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Abstract—Decompilation is important for many security appli-
cations; it facilitates the tedious task of manual malware reverse
engineering and enables the use of source-based security tools on
binary code. This includes tools to find vulnerabilities, discover
bugs, and perform taint tracking. Recovering high-level control
constructs is essential for decompilation in order to produce
structured code that is suitable for human analysts and source-
based program analysis techniques. State-of-the-art decompilers
rely on structural analysis, a pattern-matching approach over
the control flow graph, to recover control constructs from
binary code. Whenever no match is found, they generate goto
statements and thus produce unstructured decompiled output.
Those statements are problematic because they make decompiled
code harder to understand and less suitable for program analysis.

In this paper, we present DREAM, the first decompiler
to offer a goto-free output. DREAM uses a novel pattern-
independent control-flow structuring algorithm that can recover
all control constructs in binary programs and produce structured
decompiled code without any goto statement. We also present
semantics-preserving transformations that can transform unstruc-
tured control flow graphs into structured graphs. We demonstrate
the correctness of our algorithms and show that we outperform
both the leading industry and academic decompilers: Hex-Rays
and Phoenix. We use the GNU coreutils suite of utilities as a
benchmark. Apart from reducing the number of goto statements
to zero, DREAM also produced more compact code (less lines of
code) for 72.7% of decompiled functions compared to Hex-Rays
and 98.8% compared to Phoenix. We also present a comparison
of Hex-Rays and DREAM when decompiling three samples from
Cridex, ZeusP2P, and SpyEye malware families.

I. INTRODUCTION

Malicious software (malware) is one of the most serious
threats to the Internet security today. The level of sophistication
employed by current malware continues to evolve significantly.
For example, modern botnets use advanced cryptography, com-
plex communication and protocols to make reverse engineering
harder. These security measures employed by malware authors
are seriously hampering the efforts by computer security
researchers and law enforcement [4, 32] to understand and
take down botnets and other types of malware. Developing

effective countermeasures and mitigation strategies requires a
thorough understanding of functionality and actions performed
by the malware. Although many automated malware analysis
techniques have been developed, security analysts often have
to resort to manual reverse engineering, which is difficult and
time-consuming. Decompilers that can reliably generate high-
level code are very important tools in the fight against malware:
they speed up the reverse engineering process by enabling
malware analysts to reason about the high-level form of code
instead of its low-level assembly form.

Decompilation is not only beneficial for manual analy-
sis, but also enables the application of a wealth of source-
based security techniques in cases where only binary code
is available. This includes techniques to discover bugs [5],
apply taint tracking [10], or find vulnerabilities such as RICH
[7], KINT [38], Chucky [42], Dowser [24], and the property
graph approach [41]. These techniques benefit from the high-
level abstractions available in source code and therefore are
faster and more efficient than their binary-based counterparts.
For example, the average runtime overhead for the source-
based taint tracking system developed by Chang et al. [10] is
0.65% for server programs and 12.93% for compute-bound
applications, whereas the overhead of Minemu, the fastest
binary-based taint tracker, is between 150% and 300% [6].

One of the essential steps in decompilation is control-flow
structuring, which is a process that recovers the high-level
control constructs (e.g., if-then-else or while loops) from
the program’s control flow graph (CFG) and thus plays a vital
role in creating code which is readable by humans. State-of-
the-art decompilers such as Hex-Rays [22] and Phoenix [33]
employ structural analysis [31, 34] (§II-A3) for this step. At a
high level, structural analysis is a pattern-matching approach
that tries to find high-level control constructs by matching
regions in the CFG against a predefined set of region schemas.
When no match is found, structural analysis must use goto
statements to encode the control flow inside the region. As a
result, it is very common for the decompiled code to contain
many goto statements. For instance, the de facto industry stan-
dard decompiler Hex-Rays (version v2.0.0.140605) produces
1,571 goto statements for a peer-to-peer Zeus sample (MD5
hash 49305d949fd7a2ac778407ae42c4d2ba) that consists of
997 nontrivial functions (functions with more than one basic
block). The decompiled malware code consists of 49,514 lines
of code. Thus, on average it contains one goto statement for
each 32 lines of code. This high number of goto statements
makes the decompiled code less suitable for both manual
and automated program analyses. Structured code is easier to
understand [16] and helps scale program analysis [31]. The
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research community has developed several enhancements to
structural analysis to recover control-flow abstractions. One of
the most recent and advanced academic tools is the Phoenix
decompiler [33]. The focus of Phoenix and this line of research
in general is on correctly recovering more control structure and
reducing the number of goto statements in the decompiled
code. While significant advances are being made, whenever
no pattern match is found, goto statements must be used
and this is hampering the time-critical analysis of malware.
This motivated us to develop a new control-flow structuring
algorithm that relies on the semantics of high-level control
constructs rather than the shape of the corresponding flow
graphs.

In this paper, we overcome the limitations of structural
analysis and improve the state of the art by presenting a novel
approach to control-flow structuring that is able to recover
all high-level control constructs and produce structured code
without a single goto statement. To the best of our knowledge,
this is the first control-flow structuring algorithm to offer a
completely goto-free output. The key intuition behind our
approach is based on two observations: (1) high-level control
constructs have a single entry point and a single successor
point, and (2) the type and nesting of high-level control
constructs are reflected by the logical conditions that determine
when CFG nodes are reached. Given the above intuition,
we propose a technique, called pattern-independent control
flow structuring, that can structure any region satisfying the
above criteria without any assumptions regarding its shape.
In case of cyclic regions with multiple entries or multiple
successors, we propose semantics-preserving transformations
to transform those regions into semantically equivalent single-
entry single-successor regions that can be structured by our
pattern-independent approach.

We have implemented our algorithm in a decompiler called
DREAM (Decompiler for Reverse Engineering and Analysis
of Malware). Based on the implementation, we measure our
results with respect to correctness and compare DREAM to two
state-of-the-art decompilers: Phoenix and Hex-Rays.

In summary, we make the following contributions:

• We present a novel pattern-independent control-flow
structuring algorithm to recover all high-level control
structures from binary programs without using any goto
statements. Our algorithm can structure arbitrary control
flow graphs without relying on a predefined set of region
schemas or patterns.

• We present new semantics-preserving graph restructuring
techniques that transform unstructured CFGs into a se-
mantically equivalent form that can be structured without
goto statements.

• We implement DREAM, a decompiler containing both
the pattern-independent control-flow structuring algo-
rithm and the semantics-preserving graph restructuring
techniques.

• We demonstrate the correctness of our control-flow struc-
turing algorithm using the joern C/C++ code parser and
the GNU coreutils.

• We evaluate DREAM against the Hex-Rays and Phoenix
decompilers based on the coreutils benchmark.
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Fig. 2: Example of structural analysis.

• We use DREAM to decompile three malware samples from
Cridex, ZeusP2P and SpyEye and compare the results
with Hex-Rays.

II. BACKGROUND & PROBLEM DEFINITION

In this section, we introduce necessary background con-
cepts, define the problem of control-flow structuring and
present our running example.

A. Background

We start by briefly discussing two classic representations
of code used throughout the paper and provide a high-level
overview of structural analysis. As a simple example illustrat-
ing the different representations, we consider the code sample
shown in Figure 1a.

1) Abstract Syntax Tree (AST): Abstract syntax trees are
ordered trees that represent the hierarchical syntactic structure
of source code. In this tree, each interior node represents an
operator (e.g., additions, assignments, or if statements). Each
child of the node represents an operand of the operator (e.g.,
constants, identifiers, or nested operators). ASTs encode how
statements and expressions are nested to produce a program.
As an example, consider Figure 1b showing an abstract syntax
tree for the code sample given in Figure 1a.

2) Control Flow Graph (CFG): A control flow graph of
a program P is a directed graph G = (N,E, nh). Each node
n ∈ N represents a basic block, a sequence of statements
that can be entered only at the beginning and exited only
at the end. Header node nh ∈ N is P ’s entry. An edge
e = (ns, nt) ∈ E represents a possible control transfer from
ns ∈ N to nt ∈ N . A tag is assigned to each edge to represent
the logical predicate that must be satisfied so that control
is transferred along the edge. We distinguish between two
types of nodes: code nodes represent basic blocks containing
program statements executed as a unit, and condition nodes
represent testing a condition based on which a control transfer
is made. We also keep a mapping of tags to the corresponding
logical expressions. Figure 1c shows the CFG for the code
sample given in Figure 1a.

