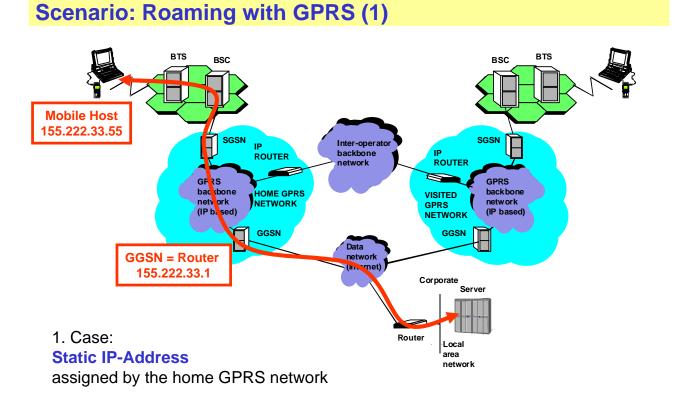
- comparable to GMSC (Gateway MSC)
- access point to an external data network (e.g. access to the Internet)
- centralized network component, does not change with mobility of the MS
- GGSN keeps track of routing-information to the SGSN corresponding to the MS

SGSN - Serving GPRS Support Node

- comparable to MSC/VLR (responsible for a Location Area)
- SGSN responsible for a Routing Area (typically a subset of a Location Area)
- Parting point between GSM-BSS and GPRS-backbone
- decentralized network component, changes with mobility of the MS (change of the Routing Area)

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

55

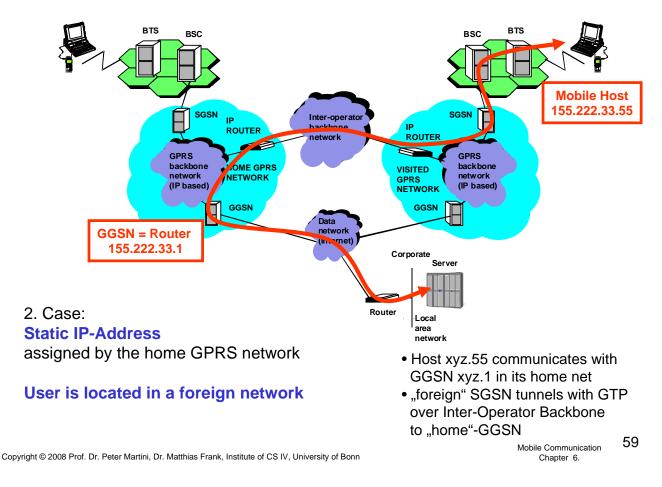

Mobile Communication

Interfaces of a GPRS Network

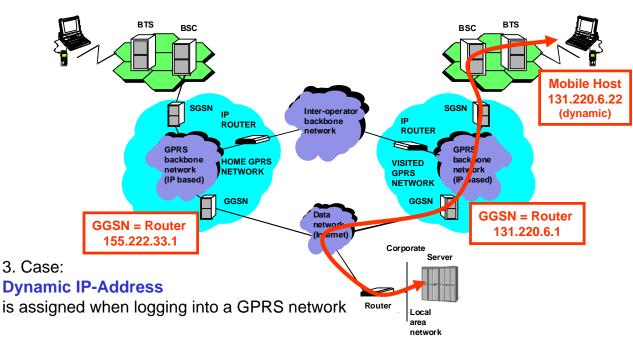
GPRS Network Signalling interfaces

- **Gb** LLC (User Plane) and BSSGP (Signalling) over Frame Relay Transition from the "new net" to the "old net" (GSM-BSS)
- Gc MAP Protocol for Location Information Retrieval
- Gd MAP Protocol for Short Messaging over GPRS
- Gf MAP Protocol for verifying the ME identity
- Gn GPRS Tunneling Protocol (GTP) for intra-PLMN traffic treatment
- Gp GTP (over IP) for inter-PLMN traffic
- Gr MAP Protocol access to Subscriber Information
- Gs BSSAP+ Protocol for Normal Location Updates and Paging via MSC/VLR
- Gi IP (oder X.25) Protocol Interface to external data networks

