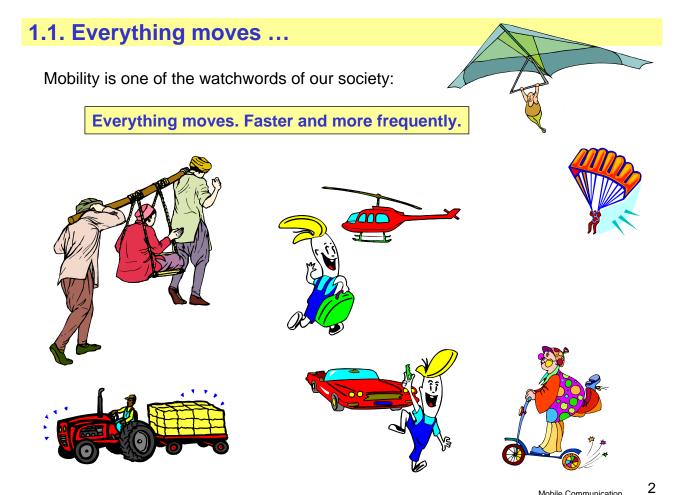
1. Introduction

1.1. Everything moves ...

1.2. Mobility versus portability


1.3. Mobile devices

1.4. Wireless communication

1.5. Mobile communication and the layer model

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Mobile Communication Chapter 1. + 2. 1

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Wearable Applications (as discussed in IEEE 802 in March 1998)

Paint Inspection and Assembly Operation

Patient Monitoring using Sensors attached to the Patient

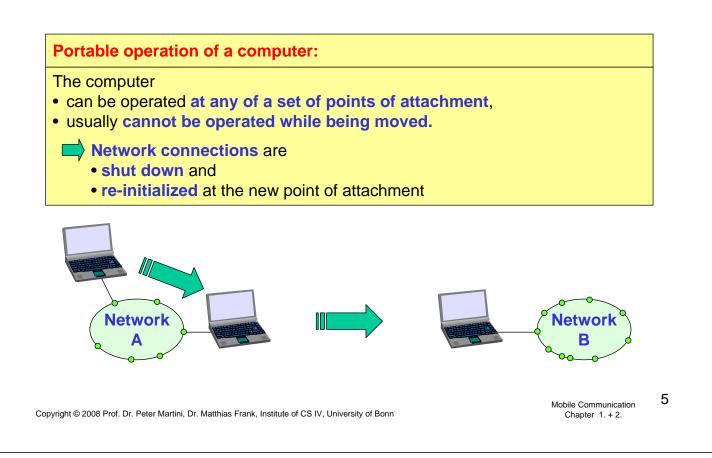
Assistance for medical and paramedical Personnel

Pilot Assistance

Automated Trading at the Stock Exchange

Enhancing the Guest Experience

Source: S. Case, "A Brief Survey of Wearable Applications", doc.: IEEE 802.11-98/96, http://grouper.ieee.org/groups/802/15/pub/Tutorials.html Mobile Communication Chapter 1. + 2.

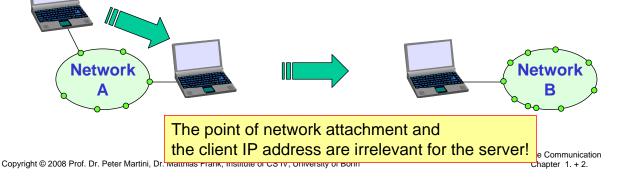

Wearable Applications (as discussed in IEEE 802 in March 1998)

War of the Cyborgs ?

1.2. Mobility versus portability

Today, a lot of computer applications require network access.

The client/server paradigm

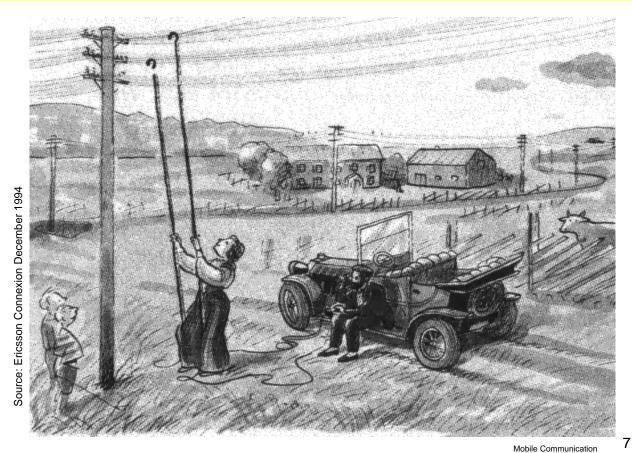

The mobile device is the client and uses client applications such as:

- E-Mail: access to centralised E-Mail servers via POP, IMAP, WWW
- browsing the WWW, download documents and files
- remote login (telnet, ssh)

• ...

