Car-to-car Communication, Cognitive Radio and related Parallel Processing

15. July 2008

Edmund Coersmeier

1 © 2008 Nokia Vers1.0.ppt / 20. June 2008 / Edmund Coersmeier

Overview

- Car-to-car communication
- Cognitive Radio
- Software Radio
 - Channel estimation processing
 - Multicore processing
- Conclusion

Car-to-car communication

3 © 2008 Nokia Vers1.0.ppt / 20. june 2008/ Edmund Coersmeier

Basic idea

• Automatic car-to-car communication

Related Technologies

- Starting with established wireless technologies
- Include step-by-step latest wireless systems

Unicast versus Geocast

Dynamic Gateway

- No GPS positioning
- Cellular uplink node is established, when no other uplink is available
- Advantage
 - Communication range improved

Required cellular connections

• Both setups converge with increasing number of cars

Conclusion on Car-to-Car communication

- WLAN and latest cellular technologies can initiate car-to-car communication for consumer applications
- Dynamic Gateway approach more efficient than Geocast approach
- Both approaches are stable when number of cars increase

Cognitive Radio

11 © 2008 Nokia Vers1.0.ppt / 20. june 2008/ Edmund Coersmeier

Definition

- Cognitive Radio approach intends to efficiently utilize the limited wireless spectrum
- Cognitive Radio scans the spectrum and decides which spectrum is the best applicable for the corresponding wireless technology
- Cognitive Radio approach is based on three cognitive tasks
 - Radio-scene analysis (receiver)
 - Channel-state estimation and predictive modeling (receiver)
 - Transmit-power control and spectrum management (transmitter)

Cognitive Cycle [source: Simon Haykin]

Motivation

Requirement when combining Cognitive and Software Radio

- Cognitive Radio for spectrum efficiency
 - analyzing user application
 - definition of wireless requirements
 - spectrum scanning
 - definition of radio characteristics
- Software Radio
 - adjusts transmitter and receiver algorithms
 - transforms algorithms to an applicable architecture
 - maps the architecture on available processor platform
 - balances between different, parallel operating radios
- To achieve efficient receiver implementations Software Radio requires
 - strong flexibility in terms of
 - algorithm complexity
 - power consumption
 - support from Cognitive Radio

15 © 2008 Nokia Vers1.0.ppt / 20. june 2008/ Edmund Coersmeier

Cognitive Radio Enhancement

Channel-State Estimation

- Channel-State Estimate to judge about channel capacity
- Semi-blind training
 - Supervised training mode via short training sequence
 - Tracking via data feedback

Rate feedback to transmitter to setup

• data rate

Transmit Power Control

- Power initialization
- Inner Loop
 - Allocation of a number of channels
- Outer Loop investigates achieved data rate
 - exceeding
 - matching
 - undershooting

- Outer Loop adjusts the transmit power of each transmitter
 - All transmitters run from data-rate perspective with optimal transmit power
 - What is about the receiver complexity?

Cognitive Radio Enhancement

- Each receiver includes an option to ask for low receiver complexity
 - Transmit-power increase
 - High quality channel selection
- Transmit-power increase
 - Other transmitters reduce power
 - Other receivers increase complexity
- High quality channel selection
 - Find a better fitting free channel
 - Exchange already allocated channels

19 © 2008 Nokia Vers1.0.ppt / 20. june 2008/ Edmund Coersmeier

Receiver Algorithms with different Complexities

- Different receiver complexities based on channel-state estimation
- Receiver complexities can change at any time

Multicore Processing for Software Radio Architecture

21 © 2008 Nokia Vers1.0.ppt / 20. june 2008/ Edmund Coersmeier

Motivation

• Number of wireless technologies rises quickly

- Phone form factors limit the number of dedicated chip sets
- Different mobile device use cases require different technology combinations
- Implementation costs are high if dedicated digital baseband chips are used

How to reduce number of dedicated digital baseband chips?

Upper Radio Layers

 Starting position PHY BB Radio controller GSM ΒT GPS WLAN DVB-H • Idea – replace digital dedicated baseband chip sets by multi-processor platform **Upper Radio Layers** PHY BB Radio controller Solution G Multi-Processor-Baseband-Engine NOKIA 23 © 2008 Nokia Vers1.0.ppt / 20. june 2008/ Edmund Coersmeier

Channel Estimation Processing

Processor Load as Measure for Algorithm Complexity

Channel Estimation via Wiener filter

- The channel transfer function $\hat{\mathbf{H}}$ can be interpolated from pilot carriers using the Wiener filter equation

$$\mathbf{\hat{H}} = \mathbf{R}_{HH_{P}} \left(\mathbf{R}_{H_{P}H_{P}} + \frac{\boldsymbol{\beta}}{SNR} \mathbf{I} \right)^{-1} \mathbf{H}_{P}$$

- Performance can be improved if filter coefficients are computed online (no precomputation)
- In this case matrix inversion is the most time consuming task