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

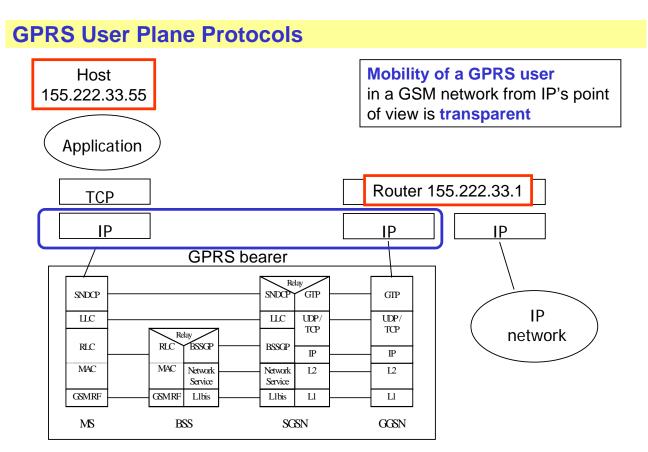


User is located in his home network


57

Mobile Communication

Scenario: Roaming mit GPRS (2)


Scenario: Roaming with GPRS (3)

User is located in a foreign network

allows optimal routes across GPRS-IP-Backbone and Internet

"Roaming" between two GPRS networks is not possible when using dynamically assigned IP-addresses

Handovers between different SGSN is supported within the GSM/GPRS network

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

GTP – GPRS Tunnel Protocol

- IP to/from MS without tunnelling over the Air-Interface Next hop Router is GGSN
- GTP tunnels IP datagrams to/from MS between SGSN and GGSN
- IP-Addresses of SGSN and GGSN are only internally used
- Comparison to Mobile IP:

GGSN is Home Agent:	Does not change after movement of MS All traffic is routed through GGSN
SGSN is Foreign Agent:	Changes with movement of MS Home Agent routes to corresponding SGSN

Advantages and Disadvantage of GTP

- + IP datagrams on the Air-Interface do not need "mobility-overhead"
- "complex" protocol stack + overhead in Backbone (IP/GTP/UDP/IP)

61

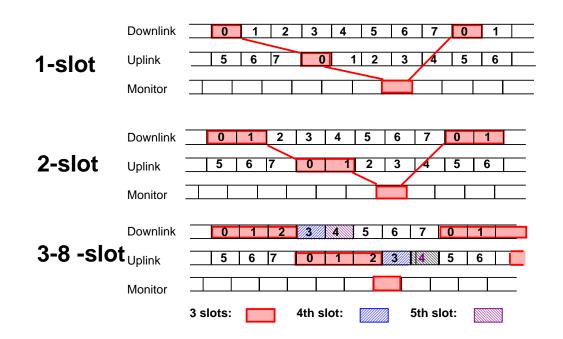
Mobile Communication

GPRS Media Access

Accessing Traffic Channel TCH is "circuit-switched", previous data traffic (as well as speech) is "connection-oriented"

For "connectionless" GPRS

⇒ "emulate" a connectionless service across a connection-oriented media


However: Some kind of "connection" is needed!