3) Structural Analysis: At a high level, the traditional
approach of structural analysis relies on a predefined set of
patterns or region schemas that describe the shape of high-
level control structures (e.g., while loop, if-then-else
construct). The algorithm iteratively visits all nodes of the CFG
in post-order and locally compares subgraphs to its predefined
patterns. When a match is found, the corresponding region is
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1 int foo(){
2 int i = 0;
3 while(i < MAX){
4 print(i);
5 i = i + 1;
6 }
7 return i;
8 }

(a) Exemplary code sample
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(b) Abstract Syntax Tree

int i = 0

c: i < MAX

print(i)
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c

¬c

(c) Control Flow Graph

Fig. 1: Code representations.

collapsed to one node of corresponding type. If no match is
found, goto statements are inserted to represent the control
flow. In the literature, acyclic and cyclic subgraphs for which
no match is found are called proper and improper intervals,
respectively. For instance, Figure 2 shows the progression of
structural analysis on a simple example from left to right.
In the initial (leftmost) graph nodes n1 and c2 match the
shape of a while loop. Therefore, the region is collapsed
into one node that is labeled as a while region. The new
node is then reduced with node c1 into an if-then region
and finally the resulting graph is reduced to a sequence. This
series of reductions are used to represent the control flow as
if (c1) {while (¬c2) {n1}} ;n2

B. Problem Definition

Given a program P in CFG form, the problem of control-
flow structuring is to recover high-level, structured control con-
structs such as loops, if-then and switch constructs from
the graph representation. An algorithm that solves the control-
flow structuring problem is a program transformation function
fP that returns, for a program’s control flow graph PCFG, a
semantically equivalent abstract syntax tree PAST. Whenever
fP cannot find a high-level structured control construct it
will resort to using goto statements. In the context of this
paper, we denote code that does not use goto statements as
structured code. The control-flow of P can be represented in
several ways, i.e., several correct ASTs may exist. In its general
form structural analysis can and usually does contain goto
statements to represent the control flow. Our goal is to achieve
fully structured code, i.e., code without any goto. For this, we
restrict the solution space to structured solutions. That is, all
nodes n ∈ PAST representing control constructs must belong
to the set of structured constructs shown in Table I. The table
does not contain for loops since these are not needed at this
stage of the process. for loops are recovered during our post-
structuring optimization step to enhance readability (§VI).

C. Running Example

As an example illustrating a sample control flow graph and
running throughout this paper, we consider the CFG shown in
Figure 3. In this graph, code nodes are denoted by ni where i
is an integer. Code nodes are represented in white. Condition
nodes are represented in blue and labeled with the condition
tested at that node. The example contains three regions that we

TABLE I: AST nodes that represent high-level control con-
structs

AST Node Description

Seq [ni]
i∈1..k

Sequence of nodes [n1, . . . , nk] executed in
order. Sequences can also be represented as
Seq [n1, . . . , nk].

Cond [c, nt, nf ]
If construct with a condition c, a true branch nt

and a false branch nf . It may have only one
branch.

Loop [τ, c, nb]
Loop of type τ ∈ {τwhile, τdowhile, τendless}
with continuation condition c and body nb.

Switch [v, C, nd]

Switch construct consisting of a variable v, a
list of cases C = [(V1, n1) , . . . , (Vk, nk)], and
a default node nd. Each case (Vi, ni) represents
a node ni that is executed when v ∈ Vi

use to illustrate different parts of our structuring algorithm. R1

represents a loop that contains a break statement resulting in
an exit from the middle of the loop to the successor node.
R2 is a proper interval (also called abnormal selection path).
In this region, the subgraph headed at b1 cannot be structured
as an if-then-else region due to an abnormal exit caused
by the edge (b2, n6). Similarly, the subgraph with the head
at b2 cannot be structured as if-then-else region due to
an abnormal entry caused by the edge (n4, n5). Due to this,
structural analysis represents at least one edge in this region
as a goto statement. The third region, R3, represents a loop
with an unstructured condition, i.e., it cannot be structured by
structural analysis. These three regions where chosen such that
the difficulty for traditional structuring algorithms increases
from R1 to R3. The right hand side of Figure 5 shows how
the structuring algorithm of Hex-Rays structures this CFG.
For comparison, the left hand side shows how the algorithms
developed over the course of this paper structure the CFG.
As can be seen for the three regions, the traditional approach
produces goto statements and thus impacts readability. Even
in this toy example a non-negligible amount of work needs to
be invested to extract the semantics of region R3. In contrast,
using our approach, the entire region is represented by a
single while loop with a single clear and understandable
continuation condition.
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¶ Control-Flow Structuring

Pattern-Independent
Structuring

Semantics-Preserving
Transformations

IF

!=

v n

WHILE

<

i MAX

...

· Post-Structuring Optimzations

Control Constructs Simplification

String Functions Outlining

Variable Renaming

IF

!=

v n

CALL

foo

Fig. 4: Architecture of our approach. We first compute the abstract syntax tree using pattern-independent structuring and semantics-
preserving transformations (¶). Then, we simplify the computed AST to improve readability (·).
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Fig. 3: Running example. Sample CFG that contains three
regions: a while loop with a break statement (R1), a proper
interval (R2), and a loop with unstructured condition (R3).

III. DREAM OVERVIEW

DREAM consists of several stages. First, the binary file is
parsed and the code is disassembled. This stage builds the
CFG for all binary functions and transforms the disassembled
code into DREAM’s intermediate representation (IR). There
are several disassemblers and binary analysis frameworks that
already implement this step. We use IDA Pro [2]. Should the
binary be obfuscated tools such as [27] and [43] can be used
to extract the binary code.

The second stage performs several data-flow analyses in-
cluding constant propagation and dead code elimination. The
third stage infers the types of variables. Our implementation
relies on the concepts employed by TIE [29]. The forth and
last phase is control-flow structuring that recovers high-level
control constructs from the CFG representation. The first three
phases rely on existing work and therefore will not be covered
in details in this paper. The remainder of this paper focuses on
the novel aspects of our research concerning the control-flow
structuring algorithm.

i f (A)
do

whi le(c1)
n1

i f (c2)
n2

break
n3

whi le(c3)
e l s e

i f (¬b1)
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i f (b1 ∧ b2)
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e l s e
n5
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whi le ( 1 )
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n5
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i f (¬d3)

goto LABEL_4
LABEL_3 :

n8

i f (d2 )
goto LABEL_3

LABEL_4 :
n9

R1

R2

R3

Fig. 5: Decompiled code generated by DREAM (left) and by
Hex-Rays (right). The arrows represent the jumps realized by
goto statements.

A high-level overview of our approach is presented in
Figure 4. It comprises two phases: control-flow structuring,
and post-structuring optimizations. The first phase is our
algorithm to recover control-flow abstractions and computes
the corresponding AST. Next, we perform several optimization
steps to improve readability.

Our control-flow structuring algorithm starts by performing
a depth-first traversal (DFS) over the CFG to find back
edges which identify cyclic regions. Then, it visits nodes in
post-order and tries to structure the region headed by the
visited node. Structuring a region is done by computing the
AST of control flow inside the region and then reduce it
into an abstract node. Post-order traversal guarantees that all
descendants of a given node n are handled before n is visited.
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When at node n, our algorithm proceeds as follows: if n is
the head of an acyclic region, we compute the set of nodes
dominated by n and structure the corresponding region if it
has a single successor (§IV-B). If n is the head of a cyclic
region, we compute loop nodes. If the corresponding region
has multiple entry or successor nodes, we transform it into a
semantically equivalent graph with a single entry and a single
successor (§V) and structure the resulting region (§IV-C).
The last iteration reduces the CFG to a single node with the
program’s AST.

Pattern-independent structuring. We use this approach to
compute the AST of single-entry and single-successor regions
in the CFG. The entry node is denoted as the region’s header.
Our approach to structuring acyclic regions proceeds as fol-
lows: first, we compute the lexical order in which code nodes
should appear in the decompiled code. Then, for each node
we compute the condition that determines when the node is
reached from the region’s header (§IV-A), denoted by reaching
condition. In the second phase, we iteratively group nodes
based on their reaching conditions and reachability relations
into subsets that can be represented using if or switch
constructs. In the case of cyclic regions, our algorithm first
represents edges to the successor node by break statements.
It then computes the AST of the loop body (acyclic region). In
the third phase, the algorithm finds the loop type and condition
by first assuming an endless loop and then reasoning about the
whole structure. The intuition behind this approach is that any
loop can be represented as endless loop with additional break
statements. For example, a while loop while (c) {body;} can
be represented by while (1) {if (¬c) {break;}body;}.

Semantics-preserving transformations. We transform cyclic
regions with multiple entries or multiple successors into se-
mantically equivalent single-entry single-successor regions.
The key idea is to compute the unique condition cond (n)
based on which the region is entered at or exited to a given
node n, and then redirect corresponding edges into a unique
header/successor where we add a series of checks that take
control flow from the new header/successor to n if cond (n)
is satisfied.

Post-structuring optimizations. After having recovered the
control flow structure represented by the computed AST, we
perform several optimization steps to improve readability.
These optimizations include simplifying control constructs
(e.g., transforming certain while loops into for loops), out-
lining common string functions, and giving meaningful names
to variables based on the API calls.

IV. PATTERN-INDEPENDENT CONTROL-FLOW
STRUCTURING

In this section we describe our pattern-independent struc-
turing algorithm to compute the AST of regions with a single
entry (h) and single successor node, called region header
and region successor. The first step necessary is to find the
condition that determines when each node is reached from the
header.

Algorithm 1: Graph Slice
Input : Graph G = (N,E, h); source

node ns; sink node ne
Output: SG(ns, ne)

1 SG ← ∅;
2 dfsStack ← {ns};
3 while E has unexplored edges do
4 e := DFSNextEdge(G);
5 nt := target(e);
6 if nt is unvisited then
7 dfsStack.push(nt);
8 if nt = ne then
9 AddPath(SG, dfsStack)

10 end
11 else if nt ∈ SG ∧ nt /∈ dfsStack

then
12 AddPath(SG, dfsStack)
13 end
14 RemoveVisitedNodes()
15 end

d1

d2d3

n9

¬d1d1

¬d2¬d3

Fig. 6:
SG (d1, n9)
of running
example

A. Reaching Condition

In this section, we discuss our algorithm to find the
condition that takes the control flow from node ns to node
ne, denoted by reaching condition cr (ns, ne). This step is es-
sential for our pattern-independent structuring and guarantees
the semantics-preserving property of our transformations (§V).

