6. Cellular phone network: GSM, HSCSD, EDGE, GPRS

6.1. Overview of GSM

6.2. GSM Network: Architecture and Concepts

6.3. Data Services in GSM: CSD and HSCSD

6.4. Packet-oriented Data Service: GPRS

6.5. Mobility Management Internet vs. GSM/GPRS

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

6.1. Overview of GSM

GSM

- □ formerly: Groupe Spéciale Mobile (founded 1982)
- now: Global System for Mobile Communication
- D Pan-European standard (ETSI, European Telecommunications Standardisation Institute)
- □ simultaneous introduction of essential services in three phases (1991, 1994, 1996) by the European telecommunication administrations (Germany: D1 and D2)
 → seamless roaming within Europe possible
- □ today many providers all over the world use GSM (more than 184 countries in Asia, Africa, Europe, Australia, America)
- more than 747 million subscribers
- more than 70% of all digital mobile phones use GSM
- □ over 10 billion SMS per month in Germany, > 360 billion/year worldwide

2

1

Mobile Communication

Chapter 6

Characteristics of GSM

Communication

mobile, wireless communication; support for voice and data services

Total mobility

international access, chip-card enables use of access points of different providers

Worldwide connectivity

one number, the network handles localization

High capacity

□ better frequency efficiency, smaller cells, more customers per cell

High transmission quality

high audio quality and reliability for wireless, uninterrupted phone calls at higher speeds (e.g., from cars, trains)

Security functions

access control, authentication via chip-card and PIN

- In Germany networks A, B, C
- analogue systems
- restricted functionality
 - (e.g. location, roaming, ...)

In Germany GSM networks D, E

- digital systems
- so called "2nd generation"

Mobile Communication Chapter 6

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

GSM: Mobile Services

- **GSM** offers
 - several types of connections
 - · voice connections, data connections, short message service
 - multi-service options (combination of basic services)

Three service domains

- Bearer Services
- Telematic Services
- Supplementary Services

TE = Terminal Equipment MT = Mobile Termination

4

3

6.2. Architecture of the GSM system

• GSM is a PLMN (Public Land Mobile Network)

- several providers setup mobile networks following the GSM standard within each country
- components
 - MS (mobile station)
 - BS (base station)
 - MSC (mobile switching center)
 - LR (location register)

- subsystems

- RSS (radio subsystem): covers all radio aspects
- NSS (network and switching subsystem): call forwarding, handover, switching
- OSS (operation subsystem): management of the network

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Ingredients 1: Mobile Phones, PDAs & Co.

6

5

JS

Mobile Communication

Chapter 6.

JS

Still visible - cause many discussions...

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Ingredients 3: Infrastructure 1

8

7

Mobile Communication

Ingredients 3: Infrastructure 2

Switching units

Management

Data bases

Monitoring

Not "visible", but comprise the major part of the network (also from an investment point of view...)

9

Mobile Communication Chapter 6.

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

GSM Overview JS OMC, EIR, AUC HLR GMSC fixed network NSS with OSS VLR MSC MSC VLR HLR = Home Location Register VLR = Visitor Location Register MSC = Mobile Switching Center GMSC = Gateway MSC BSC BSC = Base Station Controller BSC RSS

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

б.

GSM Elements and Interfaces

• U_m • A_{bis} • A • 0 MS = Mobile Station BTS = Base Transceiver Station BSC = Base Station Controller HLR = Home Location Register VLR = Visitor Location Register MSC = Mobile Switching Center GMSC = Gateway MSC IWF = Interworking Function details on following slides 11

Interfaces

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

GSM System Architecture

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Mobile Communication Chapter 6.

Mobile Communication

System Architecture – Radio Subsystem

clearly defined interfaces (open system) compatible to ISDN (wired) telephone system

Components

- MS (Mobile Station)
- BSS (Base Station Subsystem): consisting of
 - *BTS* (Base Transceiver Station): sender and receiver
 - BSC (Base Station Controller): controlling several transceivers

Interfaces

- U_m : radio interface
- A_{bis}: standardized, open interface with
 - 16 kbit/s user channels
- A: standardized, open interface with
 - 64 kbit/s user channels

Mobile Communication Chapter 6.

JS

JS

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

System Architecture – Network and Switching Subsystem

Components

- □ MSC (Mobile Services Switching Center):
- □ *IWF* (Interworking Functions)
- □ ISDN (Integrated Services Digital Network)
- D PSTN (Public Switched Telephone Network)
- D PSPDN (Packet Switched Public Data Net.)
- CSPDN (Circuit Switched Public Data Net.)