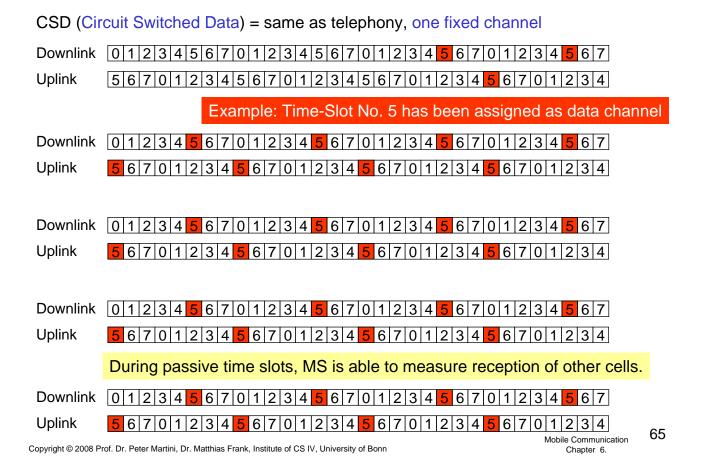
- GPRS Attach and Detach = Logging into the GPRS network
 - "Registering" with the mobility management
 - with movement of the MS a "Routing Area Update Request" is applied
 - MS is reachable
- Packet Data Protocol (PDP) Context activation and deactivation
 - PDP Context between MS and SGSN/GGSN
 - choses the supported data protocol (e.g. IP, X.25)
 - required in order to enable data communication to/from MS
 - binds misc. parameters (routing, QoS, Identity of MS, Status, ...)
 - may be initiated by the MS or the network

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

How does GPRS Media Access work in TDMA?

Using several TDMA-Slots is now possible

The figure suggests that the same slots are used in a regular interval. **This is not the case!** They are dynamically assigned to different MS!!!


64

63

Mobile Communication

Chapter 6

Use of TDMA slots with CSD

Use of TDMA slots with HSCSD

HSCSD (High Speed Circuit Switched Data) = same as CSD, several fixed channels			
Downlink 012345670123456701234567012345670123456701234567			
Uplink 567012345670123456701234567012345670123456701234			
Asymmetric example: Time-Slot No. 3+4+5 (D) + 4 (U) assigned for data channel			
Downlink 0123456701234567012345670123456701234567			
Uplink 567012345670123456701234567012345670123456701234			
Downlink 0123456701234567012345670123456701234567			
Uplink 567012345670123456701234567012345670123456701234			
Downlink 012345670123456701234567012345670123456701234567			
Uplink 567012345670123456701234567012345670123456701234			
During passive time slots, MS is able to measure reception			
of other cells (but now only 4 out of 8 slots).			
Downlink 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7			
Uplink 56701234567012345670123456701234 Multile Computation 66			
Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn Chapter 6.			

Use of TDMA slots with GPRS

GPRS, packet-oriented, access via RLC/MAC protocol, using Master/Slave principle					
Downlink	01234567012345670123456770123456701234567				
Uplink	5670123456701234567012345670123456701234				
MS send	ds request in Uplink PRACH (Packet Random Access Channel)				
Downlink	012345670123456701234567				
Uplink	5670123456701234567012345670123456701234				
BTS ans	swers in PAGCH (P-Access Grant Channel) MS uses slot assignment				
Downlink	01234567012345670123456770123456701234567				
Uplink	5670123456701234567012345670123456701234				
Downlink	012345670123456701234567				
Uplink	5670 <mark>123</mark> 456701234567012345670123456701234				
packet t	ransmission completed, now BTS sends packet to MS				
Downlink	0123456701234567				
Uplink	567012345670123456701234567012345670123456701234	67			
Copyright © 2008 P	rof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn Chapter 6.				

RLC/MAC Protocol

RLC - Radio Link Control

- for the radio interface MS BSS
- segmentation of user data
- selective ARQ mechanism

MAC - Medium Access Control

- Downstream (BTS \rightarrow MS) no challenge: BTS is the only sender
- Upstream (MSe \rightarrow BTS): When is the MS allowed to access a specific slot?
- Master-Slave-mechanism: BTS is Master, MS are slaves
- Slaves indicate their wish for sending data to the master (Collisions may occur!)
- Master informs slaves who has access to the media Use the Uplink State Flag USF (12 Bit) to mark slots unused or reserved for a specific MS (Here too, collisions may occur)