1) Graph Slice: We introduce the concept of the graph
slice to compute the reaching condition between two nodes.
We define the graph slice of graph G (N,E, nh) from a source
node ns ∈ N to a sink node ne ∈ N , denoted by SG (ns, ne),
as the directed acyclic graph Gs (Ns, Es, ns), where Ns is
the set of nodes on simple paths from ns to ne in G and
Es is the set of edges on simple paths from ns to ne in G.
We only consider simple paths since the existence of cycles
on a path between two nodes does not affect the condition
based on which one is reached from the other. Intuitively,
we are only interested in the condition that causes control
to leave the cycle and get closer to the target node. A path
p that includes a cycle can be decomposed into two disjoint
components: simple-path component ps and cycle component
pc. The target node is reached if only ps is followed (cycle is
not executed) or if ps and pc are traversed (cycle is executed).
Therefore, the condition represented by p is cond (p) =
cond (ps)∨ [cond (ps) ∧ cond (pc)]. The last logical expres-
sion can be rewritten as cond (ps) ∧ [1 ∨ cond (pc)] which
finally evaluates to cond (ps).

Algorithm 1 computes the graph slice by performing depth-
first traversal of the CFG starting from the source node. The
slice is augmented whenever the traversal discovers a new
simple path to the sink. The algorithm uses a stack data
structure, denoted by dfsStack, to represent the currently
explored simple path from the header node to the currently
visited node. Nodes are pushed to dfsStack upon first-time
visit (line 7) and popped when all their descendants have been
discovered (line 14). In each iteration of edge exploration,
the current path represented by dfsStack is added to the
slice when traversal reaches the sink node (line 9) or when it
discovers a simple path to a slice node (line 12). The last step
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is justified by the fact that any slice node n has a simple path
to the sink node. The path represented by dfsStack and the
currently explored edge e is simple if the target node of e is
not in dfsStack.

We extend Algorithm 1 to calculate the graph slice from
a given node to a set of sink nodes. For this purpose, we
first create a virtual sink node nv , add edges from the sink
set to nv , compute SG (ns, nv), and finally remove nv and
its incoming edges. Figure 6 shows the computed graph slice
between nodes d1 and n9 in our running example. The slice
shows that n9 is reached from d1 if and only if the condition
(d1 ∧ ¬d3) ∨ (¬d1 ∧ ¬d2) is satisfied.

2) Deriving and Simplifying Conditions: After having com-
puted the slice SG (ns, ne), the reaching conditions for all slice
nodes can be computed by one traversal over the nodes in
their topological order. This guarantees that all predecessors
of a node n are handled before n. To compute the reaching
condition of node n, we need the reaching conditions of its
direct predecessors and the tags of incoming edges from these
nodes. Specifically, we compute the reaching conditions using
the formula:

cr (ns, n) =
∨

v∈Preds(n)

(cr (ns, v) ∧ τ(v, n))

where Preds (n) returns the immediate predecessors of node
n and τ (v, n) is the tag assigned to edge (v, n). Then, we
simplify the logical expressions.

B. Structuring Acyclic Regions

The key idea behind our algorithm is that any directed
acyclic graph has at least one topological ordering defined by
its reverse postordering [14, p. 614]. That is, we can order
its nodes linearly such that for any directed edge (u, v), u
comes before v in the ordering. Our approach to structuring
acyclic region proceeds as follows. First, we compute reaching
conditions from the region header h to every node n in the
region. Next, we construct the initial AST as sequence of
code nodes in topological order associated with corresponding
reaching conditions, i.e., it represents the control flow in-
side the region as if (cr (h, n1)) {n1} ; . . . ; if (cr (h, nk)) {nk}.
Obviously, the initial AST is not optimal. For example,
nodes with complementary conditions are represented as two
if-then constructs if (c) {nt} if (¬c) {nf} and not as one
if-then-else construct if (c) {nt} else {nf}. Therefore, in
the second phase, we iteratively refine the initial AST to find
a concise high-level representation of control flow inside the
region.

1) Abstract Syntax Tree Refinement: We apply three re-
finement steps to AST sequence nodes. First, we check if
there exist subsets of nodes that can be represented using
if-then-else. We denote this step by condition-based re-
finement since it reasons about the logical expressions rep-
resenting nodes’ reaching conditions. Second, we search for
nodes that can be represented by switch constructs. Here,
we also look at the checks (comparisons) represented by
each logical variable. Hence, we denote it by condition-aware
refinement. Third, we additionally use the reachability relations
among nodes to represent them as cascading if-else con-
structs. The third step is called reachability-based refinement.

At a high level, our refinement steps iterate over the
children of each sequence node V and choose a subset Vc ∈ V
that satisfies a specific criterion. Then, we construct a new
compound AST node vc that represents control flow inside
Vc and replaces it in a way that preserves the topological
order of V . That is, vc is placed after all nodes reaching it
and before all nodes reached from it. Note that we define
reachability between two AST nodes in terms of corresponding
basic blocks in the CFG, i.e., let u, v be two AST nodes, u
reaches v if u contains a basic block that reaches a basic block
contained in v.

Condition-based Refinement. Here, we use the observation
that nodes belonging to the true branch of an if construct with
condition c is executed (reached) if and only if c is satisfied.
That is, the reaching condition of corresponding node(s) is an
AND expression of the form c∧R. Similarly, nodes belonging
to the false branch have reaching conditions of the form ¬c∧R.
This refinement step chooses a condition c and divides children
nodes into three groups: true-branch candidates Vc, false-
branch candidates V¬c, and remaining nodes. If the true-branch
and false-branch candidates contain more than two nodes, i.e.,
|Vc| + |V¬c| ≥ 2, we create a condition node vc for c with
children {Vc, V¬c} whose conditions are replaced by terms R.
Obviously, the second term of logical AND expressions (c or
¬c) is implied by the conditional node.

The conditions that we use in this refinement are chosen
as follows: we first check for pairs of code nodes (ni, nj)
that satisfy cr (h, ni) = ¬cr (h, nj) and group according
to cr (h, ni). These conditions correspond to if-then-else
constructs, and thus are given priority. When no such pairs
can be found, we traverse all nodes in topological order
(including conditional nodes) and check if nodes can be
structured by the reaching condition of the currently visited
node. Intuitively, this traversal mimics the nesting order by
visiting the topmost nodes first. Clustering according to the
corresponding conditions allows to structure inner nodes by
removing common factors from logical expressions. Therefore,
we iteratively repeat this step on all newly created sequence
nodes to find further nodes with complementing conditions.

In our running example, when the algorithm structures the
acyclic region headed at node b1 (region R2), it computes
the initial AST as shown in Figure 7. Condition nodes are
represented by white nodes with up to two outgoing edges
that represent when the condition is satisfied (black arrowhead)
or not (white arrowhead). Sequence nodes are depicted by
blue nodes. Their children are ordered from left to right in
topological order. Leaf nodes (rectangles) are the basic blocks.
The algorithm performs a condition-based refinement wrt.
condition b1 ∧ b2 since nodes n5 and n6 have complementary
conditions. This results in three clusters Vb1∧b2 = {n6},
V¬(b1∧b2) = {n5}, and Vr = {n4} and leads to creating a
condition node. At this point, no further condition-based re-
finement is possible. Cifuentes proposed a method to structure
compound conditions by defining four patterns that describe
the shape of subgraphs resulting from short circuit evaluation
of compound conditions [11]. Obviously, this method fails if
no match to these patterns is found.

Condition-aware Refinement. This step checks if the child
nodes, or a subset of them, can be structured as a switch
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SEQ

n6

b1∧b2

n4

¬b1

n5

¬b1∨¬b2

n7

SEQ

n4

¬b1

b1∧b2

n5 n6

n7

SEQ

b1∧b2¬b1

n4 n5 n6

n7

Fig. 7: Development of the initial AST when structuring the
region R2 in the running example. The initial AST (left)
is refined by a condition-based refinement with respect to
condition b1∧ b2 (middle). Finally, a condition node is created
for n4 (right).

construct. We apply this refinement when no further progress
can be made by condition-based refinement and the AST has
sequence nodes with more than two children. Here, we use
the observation that in a switch construct with variable x,
reaching conditions of case nodes are comparisons of x with
scalar constants. A given case node is reached if x is equal to
the case value or the preceding case node does not end with
a break statement. As a result, the reaching condition is an
equality check x ?

= c where c is a scalar constant or a logical
OR expression of such checks. The reaching condition for the
default case node, if it exists, can additionally contain checks
for x such as ≥ with constants.