• remote file transfer (ftp, scp)

This is no challenge with the portability principle as applicable already for many years!


Central servers

_ _ _ _

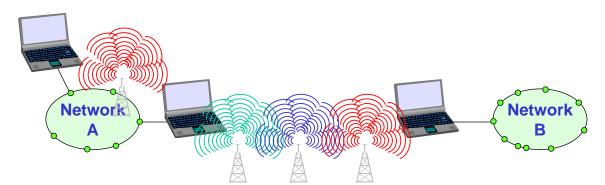
6

in the Internet

Mobile telephony in 1910

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

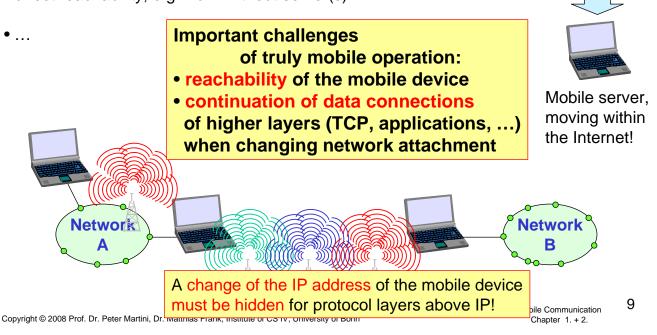
Chapter 1. + 2.


Truly mobile operation

Truly mobile operation of a computer:

The computer

- can (at least almost) continuously remain in contact with the network resources required by the applications.
 - Neither the system nor the applications running on the system need to be re-initialized or restarted, ...


... even if the network connectivity is frequently broken and re-established at new points of attachment.

A paradigm shift

The **mobile device becomes a server** and offers services to any other (mobile or fixed) device in the Internet:

- resource sharing, peer to peer
- direct reachability, e.g. VoIP without server(s)

1.3. Mobile devices JS **PDA** Pager Laptop receive only • simple graphical displays fully functional tiny displays character recognition standard applications simple text simplified WWW messages Sensors, embedded controllers Palmtop **Mobile phones** tiny keyboard • voice, data simple versions simple graphical displays of standard applications performance

entral ser

in the Internet

Effects of device portability

capacity CPU: power consumption ~ CV²f

Power consumption

- C: internal capacity, reduced by integration
- V: supply voltage, can be reduced to a certain limit
- f: clock frequency, can be reduced temporally

Loss of data

- higher probability, has to be included in advance into the design (e.g., defects, theft)

limited computing power, low quality displays, small disks due to limited battery

Limited user interfaces

- compromise between size of fingers and portability
- integration of character/voice recognition, abstract symbols

Limited memory

- limited value of mass memories with moving parts
- flash-memory or ? as alternative

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

1.4. Wireless communication

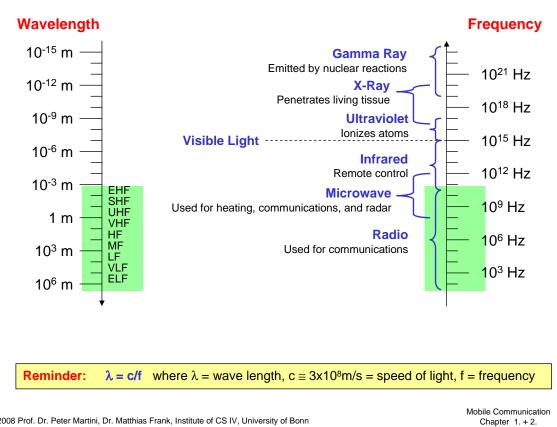
Obviously, user mobility is very limited in the wired world ...

1.4.1. The electromagnetic spectrum

1.4.2. Early history of wireless communication

1.4.3. History of wireless communication

1.4.4. Wireless systems: Overview of the development


1.4.5. Wireless networks in comparison to fixed networks

11

Mobile Communication

Chapter 1. + 2.