Summary of GPRS

- Packet-oriented data transfer with data rates up to 21.4 kbit/s per Time-Slot and up to 8 Time-Slots per user
- Two new network components: SGSN and GGSN
- New network structure: GPRS Backbone Network transports user data between SGSNs and GGSN, based on IP
- Conventional IP applications may be used
- Billing may be based on the amount of transferred data
- Costs for data transfer may be negotiated (e.g. a better QoS is more expensive)

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

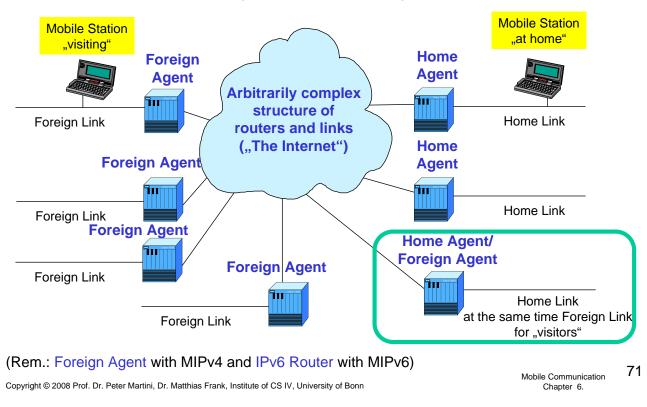
6.5. Mobility Management Internet vs. GSM/GPRS

Mobility in the Internet – Mobility GSM/GPRS

Basic difference between GSM and the Internet:

- GSM is a "connection-oriented" network for telecommunication
- The Internet is a "connectionless" network for data communication

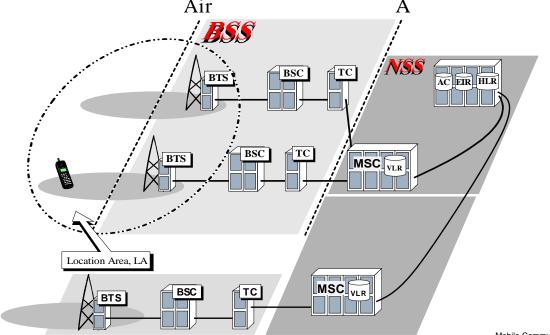
In terms of mobility management, there are several issues in common!


69

Mobile Communication

Mobility Management in the Internet

Support of Macro Mobility


• when the IP subnetwork changes, the mobility configuration will be updated

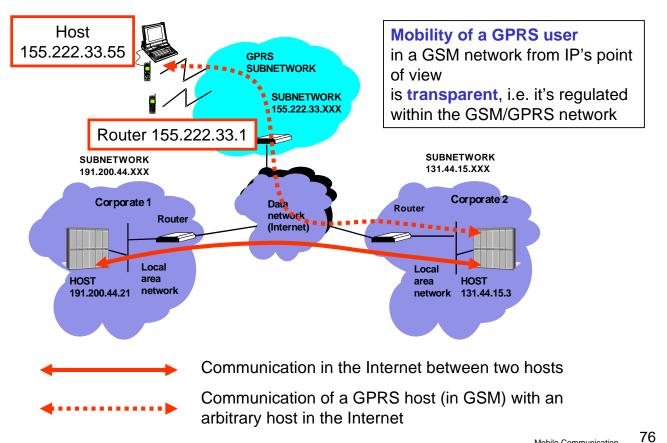
Mobility Management with GSM

Support of Macro and Micro Mobility

- international Roaming (between different GSM-PLMN)
- Mobility between MSC-Regions (Location Area)
- change between cells (and possibly frequency within same cell)