Our approach is to first search for a switch candidate
node whose reaching condition is a comparison of a variable
with a constant. We then cluster the remaining nodes in the
sequence based on the type of their reaching conditions into
three groups: case candidates Vc, default candidates Vd , and
remaining items Vr. If at least two case nodes are found, i.e.,
|Vc|+ |Vd| ≥ 3, we construct a switch node vs that replaces
Vc∪Vd in the sequence. We compute the values associated with
each case and determine whether the case ends with a break
statement depending on the corresponding node’s reaching
condition. For this purpose, we traverse case candidate nodes
in topological order which defines the lexical order of cases
in the switch construct. When at node n, we check if the
reaching condition of a subsequent case node v is a logical OR
expression of the form cr (h, v) = cr (h, n)∨Rn. This means
that if n is reached, then v is also reached and thus n does
not end with a break statement. The set of values associated
to case node n is Vn \ Vp where Vn is the set of constants
checked in the reaching condition of node n and Vp is the set
of values of previous cases.

Reachability-based Refinement. This is the last refinement
that we apply when no further condition-based and condition-
aware refinements are possible. Intuitively, a set of nodes N =
{n1, . . . , nk} with nontrivial reaching conditions {c1, . . . , ck},
i.e. ∀i ∈ [1, k] : ci 6= true, can be represented as cas-
cading if-else constructs if the following conditions are
satisfied: First, there exists no path between any two nodes
in N . Second, the OR expression of their reaching conditions
evaluates to true, i.e.,

∨
1≤i≤k ci = true. These nodes can be

represented as if (c1) {n1} . . . else if (ck−1) {nk−1} else {nk}.
This eliminates the need to explicitly include condition ck in
the decompiled code as it is implied by the last else. The
main idea is to group nodes that satisfy these conditions and

construct cascading condition nodes to represent them. That
is, for each node ni ∈ N , we construct a condition node with
condition ci whose true branch is node ni and the false branch
is the next condition node for ci+1 (if i < k − 1) or nk (if
i = k − 1).

We iteratively process sequence nodes and construct clus-
ters Nr that satisfy the above conditions. In each iteration,
we initialize Nr to contain the last sequence node with a
nontrivial reaching condition and traverse the remaining nodes
backwards. A node u is added to Nr if ∀n ∈ Nr : u9 n since
the topological order implies that no node in Nr has a path
to n (this would cause this node to be before n in the order).
We stop when the logical OR of reaching conditions evaluates
to true. Since nodes in Nr are unreachable from each other,
any ordering of them is a valid topological order. With the
goal of producing well-readable code, we sort nodes in Nr by
increasing complexity of the logical expressions representing
their reaching conditions defined as the expression’s number of
terms. Finally, we build the corresponding cascading condition
nodes.

C. Structuring Cyclic Regions

A loop is characterized by the existence of a back edge
(nl, nh) from a latching node nl into loop header node
nh. With the aim of structuring cyclic regions in a pattern-
independent way, we first compute the set of loop nodes, re-
structure the cyclic region into a single-entry single-successor
region if necessary, compute the AST of the loop body, and
finally infer the loop type and condition by reasoning about the
computed AST. Our CFG traversal guarantees that we handle
inner loops before outer ones and thus we can assume that
when structuring a cyclic region it does not contain nested
loops.

1) Initial Loop Nodes and Successors: We first determine
the set of initial loop nodes Nloop, i.e., nodes located on a path
from the header node to a latching node. For this purpose, we
compute the graph slice SG (nh, Nl) where Nl is the set of
latching nodes. This allows to compute loop nodes even if
they are not dominated by the header node in the presence
of abnormal entries. Abnormal entries are defined as ∃n ∈
Nloop\ {nh} : Preds (n) 6⊂ Nloop. If the cyclic region has
abnormal entries, we transform it into a single-entry region
(§V-A). We then identify the set of initial exit nodes Nsucc,
i.e., targets of outgoing edges from loop nodes not contained
in Nloop. These sets are denoted as initial because they are
refined by the next step to the final sets.

2) Successor Refinement and Loop Membership: In order
to compute the final sets of loop nodes and successor nodes,
we perform a successor node refinement step. The idea is
that certain initial successor nodes can be considered as loop
nodes, and thus we can avoid prematurely considering them
as final successor nodes and avoid unnecessary restructuring.
For example, a while loop containing break statements
proceeded by some code results in multiple exits from the loop
that converge to the unique loop successor. This step provides
a precise loop membership definition that avoids prematurely
analyzing the loop type and identifying the successor node
based on initial loop nodes which may lead to suboptimal
structuring. Algorithm 2 provides an overview of the successor
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refinement step. The algorithm iteratively extends the current
set of loop nodes by looking for successor nodes that have all
their immediate predecessors in the loop and are dominated
by the header node. When a successor node is identified as
loop node, its immediate successors that are not currently
loop nodes are added to the set of successor nodes. The
algorithm stops when the set of successor nodes contains
at most one node, i.e., the final unique loop successor is
identified, or when the previous iteration did not find new
successor nodes. If the loop still has multiple successors after
refinement, we select from them the successor of the loop
node with smallest post-order as the loop final successor. The
remaining successors are classified as abnormal exit nodes.
We then transform the region into a single-successor region
as will be described in Section V-B. For instance, when
structuring region R1 in our running example (Figure 3), the
algorithm identifies the following initial loop and successor
nodes Nloop = {c1, n1, c2, n3, c3}, Nsucc = {n2, n9}. Next,
node n2 is added to the set of loop nodes since all its prede-
cessors are loop nodes. This results in a unique loop node and
the final sets Nloop = {c1, n1, c2, n3, c3, n2}, Nsucc = {n9}.

Algorithm 2: Loop Successor Refinement
Input : Initial sets of loop nodes Nloop and successor

nodes Nsucc; loop header nh
Output: Refined Nloop and Nsucc

1 Nnew ← Nsucc;
2 while |Nsucc| > 1 ∧Nnew 6= ∅ do
3 Nnew ← ∅;
4 forall the n ∈ Nsucc do
5 if preds(n) ⊆ Nloop then
6 Nloop ← Nloop ∪ {n};
7 Nsucc ← Nsucc \ {n};
8 Nnew ← Nnew ∪

{u : u ∈ [succs(n) \Nloop] ∧ dom(nh,u)};

9 end
10 end
11 Nsucc ← Nsucc ∪Nnew

12 end

Phoenix [33] employs a similar approach to define loop
membership. The key difference to our approach is that
Phoenix assumes that the loop successor is either the imme-
diate successor of the header or latching node. For example,
in case of endless loops with multiple break statements or
loops with unstructured continuation condition (e.g., region
R3), the simple assumption that loop successor is directly
reached from loop header or latching nodes fails. In these
cases Phoenix generates an endless loop and represents exits
using goto statements. In contrast, our successor refinement
technique described above does not suffer from this problem
and generates structured code without needing to use goto
statements.

3) Loop Type and Condition: In order to identify loop type
and condition, we first represent each edge to the successor
node as a break statement and compute the AST of the
loop body after refinement nb. Note that the loop body is
an acyclic region that we structure as explained in §IV-B.
Next, we represent the loop as endless loop with the computed

while (1)
if (c1)
n1

else
. . .
if (¬c3)

break

CONDTOSEQ→

while (1)
while (c1)
n1

. . .
if (¬c3)

break

DOWHILE→

do
while (c1)
n1

. . .
while (c3)

Fig. 9: Example of loop type inference of region R1.

body’s AST, i.e., n` = Loop [τendless,−, nb]. Our assumption is
justified since all exits from the loop are represented by break
statements. Finally, we infer the loop type and continuation
condition by reasoning about the structure of loop n`.

Inference rules. We specify loop structuring rules as inference
rules of the form:

P1 P2 . . . Pn

C

The top of the inference rule bar contains the premises
P1, P2, . . . , Pn. If all premises are satisfied, then we can
conclude the statement below the bar C. Figure 8 presents our
loop structuring rules. The first premise in our rules describes
the input loop structure, i.e., loop type and body structure.
The remaining premises describe additional properties of loop
body. The conclusion is described as a transformation rule of
the form n ; ń. Inference rules provide a formal compact
notation for single-step inference and implicitly specify an
inference algorithm by recursively applying rules on premises
until a fixed point is reached. We denote by Br a break
statement, and by Bcr a condition node that represents the
statement if (c) {break}, i.e., Bcr = Cond [c,Seq [Br] ,−]. We
represent by n ⇓ Br the fact that a break statement is attached
to each exit from the control construct represented by node n.
The operator

∑
returns the list of statements in a given node.

In our running example, computing the initial loop structure
for region R1 results in the first (leftmost) code in Figure 9.
The loop body consists of an if statement with break state-
ments only in its false branch. This matches the CONDTOSEQ
rule, which transforms the loop body into a sequence of a
while loop and the false branch of the if statement. The rule
states that in this case the true branch of the if statement (n1)
is continuously executed as long as the condition c1 is satisfied.
Then, control flows to the false branch. This is repeated until
the execution reaches a break statement. The resulting loop
body is a sequence that ends with a conditional break B¬c3r
that matches the DOWHILE rule. The second transformation
results in the third (rightmost) loop structure. At this point the
inference algorithm reaches a fixed point and terminates.