1.4.1. The electromagnetic spectrum

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Radio wavebands

Wavelength	Frequency	Common Name	Main Purposes
Above 100 km	Below 3 kHz	Extremely Low Frequency (ELF)	Submarine communications
10 -100 km	3 – 30 kHz	Very Low Frequency (VLF)	Maritime communications
1 -10 km	20 – 300 kHz	Low Frequency (LF) or Long Wave (LW)	AM broadcasting
100 -1000 m	300 -3000 kHz	Medium Frequency (MF) or Medium Wave (MW)	AM broadcasting
10 -100 m	3 – 30 MHz	High Frequency (HF) or Short Wave (SW)	AM broadcasting, amateur radio
1 -10 m	30 -300 MHz	Very High Frequency (VHF)	FM broadcasting, TV
0,1 -1 m	300 – 3000 MHz	Ultra High Frequency (UHF)	TV, cell phones
10 -100 mm	3 -30 GHz	Super High Frequency (SHF)	Fixed wireless, satellites
1 -10 mm	30 – 300 GHz	Extra High Frequency (EHF)	Satellites, radar

Source: Andy Dornan, "The Essential Guide to Wireless Communications Applications", Prentice Hall, 2001, p. 19, 20

14

Microwave wavebands

Wavelength	Frequency	Band	Main Communications Use
193 – 769 mm	0.4 – 1.5 GHz	L	Broadcasting and cellular
57.7 – 193 mm	1.5 – 5.2 GHz	S	Cellular
48.4 – 76.9 mm	3.9 – 6.2 GHz	С	Satellites
27.5 – 57.7 mm	5.2 – 10.9 GHz	х	Fixed wireless, satellite
8.34 – 27.5 mm	10.9 – 36 GHz	к	Fixed wireless, satellite
6.52 – 8.34 mm	36 – 46 GHz	Q	Fixed wireless
5.36 – 6.52 mm	46 - 56 GHz	V	Future satellite
3.00 – 5.36 mm	56 - 100 GHz	W	Future cellular

Source: Andy Dornan, "The Essential Guide to Wireless Communications Applications", Prentice Hall, 2001, p. 20

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

1.4.2. Early history of wireless communication

• Many people in history used light for communication

- heliographs, flags ("semaphore"), ...
- 150 BC smoke signals for communication; (Polybius, Greece)
- 1794, optical telegraph, Claude Chappe

Here electromagnetic waves are of special importance:

- 1831 Faraday demonstrates electromagnetic induction
- J. Maxwell (1831-79): theory of electromagnetic Fields, wave equations (1864)
- H. Hertz (1857-94): demonstrates with an experiment the wave character of electrical transmission through space (1888, in Karlsruhe, Germany, at the location of today's University of Karlsruhe)

Heinrich Hertz 1889 – 1894 Professor University of Bonn Chair of Physics (Physikalisches Institut)

Mobile Communication

Chapter 1. + 2.

JS

Mobile Communication

Chapter 1. + 2.

1.4.3. History of wireless communication

• 1895 Guglielmo Marconi

- first demonstration of wireless telegraphy (digital!)
- long wave transmission
 (high transmission power necessary, > 200kW)
- 1907 Commercial transatlantic connections
 - huge base stations (30 100m high antennas)
- 1915 Wireless voice transmission New York San Francisco
- 1920 Discovery of short waves by Marconi
 - reflection at the ionosphere
 - smaller sender and receiver, possible due to the invention of the vacuum tube (1906, Lee DeForest and Robert von Lieben)
- 1926 Train-phone on the line Hamburg Berlin
 - wires parallel to the railroad track

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

History of wireless communication (2)

- 1928 many TV broadcast trials (across Atlantic, color TV, TV news)
- 1933 Frequency modulation (E. H. Armstrong)
- 1958 A-Netz in Germany
 - analog, 160MHz, connection setup only from the mobile station, no handover, 80% coverage, 1971 11000 customers

• 1972 B-Netz in Germany

- analog, 160MHz, connection setup from the fixed network too (but location of the mobile station has to be known)
- available also in A, NL and LUX, 1979 13000 customer in D
- 1979 NMT at 450MHz (Scandinavian countries)
 - 1982 Start of GSM-specification – goal: pan-European digital mobile phone system with roaming
- **1983** Start of the American AMPS (Advanced Mobile Phone System, analog)
- 1984 CT-1 standard (Europe) for cordless telephones

Mobile Communication

Chapter 1. + 2.

History of wireless communication (3)

• 1986 C-Netz in Germany

- **analog** voice transmission, 450MHz, hand-over possible, digital signaling, automatic location of mobile device
- Was in use until 2000, services: FAX, modem, X.25, e-mail, 98% coverage

• 1991 Specification of DECT

- Digital European Cordless Telephone (today: Digital Enhanced Cordless Telecommunications)
- 1880-1900MHz, ~100-500m range, 120 duplex channels, 1.2Mbit/s data transmission, voice encryption, authentication, up to several 10000 user/km², used in more than 50 countries

• 1992 Start of GSM

- in D as D1 and D2, fully digital, 900MHz, 124 channels
- automatic location, hand-over, cellular
- roaming in Europe now worldwide in more than 170 countries
- services: data with 9.6kbit/s, FAX, voice, ...