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

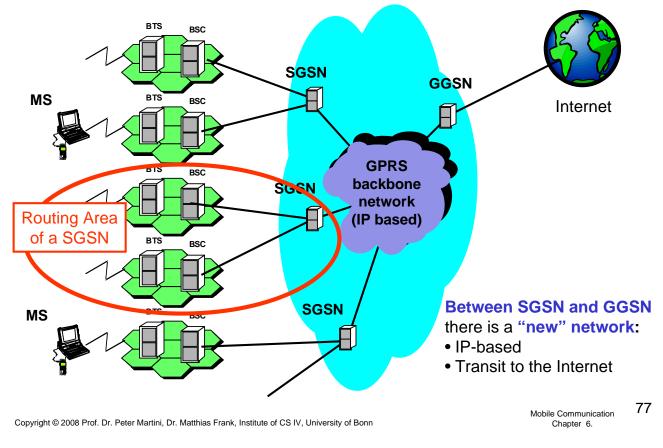
Comparison Internet - GSM

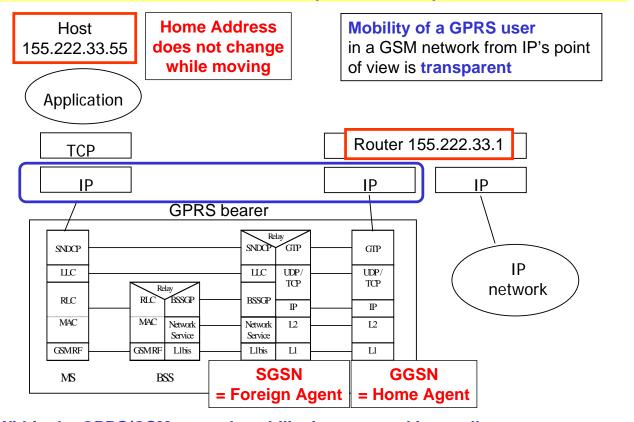

Mobility Internet	Mobility GSM
Home Agent	Home Location Register (HLR)
HA de-central: Each "Home Network" in the Internet has its own HA	HLR is central for all users of a PLMN (de-central when considering International Roaming: Each PLMN has its own HLR)
IP cares for global addressing (world wide)	ISDN numbering scheme cares for global addressing (e.g. +49-170-xxx leads to PLMN of T-Mobile)
Home Address of mobile device (IP Home Address)	MSISDN is "Home Address" of mobile user/SIM (but there is no physical home link)
Foreign Agent	Analogy in GSM: "Visited" MSC with its VLR (Visited Location Register)
right © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV,	, University of Bonn Chapter 6. 73

Note: TMSI = Temporary Mobile Subscriber Identity **Comparison Internet - GSM (2)** cf. MSRN = Mobile Station Roaming Number sl. 25 similar to Care-of-Address in Mobile IP **Mobility Internet Mobility GSM** Reachability: Reachability: Care-of Address is used for IP-Routing TMSI/MSRN allows for ISDN-Routing to the to the mobile station visited MSC, paging is used to determine detailed location within Location Area Reachability (2): Reachability (2): Care-of Address stored in Home Agent TMSI stored in HLR of Home PLMN (MSRN is only assigned when needed) "connectionless" Communication "connection-oriented" Communication When changing the Link-Layer access • with active call "Handover" between (wired and/or wireless) to a different - frequencies and cells (BTS) IP subnetwork, the configuration will - BSCs be changed (FA, Care-of Address) - MSCs • in Idle Mode a "Location Update" is performed when changing the Location Area Detection of movement by frequent measurement No advanced concept for detection of movement of current and alternative wireless reception of BTSs

Comparison Internet - GSM (3)