To give an intuition of the unstructured code produced by
structural analysis when a region in the CFG does not match its
predefined region schemas, we consider the region R3 in our
running example. Computing the body’s AST of the loop in re-
gion R3 and assuming an endless loop results in the loop repre-
sented as while (1) {if ((¬d1 ∧ ¬d2) ∨ (d1 ∧ ¬d3)) {break;} . . .}.
The loop’s body starts with a conditional break and
hence is structured according to the WHILE rule into
while ((d1 ∧ d3) ∨ (¬d1 ∧ d2)) {. . .}. We wrote a small function
that produces the same CFG as the region R3 and decompiled
it with DREAM and Hex-Rays. Figure 11 shows that our
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n` = Loop
[
τendless,−,Seq [ni]

i∈1..k
]

n1 = Bc
r

n` ; Loop
[
τwhile,¬c,Seq [ni]

i∈2..k
] WHILE

n` = Loop
[
τendless,−,Seq [ni]

i∈1..k
]

nk = Bc
r

n` ; Loop
[
τdowhile,¬c,Seq [ni]

i∈1..k−1
] DOWHILE

n` = Loop
[
τendless,−,Seq [ni]

i∈1..k
]
∀i ∈ 1..k − 1 : Br /∈

∑
[ni] nk = Cond [c, nt,−]

n` ; Loop

[
τendless,−,Seq

[
Loop

[
τdowhile,¬c,Seq [ni]

i∈1..k−1
]
, nt

]] NESTEDDOWHILE

n` = Loop
[
τendless,−,Seq [ni]

i∈1..k
]

nk = ńk ⇓ Br

n` ; Seq
[
n1, . . . , nk−1, ńk

] LOOPTOSEQ

n` = Loop
[
τendless,−,Cond [c, nt, nf ]

]
Br /∈

∑
[nt] Br ∈

∑
[nf ]

n` ; Loop
[
τendless,−,Seq

[
Loop [τwhile, c, nt] , nf

]] CONDTOSEQ

n` = Loop
[
τendless,−,Cond [c, nt, nf ]

]
Br ∈

∑
[nt] Br /∈

∑
[nf ]

n` ; Loop
[
τendless,−,Seq

[
Loop [τwhile,¬c, nf ] , nt

]] CONDTOSEQNEG

Fig. 8: Loop structuring rules. The input to the rules is a loop node n`.

1 signed int __cdecl loop(signed int a1)
2 {
3 signed int v2; // [sp+1Ch] [bp-Ch]@1
4
5 v2 = 0;
6 while ( a1 > 1 ){
7 if ( v2 > 10 )
8 goto LABEL_7;
9 LABEL_6:

10 printf("inside_loop");
11 ++v2;
12 --a1;
13 }
14 if ( v2 <= 100 )
15 goto LABEL_6;
16 LABEL_7:
17 printf("loop_terminated");
18 return v2;
19 }

Fig. 10: Decompiled code generated by Hex-Rays.

1 int loop(int a){
2 int b = 0;
3 while((a <= 1 && b <= 100)||(a > 1 && b <= 10)){
4 printf("inside_loop");
5 ++b;
6 --a;
7 }
8 printf("loop_terminated");
9 return b;

10 }

Fig. 11: Decompiled code generated by DREAM.

approach correctly found the loop type and continuation con-
dition. In comparison, Hex-Rays produced unstructured code
with two goto statements as shown in Figure 10; one goto
statement jumps outside the loop and the other one jumps back
in the loop.

D. Side Effects

Our structuring algorithm may result in the same condition
appearing multiple times in the computed AST. For example,
structuring region R2 in the running example leads to the AST
shown in Figure 7 where condition b1 is tested twice. If the
variables tested by condition b1 are modified in block n4,
the second check of b1 in the AST would not be the same
as the first check. As a result, the code represented by the
computed AST would not be semantically equivalent to the
CFG representation.

To guarantee the semantics-preserving property of our
algorithm, we first check if any condition is used multiple
times in the computed AST. If this is the case, we check if any
of the variables used in the test is changed on an execution
path between any two uses. This includes if the variable is
assigned a new value, used in a call expression, or used in
reference expression (its address is read). If a possible change
is detected, we insert a Boolean variable to store the initial
value of the condition. All subsequent uses of the condition
are replaced by the inserted Boolean variable.

E. Summary

In this section, we have discussed our approach to creating
an AST for single-entry and single-successor CFG regions.
The above algorithm can structure every CFG except cyclic
regions with multiple entries and/or multiple successors. The
following section discusses how we handle these problematic
regions.

V. SEMANTICS-PRESERVING CONTROL-FLOW
TRANSFORMATIONS

In this section, we describe our method to transform
cyclic regions into semantically equivalent single-entry single-
successor regions. As the only type of regions that cannot be
structured by our pattern-independent structuring algorithm are
cyclic regions with multiple entries or multiple successors, we
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i=0
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¬c0

c1

ck−1¬ck−1

Fig. 12: Transforming abnormal entries: multi-entry loops
(left) are transformed into semantically equivalent single-entry
loops (right). Tags cn represent the logical predicates i = n.

apply the proposed transformations on those regions. Based on
the previous steps we know the following information about
the cyclic region: a) region nodes Nloop, b) normal entry nh,
and c) successor node ns.

A. Restructuring Abnormal Entries

The high-level approach to structuring abnormal entries
(cf. IV-C1) is illustrated in Figure 12. The underlying idea
is to insert a structuring variable (i in Figure 12) that takes
different values based on the node at which the loop is
entered. We then redirect all loop entries to a new header
node (c0) where we insert cascading condition nodes that test
equality of the structuring variable to the values representing
the different entries. Each condition node transfers control to
the corresponding entry node if the check is satisfied and to
the next check (or the last entry node) otherwise. All incoming
edges to the original header n0 are directed to the new header
c0. We preserve semantics by inserting assignments of zero to
the structuring variable at the end of each abnormal entry so
that the next loop iteration is executed normally.

For each loop node n ∈ Nloop with incoming edges from
outside the loop, we first compute the set of corresponding
abnormal entries En = {(p, n) ∈ E : p /∈ Nloop}. Then, we
create a new code node consisting of assignment of the
structuring variable to a unique value and redirect edges in
En into the newly created node. Finally, we add an edge from
the new code node to the new loop header. We represent the
normal entry to the loop by assigning zero to the structuring
variable. In order to produce well-readable decompiled code,
we strive to keep the changes caused by our transformations
minimal. For this reason, the first check we make at the new
loop header is whether the loop is entered normally. In this
case, we transfer control to the original header. This has the
advantage of preserving loop type and minimally modifying
the original condition. For example, restructuring a while
loop while (c) {. . .} with abnormal entries results in a while
loop whose condition contains additional term representing the
abnormal entries while (c ∨ i 6= 0) {. . .}.

n0

n1

...
s1

...nk−1

sk−1

nk

sk

ns

n1

n0

. . .nk−1

nk

c1

s1ck−1

sk−1ck

skns

c1¬c1

ck−1¬ck−1

ck¬ck

Fig. 13: Transforming abnormal exits: loops with multiple
successors (left) are transformed into semantically equivalent
single-successor loops (right).

B. Restructuring Abnormal Exits

The high-level approach to structuring abnormal exits (cf.
IV-C2) is illustrated in Figure 13. Our approach computes
for each exit the unique condition that causes the control-
flow to choose that exit and redirects all exit edges to a new
successor node. Here, we insert cascading condition nodes that
successively check the exit conditions and transfer control to
the original exit if the corresponding condition is satisfied or to
the next check (or the last exit node) otherwise. We restructure
abnormal exits after restructuring abnormal entries. Therefore,
at this stage the loop successor is known and the loop has a
unique entry node dominating all loop nodes.

We start by computing the set of edges that exit the
cyclic region to a node other than the successor node Eout =
{(n, u) ∈ E : n ∈ Nloop ∧ u /∈ Nloop ∪ {ns}}. Then, we com-
pute nearest common dominator (NCD) for the set of source
nodes for edges in Eout, denoted nncd. In a graph G (N,E),
a node d ∈ N is the nearest common dominator of a set
of nodes U ⊆ N if d dominates all nodes of U and there
exists no node d́ 6= d that dominates all nodes of U and is
strictly dominated by d. Since the loop header dominates all
loop nodes (after restructuring abnormal entries), the NCD of
any subset of loop nodes is also a loop node. The basic idea
here is that any change in the control flow to a given exit does
not happen before nncd. Thus, we need to compute the set
of reaching conditions starting from nncd, i.e., we compute
reaching conditions cr (nncd, u) to the target nodes of edges
in Eout.

C. Summary

At this point we transformed the CFG to an AST that
contains only high-level control constructs and no goto state-
ments. As a final step, we introduce several optimizations to
improve the readability of the decompiled output.

VI. POST-STRUCTURING OPTIMIZATIONS

After having computed the abstract syntax tree, we perform
several optimizations to improve code readability. Specifically,
we perform three optimizations: control constructs simplifica-
tion, outlining certain string functions, and variable renaming.
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We implement several transformations that find simpler
forms for certain control constructs. For instance, we trans-
form if statements that assign different values to the same
variable into a ternary operator. That is, code such as
if (c) {x = vt} else {x = vf} is transformed into the equivalent
form x = c ? vt : vf . Also, we identify while loops that can
be represented as for loops. for loop candidates are while
loops that have a variable x used both in their continuation
condition and the last statement in their body. We then check
if a single definition of x reaches the loop entry that is only
used in the loop body. We transform the loop into a for loop
if the variables used in the definition are not used on the way
from the definition to the loop entry. These checks allow us
to identify for loops even if their initialization statements are
not directly before the loop.