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

History of wireless communication (4)

• 1994 E-Netz in Germany

- GSM with 1800MHz, smaller cells
- As Eplus in D (1997 98% coverage of the population)
- 1996 HiperLAN (High Performance Radio Local Area Network)
 - ETSI, standardization of type 1: 5.15 5.30GHz, 23.5Mbit/s
 - recommendations for type 2 and 3 (both 5GHz) and 4 (17GHz) as wireless ATMnetworks (up to 155Mbit/s)

• 1997 Wireless LAN - IEEE802.11

- IEEE standard, 2.4 2.5GHz and infrared, 2Mbit/s
- already many (proprietary) products available in the beginning

1998 Specification of GSM successors

 for UMTS (Universal Mobile Telecommunication System) as European proposals for IMT-2000

• Iridium

- 66 satellites (+6 spare), 1.6GHz to the mobile phone

20

19

JS

Mobile Communication

Chapter 1.+2

History of wireless communication (5)

cellular phones

Mobile Communication Chapter 1. + 2.

22

- 1999 Standardization of additional wireless LANs
 - IEEE standard 802.11b. 2.4-2.5GHz. 11Mbit/s
 - Bluetooth for piconets, 2.4Ghz, <1Mbit/s 2

Decision about IMT-2000

- Several "members" of a "family": UMTS, cdma2000, DECT, ...

Start of WAP (Wireless Application Protocol) and i-mode

- First step towards a unified Internet/mobile communication system
- Access to many services via the mobile phone

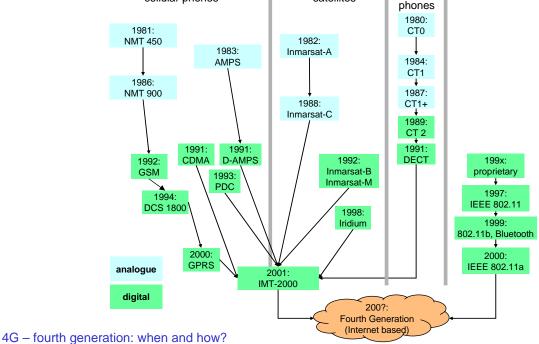
2000 GSM with higher data rates

- HSCSD offers up to 57,6kbit/s
- First GPRS trials with up to 50 kbit/s (packet oriented!)

UMTS auctions/beauty contests

 Hype followed by disillusionment (approx. 50 B\$ paid in Germany for 6 UMTS licences!)

2001 Start of 3G systems


- Cdma2000 in Korea, UMTS in Europe, Foma (almost UMTS) in Japan

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

1.4.4. Wireless systems: Overview of the development JS

satellites

cordless

21

Mobile Communication

Chapter 1. + 2.

wireless LAN

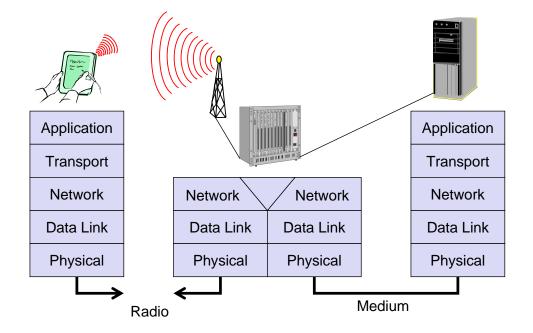
1.4.5. Wireless networks in comparison to fixed networks JS

Higher loss-rates due to interference

- emissions of, e.g., engines, lightning

Restrictive regulations of frequencies

- frequencies have to be coordinated, useful frequencies are almost all occupied
- Low transmission rates


•

- local some Mbit/s, regional currently, e.g., 9.6kbit/s with GSM
- Higher delays, higher jitter
 - connection setup time with GSM in the second range, several hundred milliseconds for other wireless systems
- Lower security, simpler active attacking
 - radio interface accessible for everyone, base station can be simulated, thus attracting calls from mobile phones
- Always shared medium
 - secure access mechanisms important

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

1.5. Mobile communication and the layer model

Wireless mobile communication obviously affects the **"last hop".** However, **tuning**, **changes** and/or **re-design** are also required in other places.

Mobile Communication

Chapter 1. + 2.

Mobile Communication Chapter 1. + 2.

23

JS

How mobile communication affects the layers

Application layer	 service location new applications, multimedia adaptive applications
Transport layer	 congestion and flow control quality of service
Network layer	addressing, routing,device locationhand-over
Data link layer	 authentication media access multiplexing media access control
Physical layer	 encryption modulation interference attenuation frequency

Copyright © 2008 Prof. Dr. Peter Martini, Dr. Matthias Frank, Institute of CS IV, University of Bonn

Mobile Communication Chapter 1. + 2.