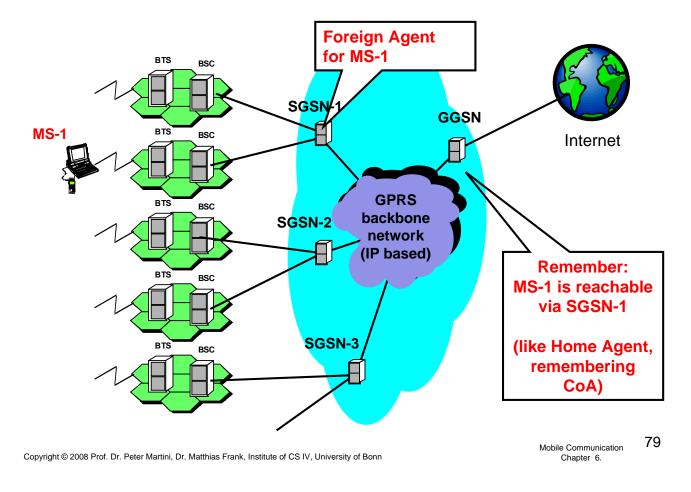
Mobility Internet	Mobility GSM			
 Macro-Mobility: basic goal Mobile IP change in configuration of Mobile IP upon change of network access to different IP subnetwork 	 Macro-Mobility: International Roaming: Use of services in "visited" PLMN Mobility in GSM on highest hierarchy level may also be seen as Macro-Mobility (MSC-Handover/Location update, changing TMSI and change information in HLR) 			
 Micro-Mobility: no support by Mobile IP (never was the goal of Mobile IP) Support of mobility within a specific link technology (OSI layer 2) is transparent for Mobile IP (e.g. GSM seen as a single IP subnet) 	 Micro-Mobility: Advanced concepts for ("fast") movement in cellular networks overlapping cells measurement of reception quality of current and neighbouring cells "fast" mechanism (handover) for "fast" change between cells – without interruption 			
vright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn Chapter 6.				


User's view of a GPRS Network (slide 48 recalled)

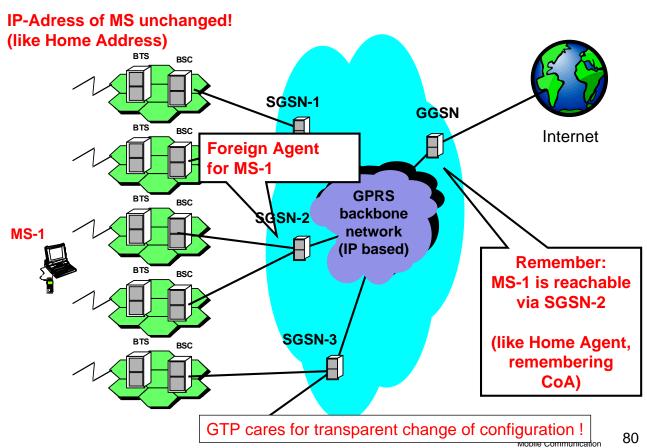

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Architecture of a GPRS System (slide 52 recalled)

Between MS and SGSN "conventional" GSM network (minor modifications)

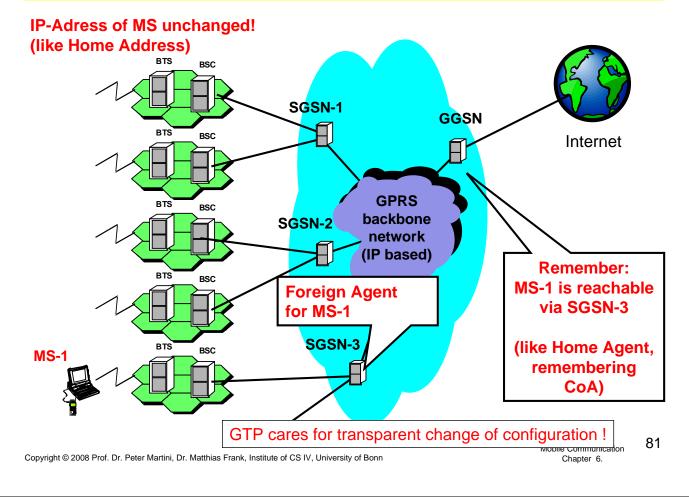


GPRS User Plane + IP Access (cf. slide 59)



Within the GPRS/GSM network mobility is supported internally. ⇒ Functionality is identical to Mobile IP !!! Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Mobility in GPRS – Example


Mobility in GPRS – Moving to SGSN-2

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

80

Mobility in GPRS – Moving to SGSN-3