Processing for Channel Estimation

27 © 2008 Nokia Vers1.0.ppt / 20. june 2008/ Edmund Coersmeier

Processing in Frequency Direction

Channel Estimation Optimization

29 © 2008 Nokia Vers1.0.ppt / 20. june 2008/ Edmund Coersmeier

Changing Channel Properties

Reducing Processor Load

31 © 2008 Nokia Vers1.0.ppt / 20. june 2008/ Edmund Coersmeier

Conclusion – Channel Estimation

- Channel estimation based on run-time coefficient calculation is complex
- Channel properties need to be monitored
- Dynamic coefficient update leads to significant SW radio power reduction

Mapping traditional Algorithms on Multi-Processor Platforms

33 © 2008 Nokia Vers1.0.ppt / 20. june 2008/ Edmund Coersmeier

Matrix Inversion

- Toeplitz matrix inversion is a key mathematic operation for online Wiener filter coefficient calculation to enable high performance channel estimation
- Evaluation is done in ARM Realview EB Rev. B MPCore platform
 - CT11MPCore
 - 4 x ARM11 CPU with 200MHz core frequency
 - L1 cache with 32kB memory for data, 32kB memory for instructions
 - unified L2 cache 1MB running at core frequency 200MHz (shared memory)
 - L220 cache controller
 - external bus frequency 20MHz
 - no floating point co-processors used
- Matrix inversions are based on C++ code with 64-Bit floating point arithmetic
- Integer modeling / word-length limits will decrease relative speed-up because
 - times between synchronization points will decrease
 - relative increase of synchronization overhead

Single-CPU versus Multi-Cores

- ARM processors scale execution time to the expected operation count
- Cholesky, LDT, QR are separated into 4 cores, ST includes only 2 cores
- Only inversion of large matrices (> 100x100) is improved a little bit from speed perspective

Speed up through Multi-Threading

35

- Speed up from -360% up to only +10.7% whereas 400% theoretically possible
- Algorithms can slow down when matrix calculation is faster than synchronization
- Most complex algorithms QR and Cholesky most significantly speed up

Analyzing Matrix Inversion Results

- The longer math calculation versus thread synchronization time the better speed up
- For large matrices, calculation starts to be longer than synchronization time
 - But speed up is far from factor 2 or 4 which could be theoretically possible
 - Data interdependency inside the algorithms are high

<u>To utilize multi-processor platform processing power</u> <u>a significant change of data dependencies is required</u>

37 © 2008 Nokia Vers1.0.ppt / 20. june 2008/ Edmund Coersmeier

Receiver scaling through multi-processor platforms

- Pure hardware-optimized design can be replaced by multi-processor platform
- Several radios and their algorithms run in parallel
- The same radio functions need to optimally fit on different processor types

A change of mathematics fitting to different processor types is required

Example of parallel radio algorithms – channel decoding

- Viterbi
 - high signal processing performance
 - optimal for hardware implementation
 - sub-optimal for software radio approach
 - difficult to parallelize
- Recurrent Neural Networks
 - do not outperform Viterbi signal processing performance
 - similar mathematics as adaptive filters
 - easy to parallelize several networks

$$\min_{\mathbf{w}(n)} \left\| e(n) \right\|_{2}^{2} = \min_{\mathbf{w}(n)} \left\| \mathbf{X}(n) \mathbf{w}(n) - \widetilde{y}(n) \right\|_{2}^{2}$$

Least-Squares - Adaptive Filter

 $\min_{\mathbf{c}} \left\| \mathbf{e} \right\|_{2}^{2} = \min_{\mathbf{c}} \left\| \mathbf{r} - \mathbf{c} \right\|_{2}^{2} = \min_{\mathbf{a}} \left\| \mathbf{r} - \mathbf{G}^{T} \mathbf{a} \right\|_{2}^{2}$

Recurrent Neural Network

N-parallel channel decoders

- Run several networks in parallel
- The more networks, the higher the channel decoding performance
- Each network
 - operates independently of all others
 - works on the same data set
- Research topic optimize complexity of each channel decoder network

Scalability introduces flexibility for the multi-processor platform processor load

41 © 2008 Nokia Vers1.0.ppt / 20. june 2008/ Edmund Coersmeier

Simulation results for recurrent neural networks

- Number of Recurrent Neural Networks can be adjusted to channel quality
- Optimal design approach for multi-processor platforms

Acknowledgment

The presented work was partly carried out within the German funded BMBF-project

3GET - 3G Evolving Technologies No. 01 – BU - 356

The authors have the responsibility for the content of this presentation

43 © 2008 Nokia Vers1.0.ppt / 20. june 2008/ Edmund Coersmeier

Conclusion – Multicore Processing

- Parallel processor platform should be able to replace optimized hardware
- <u>To utilize multi-processor platform processing power a significant change in</u> <u>algorithm data dependencies is required</u>
- Software Radio needs to handle several radios in parallel
- <u>A change of mathematics fitting to different processor types is required</u>
- <u>Radio functions need to be scalable</u> to balance
 - required system performance
 - multi-processor platform load

44 © 2008 Nokia Vers1.0.ppt / 20. june 2008/ Edmund Coersmeier