Several functions such as strcpy, strlen, or strcmp
are often inlined by compilers. That is, a function call is
replaced by the called function body. Having several duplicates
of the same function results in larger code and is detrimental
to manual analysis. DREAM recognizes and outlines several
functions. That is, it replaces the corresponding code by the
equivalent function call.

For the third optimization, we leverage API calls to assign
meaningful names to variables. API functions have known
signatures including the types and names of parameters. If
a variable is used in an API call, we give it the name of
corresponding parameter if that name is not already used.

VII. EVALUATION

In this section, we describe the results of the experiments
we have performed to evaluate DREAM. We base our evalua-
tion on the technique used to evaluate Phoenix by Schwartz et
al. [33]. This evaluation used the GNU coreutils to evaluate
the quality of the decompilation results. We compared our
results with Phoenix [33] and Hex-Rays [22]. We included
Hex-Rays because it is the leading commercial decompiler and
the de facto industry standard. We tested the latest version of
Hex-Rays at the time of writing, which is v2.0.0.140605. We
picked Phoenix because it is the most recent and advanced
academic decompiler. We did not include dcc [11], DISC [28],
REC [1], and Boomerang [17] in our evaluation. The reason
is that these projects are either no longer actively maintained
(e.g., Boomerang) or do not support x86 (e.g., dcc). However,
most importantly, they are outperformed by Phoenix. The
implementation of Phoenix is not publicly available yet. How-
ever, the authors kindly agreed to share both the coreutils
binaries used in their experiments and the raw decompiled
source code produced by Phoenix to enable us to compute our
metrics and compare our results with theirs. We very much
appreciate this good scientific practice. This way, we could
ensure that all three decompilers are tested on the same binary
code base. We also had the raw source code produced by all
three decompilers as well, so we can compare them fairly. In
addition to the GNU coreutils benchmark we also evaluated
our approach using real-world malware samples. Specifically,
we decompiled and analyzed ZeusP2P, SpyEye, Cridex. For
this part of our evaluation we could only compare our approach
to Hex-Rays since Phoenix is not yet released.

A. Metrics

We evaluate our approach with respect to the following
quantitative metrics.

• Correctness. Correctness measures the functional equiv-
alence between the decompiled output and the input code.
More specifically, two functions are semantically equiv-
alent if they follow the same behavior and produce the
same results when they are executed using the same set
of parameters. Correctness is a crucial criterion to ensure
that the decompiled output is a faithful representation of
the corresponding binary code.

• Structuredness. Structuredness measures the ability of
a decompiler to recover high-level control flow structure
and produce structured decompiled code. Structuredness
is measured by the number of generated goto statements
in the output. Structured code is easier to understand [16]
and helps scale program analysis [31]. For this reason, it is
desired to have as few goto statements in the decompiled
code as possible. These statements indicate the failure to
find a better representation of control flow.

• Compactness. For compactness we perform two mea-
surements: first, we measure the total lines of code gen-
erated by each decompiler. This gives a global picture on
the compactness of decompiled output. Second, we count
for how many functions each decompiler generated the
fewest lines of code compared to the others. If multiple
decompilers generate the same (minimal) number of lines
of code, that is counted towards the total of each of them.

B. Experiment Setup & Results

To evaluate our algorithm on the mentioned metrics, we
conducted two experiments.

1) Correctness Experiment: We evaluated the correctness
of our algorithm on the GNU coreutils 8.22 suite of
utilities. coreutils consist of a collection of mature pro-
grams and come with a suite of high-coverage tests. We
followed a similar approach to that proposed in [33] where
the coreutils tests were used to measure correctness. Also,
since the coreutils source code contains goto statements,
this means that both parts of our algorithm are invoked;
the pattern-independent structuring part and the semantics-
preserving transformations part. Our goal is to evaluate the
control-flow structuring component. For this, we computed
the CFG for each function in the coreutils source code
and provided it as input to our algorithm. Then, we replaced
the original functions with the generated algorithm output,
compiled the restructured coreutils source code, and finally
executed the tests. We used joern [41] to compute the CFGs.
Joern is a state-of-the-art platform for analysis of C/C++ code.
It generates code property graphs, a novel graph representation
of code that combines three classic code representations;
ASTs, CFGs, and Program Dependence Graphs (PDG). Code
property graphs are stored in a Neo4J graph database. More-
over, a thin python interface for joern and a set of useful
utility traversals are provided to ease interfacing with the graph
database. We iterated over all parsed functions in the database
and extracted the CFGs. We then transformed statements in
the CFG nodes into DREAM’s intermediate representation. The
extracted graph representation was then provided to our struc-
turing algorithm. Under the assumption of correct parsing, we
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Considered Functions F |F | Number of gotos

Functions after preprocessor 1,738 219

Functions correctly parsed by joern 1,530 129

Functions passed tests after structuring 1,530 0

TABLE II: Correctness results.

can attribute the failure of any test on the restructured functions
to the structuring algorithm. To make the evaluation tougher,
we used the source files produced by the C-preprocessor, since
depending on the operating system and installed software,
some functions or parts of functions may be removed by the
preprocessor before passing them to the compiler. That in turn
would lead to potential structuring errors to go unnoticed if
the corresponding function is removed by the preprocessor.
We got the preprocessed files by passing the --save-temps
to CFLAGS in the configure script. The preprocessed source
code contains 219 goto statements.

2) Correctness Results: Table II shows statistics about the
functions included in our correctness experiments. The pre-
processed coreutils source code contains 1,738 functions.
We encountered parsing errors for 208 functions. We excluded
these functions from our tests. The 1,530 correctly parsed
functions were fed to our structuring algorithm. Next, we
replaced the original functions in coreutils by the structured
code produced by our algorithm. The new version of the
source code passed all coreutils tests. This shows that
our algorithm correctly recovered control-flow abstractions
from the input CFGs. More importantly, goto statements in
the original source code are transformed into semantically
equivalent structured forms.

The original Phoenix evaluation shows that their control-
flow structuring algorithm is correct. Thus, both tools correctly
structure the input CFG.

3) Structuredness and Compactness Experiment: We tested
and compareed DREAM to Phoenix and Hex-Rays. In this
experiment we used the same GNU coreutils 8.17 binaries
used in Phoenix evaluation. Structuredness is measured by the
number of goto statements in code. These statements indicate
that the structuring algorithm was unable to find a structured
representation of the control flow. Therefore, structuredness is
inversely proportional to the number of goto statements in
the decompiled output. To measure compactness, we followed
a straightforward approach. We used David A. Wheeler’s
SLOCCount utility to measure the lines of code in each
decompiled function. To ensure fair comparison, the Phoenix
evaluation only considered functions that were decompiled
by both Phoenix and Hex-Rays. We extend this principle to
only consider functions that were decompiled by all the three
decompilers. If this was not done, a decompiler that failed to
decompile functions would have an unfair advantage. Beyond
that, we extend the evaluation performed by Schwartz et al.
[33] in several ways.

• Duplicate functions. In the original Phoenix evaluation
all functions were considered, i.e., including duplicate
functions. It is common to have duplicate functions as

the result of the same library function being statically
linked to several binaries, i.e., its code is copied into
the binary. Depending on the duplicate functions this can
skew the results. Thus, we wrote a small IDAPython script
that extracts the assembly listings of all functions and
then computed the SHA-512 hash for the resulting files.
We found that of the 14,747 functions contained in the
coreutils binaries, only 3,141 functions are unique, i.e.,
78.7% of the functions are duplicates. For better com-
parability, we report the results both on the filtered and
unfiltered function lists. However, for future comparisons
we would argue that filtering duplicate functions before
comparison avoids skewing the results based on the same
code being included multiple times.

• Also in the original Phoenix evaluation only recompilable
functions were considered in the goto test. In the context
of coreutils, this meant that only 39% of the unique
functions decompiled by Phoenix were considered in the
goto experiment. We extend these tests to consider the
intersection of all functions produced by the decompilers,
since even non-recompilable functions are valuable and
important to look at, especially for malware and security
analysis. For instance, the property graph approach [41]
to find vulnerabilities in source code does not assume that
the input source code is compilable. Also, understanding
the functionality of a sample is the main goal of manual
malware analysis. Hence, the quality of all decompiled
code is highly relevant and thus included in our evalua-
tion. For completeness, we also present the results based
on the functions used in the original evaluation done by
Schwartz et al.