Databases

- □ HLR (Home Location Register)
- UVLR (Visitor Location Register)
- □ *EIR* (Equipment Identity Register)

Radio subsystem

- The Radio Subsystem (RSS) comprises the cellular mobile network up to the switching centers
- Components
 - Base Station Subsystem (BSS):
 - Base Transceiver Station (BTS): radio components including sender, receiver, antenna - if directed antennas are used one BTS can cover several cells
 - Base Station Controller (BSC): switching between BTSs, controlling BTSs, managing of network resources, mapping of radio channels (U_m) onto terrestrial channels (A interface)
 - BSS = BSC + sum(BTS) + interconnection
 - Mobile Stations (MS)

Cellular network principle

Purpose

- base station (cell) only has limited capacity
- coverage of large areas
 - by using small overlapping cells
- use different frequencies
 in neighboring cells
- cellular principle reduces the number of available frequencies:
 < 125 frequencies
 - < 1000 phys. channels

Overlap of cells enables handover without interruption:

Signal quality (receive)

MS (Mobile Station) is still in contact with old BTS (Base Transceiving Station)

- new BTS receive quality is better than from old BTS
- prepare handover with old BTS
- switch to new BTS (almost no interruption)

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

location

15

Mobile Communication

Chapter 6

Cellular network (2)

Reuse of frequencies

- Use a subset of all available frequencies in a single cell
- all direct neighbour cells use different subset (to avoid interference)
- reuse of same frequency subset in appropriate distance

<section-header> Cell clustering a typical representation of a cell is a hexagon a cluster of cells use different subsets of frequencies the same subsets repeat in further clusters Typical values

- k = 7 (number of cells per cluster)
- $D \approx 4.4$ radius of cell (distance between cells with identical frequency subset)

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Example coverage of GSM networks (www.gsmworld.com) JS

Towit

17

Mobile Communication

Concepts for Multiple Access: FDMA in GSM

Goal of Multiple Access: Several mobile stations intend to communicate "in parallel" with the same base station.

The access to the shared medium "air" (the radio frequencies) has to be coordinated in a deterministic manner (provide QoS for voice transmission, i.e. no collisions allowed)

Frequency Division Multiple Access (FDMA) in GSM:

TDMA in GSM

Time Division Multiple Access (TDMA):

=> cf. chapter 3. Wireless Communication Basics

- each channel (of FDMA) is divided into 8 time slots (= 1 cycle)

- the raw datarate in a 200 kHz channel amounts to 271 kbit/s
- the raw datarate per time-slot (TDMA channel) is 33,875 kbit/s

Mobile Communication

GSM – TDMA/FDMA

Network and Switching Subsystem

- NSS is the main component of the public mobile network GSM
 - switching, mobility management, interconnection to other networks, system control

• Components

- Mobile Services Switching Center (MSC)

controls all connections via a separated network to/from a mobile terminal within the domain of the MSC - several BSC can belong to a MSC

- Databases (important: scalability, high capacity, low delay)

- Home Location Register (HLR) central master database containing user data, permanent and semipermanent data of all subscribers assigned to the HLR (one provider can have several HLRs)
- Visitor Location Register (VLR) local database for a subset of user data, including data about all user currently in the domain of the VLR

22

JS

JS

The MSC (mobile switching center) plays a central role in GSM

- switching functions
- additional functions for mobility support
- management of network resources
- interworking functions via Gateway MSC (GMSC)
- integration of several databases

Functions of a MSC

- specific functions for paging and call forwarding
- termination of SS7 (signaling system no. 7)
- mobility specific signaling
- location registration and forwarding of location information
- provision of new services (fax, data calls)
- support of short message service (SMS)
- generation and forwarding of accounting and billing information

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

GSM Protocol Layers for Signaling

JS

23

Mobile Communication

Example: Mobile Terminated Call

1: calling a GSM subscriber • 2: forwarding call to GMSC • 3: signal call setup to HLR • VLR HLR 4, 5: request MSRN from VLR 9 • 8 3 6 14 15 6: forward responsible • calling MSC to GMSC GMSC MSC PSTN station 1 7: forward call to • 10/13 10 10 current MSC 16 BSS BSS BSS 8, 9: get current status of MS • (11 (11 10, 11: paging of MS • 12, 13: MS answers • 12 11 17 14, 15: security checks • MS 16, 17: set up connection • Note step 4,5: MSRN = Mobile Station Roaming Number similar to Care-of-Address in Mobile IP

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Mobile Originated Call

3, 4: security check

9-10: set up call

•

•

٠

•

circuit)

1, 2: connection request

5-8: check resources (free

Mobile Communication

Chapter 6.

Chapter 6.

Mobile Communication

25

- when moving (slowly) between BTS old and new, a "ping pong" effect may occur
- "ping pong" = switching back and forth between new and old BTS (several times)
- may be prevented (or reduced) by defining a hysteresis for handover decision (HO_MARGIN)

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Location update

Important procedure to update location information in HLR and VLR

Location update - prerequisite

- mobile station is switched on
- but MS is "idle" (= no phone call going on in contrast to handover)

Carrying out location update

- mobile station frequently measures reception quality of BTSs
- MS decides to "camp on a cell" (select best BTS)
- MS analyses location area identity (LAI) as broadcasted from BTS
- if LAI has changed when moving from old BTS to new BTS
- => MS initiates location update