4) Structuredness & Compactness Results: Table III sum-
marizes the results of our second experiment. For the sake of
completeness, we report our results in two settings. First, we
consider all functions without filtering duplicates as was done
in the original Phoenix evaluation. We report our results for the
functions considered in the original Phoenix evaluation (i.e.,
only recompilable functions) (T1) and for the intersection of
all functions decompiled by the three decompilers (T2). In the
second setting we only consider unique functions and again
report the results only for the functions used in the original
Phoenix study (T3) and for all functions (T4). In the table |F |
denotes the number of functions considered. The following
three columns report on the metrics defined above. First, the
number of goto statements in the functions is presented. This
is the main contribution of our paper. While both state-of-
the-art decompilers produced thousands of goto statements
for the full list of functions, DREAM produced none. We
believe this is a major step forward for decompilation. Next,
we present total lines of code generated by each decompiler in
the four settings. DREAM generated more compact code overall
than Phoenix and Hex-Rays. When considering all unique
functions, DREAM’s decompiled output consists of 107k lines
of code in comparison to 164k LoC in Phoenix output and
135k LoC produced by Hex-Rays. Finally, the percentage of
functions for which a given decompiler generated the most
compact function is depicted. In the most relevant test setting
T4, DREAM produced the minimum lines of code for 75.2% of
the functions. For 31.3% of the functions, Hex-Rays generated
the most compact code. Phoenix achieved the best compactness
in 0.7% of the cases. Note that the three percentages exceed
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Considered Functions F |F | Number of goto Statements Lines of Code Compact Functions

DREAM Phoenix Hex-Rays DREAM Phoenix Hex-Rays DREAM Phoenix Hex-Rays

coreutils functions with duplicates
T1 : F r

p ∩ F r
h 8,676 0 40 47 93k 243k 120k 81.3% 0.3% 32.1%

T2 : Fd ∩ Fp ∩ Fh 10,983 0 4,505 3,166 196k 422k 264k 81% 0.2% 30.4%

coreutils functions without duplicates
T3 : F r

p ∩ F r
h 785 0 31 28 15k 30k 18k 74.9% 1.1% 36.2%

T4 : Fd ∩ Fp ∩ Fh 1,821 0 4,231 2,949 107k 164k 135k 75.2% 0.7% 31.3%

Malware Samples
ZeusP2P 1,021 0 N/A 1,571 42k N/A 53k 82.9% N/A 14.5%
SpyEye 442 0 N/A 446 24k N/A 28k 69.9% N/A 25.7%
Cridex 167 0 N/A 144 7k N/A 9k 84.8% N/A 12.3%

TABLE III: Structuredness and compactness results. For the coreutiles benchmark, we denote by Fx the set of functions
decompiled by compiler x. F r

x is the set of recompilable functions decompiled by compiler x. d represents DREAM, p represents
Phoenix, and h represents Hex-Rays.

100% due to the fact that multiple decompilers could generate
the same minimal number of lines of code. In a one on one
comparison between DREAM and Phoenix, DREAM scored
98.8% for the compactness of the decompiled functions. In
a one on one comparison with Hex-Rays, DREAM produced
more compact code for 72.7% of decompiled functions.

5) Malware Analysis: For our malware analysis, we picked
three malware samples from three families: ZeusP2P, Cridex,
and SpyEye. The results for the malware samples shown
in Table III are similarly clear. DREAM produces goto-free
and compact code. As can be seen in the Zeus sample,
Hex-Rays produces 1,571 goto statements. These statements
make analyzing these pieces of malware very time-consuming
and difficult. While further studies are needed to evaluate if
compactness is always an advantage, the total elimination of
goto statements from the decompiled code is a major step
forward and has already been of great benefit to us in our
work analyzing malware samples.

Due to space constraints, we cannot present a com-
parison of the decompiled malware source code in this
paper. For this reason, we have created a supplemen-
tal document which can be accessed under the follow-
ing URL: https://net.cs.uni-bonn.de/fileadmin/ag/martini/Staff/
yakdan/code_snippets_ndss_2015.pdf. Here we present listings
of selected malware functions so that the reader can get a
personal impression on the readability improvements offered
by DREAM compared to Hex-Rays.

VIII. RELATED WORK

There has been much work done in the field of de-
compilation and abstraction recovery from binary code. In
this section, we review related work and place DREAM in
the context of existing approaches. We start by reviewing
control-flow structuring algorithms. Next, we discuss work in
decompilation, binary code extraction and analysis. Finally,
techniques to recover type abstractions from binary code are
discussed.

Control-flow structuring. There exist two main approaches
used by modern decompilers to recover control-flow structure

from the CFG representation, namely interval analysis and
structural analysis. Originally, these techniques were devel-
oped to assist data flow analysis in optimizing compilers.
Interval analysis [3, 13] deconstructs the CFG into nested
regions called intervals. The nesting structure of these regions
helps to speed up data-flow analysis. Structural analysis [34] is
a refined form of interval analysis that is developed to enable
the syntax-directed method of data-flow analysis designed for
ASTs to be applicable on low-level intermediate code. These
algorithms are also used in the context of decompilation to
recover high-level control constructs from the CFG.

Prior work on control-flow structuring proposed several
enhancement to vanilla structural analysis. The goal is to
recover more control structure and minimize the number
of goto statements in the decompiled code. Engel et. al.
[18] extended structural analysis to handle C-specific control
statements. They proposed a Single Entry Single Successor
(SESS) analysis as an extension to structural analysis to handle
the case of statements that exist before break and continue
statements in the loop body.

These approaches share a common property; they rely on a
predefined set of region patterns to structure the CFG. For this
reason, they cannot structure arbitrary graphs without using
goto statements. Our approach is fundamentally different in
that it does not rely on any patterns.

Another related line of research lies in the area of elimi-
nating goto statements at the source code level such as [19]
and [39]. These approaches define transformations at the AST
level to replace goto statements by equivalent constructs. In
some cases, several transformations are necessary to remove a
single goto statement. These approaches increase the code
size and miss opportunities to find more concise forms to
represent the control-flow. Moreover, they may insert unneces-
sary Boolean variables. For example, these approaches cannot
find the concise form found by DREAM for region R3 in our
running example. These algorithms do not solve the control-
flow structuring problem as defined in Section II-B.

Decompilers. Cifuentes laid the foundations for modern de-
compilers. In her PhD thesis [11], she presented several tech-
niques to decompile binary code into a high-level language.
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These techniques were implemented in dcc, a decompiler for
Intel 80286/DOS to C. The structuring algorithm in dcc [12]
is based on interval analysis. She also presented four region
patterns to structure regions resulted from the short-circuit
evaluation of compound conditional expressions, e.g., x ∨ y.

Van Emmerik proposed to use the Static Single Assignment
(SSA) form for decompilation in his PhD thesis [17]. His
work demonstrates the advantages of the SSA form for several
data flow components of decompilers, such as expression
propagation, identifying function signatures, and eliminating
dead code. His approach is implemented in Boomerang, an
open-source decompiler. Boomerang’s structuring algorithm is
based on parenthesis theory [35]. Although faster than interval
analysis, it recovers less structure.

Chang et. el. [9] demonstrated the possibility of applying
source-level tools to assembly code using decompilation. For
this goal, they proposed a modular decompilation architecture.
Their architecture consists of a series of decompilers connected
by intermediate languages. For their applications, no control-
flow structuring is performed.

Hex-Rays is the de facto industry standard decompiler. It
is built as plugin for the Interactive Disassembler Pro (IDA).
Hex-Rays is closed source, and thus little is known about its
inner workings. It uses structural analysis [22]. As noted by
Schwartz et el. in [33], Hex-Rays seems to use an improved
version of vanilla structural analyses.

Yakdan et al. [40] developed REcompile, a decompiler
that employs interval analysis to recover control structure. The
authors also proposed node splitting to reduce the number of
goto statements. Here, nodes are split into several copies.
While this reduces the amount of goto statements, it increases
the size of decompiled output.

Phoenix is the state-of-the-art academic decompiler [33].
It is built on top of the CMU Binary Analysis Platform
(BAP) [8]. BAP lifts sequential x86 assembly instructions
into an intermediate language called BIL. It also uses TIE
[29] to recover types from binary code. Phoenix enhances
structural analysis by employing two techniques: first, iterative
refinement chooses an edge and represents it using a goto
statement when the algorithm cannot make further progress.
This allows the algorithm to find more structure. Second,
semantics-preserving ensures correct control structure recov-
ery. The authors proposed correctness as an important metric
to measure the performance of a decompiler.

The key property that all structuring algorithms presented
above share is the reliance on pattern matching, i.e, they use
a predefined set of region schemas that are matched against
regions in the CFG. This is a key issue that prevents these
algorithms from structuring arbitrary CFGs. This leads to
unstructured decompiled output with goto statements. Our
algorithm does not rely on such patterns and is therefore able to
produce well-structured code without a single goto statement.

Binary code extraction. Correctly extracting binary code
is essential for correct decompilation. Research in this field
is indispensable for decompilation. Kruegel et al. presented
a method [27] to disassemble x86 obfuscated code. Jakstab
[26] is a static analysis framework for binaries that follows
the paradigm of iterative disassembly. That is, it interleaves

multiple disassembly rounds with data-flow analysis to achieve
accurate and complete CFG extraction. Zeng et el. presented
trace-oriented programming (TOP) [43] to reconstruct pro-
gram source code from execution traces. The executed instruc-
tions are translated into a high-level program representation
using C with templates and inlined assembly. TOP relies on
dynamic analysis and is therefore able to cope with obfuscated
binaries. With the goal of achieving high coverage, an offline
combination component combines multiple runs of the binary.
BitBlaze [37] is a binary analysis platform. The CMU Binary
Analysis Platform (BAP) [8] is successor to the binary analysis
techniques developed for Vine in the BitBlaze project.

Type recovery. Reconstructing type abstractions from binary
code is important for decompilation to produce correct and
high-quality code. This includes both elementary and complex
types. Several prominent approaches have been developed
in this field including Howard [36], REWARDS [30], TIE
[29], and [23]. Other work [15, 20, 21, 25] focused on C++
specific issues, such as recovering C++ objects, reconstructing
class hierarchy, and resolving indirect calls resulting from
virtual inheritance. Since our work focuses on the control flow
structuring we do not make a contribution to type recovery but
we based our type recovery on TIE [29].

IX. CONCLUSION

In this paper we presented the first control-flow struc-
turing algorithm that is capable of recovering all control
structure and thus does not generate any goto statements. Our
novel algorithm combines two techniques: pattern-independent
structuring and semantics-preserving transformations. The key
property of our approach is that it does not rely on any
patterns (region schemas). We implemented these techniques
in our DREAM decompiler and evaluated the correctness
of our control-flow structuring algorithm. We also evaluated
our approach against the de facto industry standard decom-
piler, Hex-Rays, and the state-of-the-art academic decompiler,
Phoenix. Our evaluation shows that DREAM outperforms both
decompilers; it produced more compact code and recovered
the control structure of all the functions in the test without any
goto statements. We also decompiled and analyzed a number
of real-world malware samples and compared the results to
Hex-Rays. Again, DREAM performed very well, producing
goto-free and compact code compared to Hex-Rays, which
had one goto for every 32 lines of code. This represents
a significant step forward for decompilation and malware
analysis. In future work, we will further examine the quality
of the code produced by DREAM specifically concerning the
compactness. Our experience based on the malware samples
we analyzed during the course of this paper suggests that more
compact code is better for human understanding. However, it
is conceivable that in some cases less compact code is easier
to understand. This will require further research and potential
optimization of the post-processing step.

ACKNOWLEDGEMENTS

We are grateful to Fabian Yamaguchi, the author of joern,
who was very helpful and created several patches to improve
the parsing of the coreutils. We sincerely thank Edward
J. Schwartz for sharing the Phoenix experiments results. We

14



would also like to thank the anonymous reviewers for their
valuable feedback.

REFERENCES

[1] REC Studio 4 - Reverse Engineering Compiler. http://www.backerstreet.
com/rec/rec.htm. Page checked 7/20/2014.

[2] The IDA Pro disassembler and debuger. http://www.hex-rays.com/
idapro/.

[3] F. E. Allen, “Control Flow Analysis,” in Proceedings of ACM Sympo-
sium on Compiler Optimization, 1970.

[4] D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann, and H. Bos,
“Highly Resilient Peer-to-Peer Botnets Are Here: An Analysis of
Gameover Zeus,” in Proceedings of the 8th IEEE International Confer-
ence on Malicious and Unwanted Software (MALWARE), 2013.

[5] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A Few Billion Lines of
Code Later: Using Static Analysis to Find Bugs in the Real World,”
Communications of the ACM, vol. 53, no. 2, pp. 66–75, Feb. 2010.

[6] E. Bosman, A. Slowinska, and H. Bos, “Minemu: The World’s Fastest
Taint Tracker,” in Proceedings of the 14th International Conference on
Recent Advances in Intrusion Detection (RAID), 2011.

[7] D. Brumley, T. Chiueh, R. Johnson, H. Lin, and D. Song, “RICH:
Automatically Protecting Against Integer-Based Vulnerabilities,” in
Proceedings of the 14th Network and Distributed System Security
Symposium (NDSS), 2007.

[8] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A Binary
Analysis Platform,” in Proceedings of the 23rd International Conference
on Computer Aided Verification (CAV), 2011.

[9] B.-Y. E. Chang, M. Harren, and G. C. Necula, “Analysis of Low-
level Code Using Cooperating Decompilers,” in Proceedings of the 13th
International Conference on Static Analysis (SAS), 2006.

[10] W. Chang, B. Streiff, and C. Lin, “Efficient and Extensible Security
Enforcement Using Dynamic Data Flow Analysis,” in Proceedings of
the 15th ACM Conference on Computer and Communications Security
(CCS), 2008.

[11] C. Cifuentes, “Reverse Compilation Techniques,” Ph.D. dissertation,
Queensland University of Technology, 1994.

[12] ——, “Structuring Decompiled Graphs,” in Proceedings of the 6th
International Conference on Compiler Construction (CC), 1996.

[13] J. Cocke, “Global Common Subexpression Elimination,” in Proceedings
of the ACM Symposium on Compiler Optimization, 1970.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. The MIT Press, 2009.

[15] D. Dewey and J. T. Giffin, “Static detection of C++ vtable escape
vulnerabilities in binary code,” in Proceedings of the 19th Network and
Distributed System Security Symposium (NDSS), 2012.

[16] E. W. Dijkstra, “Letters to the Editor: Go to Statement Considered
Harmful,” Communications of the ACM, vol. 11, no. 3, pp. 147–148,
Mar. 1968.

[17] M. J. V. Emmerik, “Static Single Assignment for Decompilation,” Ph.D.
dissertation, University of Queensland, 2007.

[18] F. Engel, R. Leupers, G. Ascheid, M. Ferger, and M. Beemster,
“Enhanced Structural Analysis for C Code Reconstruction from IR
Code,” in Proceedings of the 14th International Workshop on Software
and Compilers for Embedded Systems (SCOPES), 2011.

[19] A. Erosa and L. J. Hendren, “Taming Control Flow: A Structured
Approach to Eliminating Goto Statements,” in Proceedings of 1994
IEEE International Conference on Computer Languages, 1994.

[20] A. Fokin, E. Derevenetc, A. Chernov, and K. Troshina, “SmartDec:
Approaching C++ Decompilation,” in Proceedings of the 2011 18th
Working Conference on Reverse Engineering (WCRE), 2011.

[21] A. Fokin, K. Troshina, and A. Chernov, “Reconstruction of Class
Hierarchies for Decompilation of C++ Programs,” in Proceedings of the
14th European Conference on Software Maintenance and Reengineering
(CSMR), 2010.

[22] I. Guilfanov, “Decompilers and Beyond,” in Black Hat, USA, 2008.

[23] I. Haller, A. Slowinska, and H. Bos, “MemPick: High-Level Data
Structure Detection in C/C++ Binaries,” in Proceedings of the 20th
Working Conference on Reverse Engineering (WCRE), 2013.

[24] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations,”
in Proceedings of the 22nd USENIX Security Symposium, 2013.

[25] W. Jin, C. Cohen, J. Gennari, C. Hines, S. Chaki, A. Gurfinkel,
J. Havrilla, and P. Narasimhan, “Recovering C++ Objects From Binaries
Using Inter-Procedural Data-Flow Analysis,” in Proceedings of ACM
SIGPLAN on Program Protection and Reverse Engineering Workshop
(PPREW), 2014.

[26] J. Kinder and H. Veith, “Jakstab: A Static Analysis Platform for
Binaries,” in Proceedings of the 20th International Conference on
Computer Aided Verification (CAV), 2008.

[27] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static Disassembly
of Obfuscated Binaries,” in Proceedings of the 13th Conference on
USENIX Security Symposium, 2004.

[28] S. Kumar. DISC: Decompiler for TurboC. http://www.debugmode.com/
dcompile/disc.htm. Page checked 7/20/2014.

[29] J. Lee, T. Avgerinos, and D. Brumley, “TIE: Principled Reverse En-
gineering of Types in Binary Programs,” in Proceedings of the 18th
Network and Distributed System Security Symposium (NDSS), 2011.

[30] Z. Lin, X. Zhang, and D. Xu, “Automatic Reverse Engineering of Data
Structures from Binary Execution,” in Proceedings of the 17th Annual
Network and Distributed System Security Symposium (NDSS), 2010.

[31] S. S. Muchnick, Advanced Compiler Design and Implementation. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[32] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross, D. Plohmann,
C. J. Dietrich, and H. Bos, “P2PWNED: Modeling and Evaluating the
Resilience of Peer-to-Peer Botnets,” in Proceedings of the 34th IEEE
Symposium on Security and Privacy (S&P), 2013.

[33] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86 Decom-
pilation using Semantics-Preserving Structural Analysis and Iterative
Control-Flow Structuring,” in Proceedings of the 22nd USENIX Security
Symposium, 2013.

[34] M. Sharir, “Structural Analysis: A New Approach to Flow Analysis
in Optimizing Compilers,” Computer Languages, vol. 5, no. 3-4, pp.
141–153, Jan. 1980.

[35] D. Simon, “Structuring Assembly Programs,” Honours thesis, Univer-
sity of Queensland, 1997.

[36] A. Slowinska, T. Stancescu, and H. Bos, “Howard: A Dynamic Excava-
tor for Reverse Engineering Data Structures,” in Proceedings of the 18th
Annual Network and Distributed System Security Symposium (NDSS),
2011.

[37] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A New
Approach to Computer Security via Binary Analysis,” in Proceedings
of the 4th International Conference on Information Systems Security
(ICISS), 2008.

[38] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek, “Improv-
ing Integer Security for Systems with KINT,” in Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation
(OSDI), 2012.

[39] M. H. Williams and G. Chen, “Restructuring Pascal Programs Contain-
ing Goto Statements,” The Computer Journal, 1985.

[40] K. Yakdan, S. Eschweiler, and E. Gerhards-Padilla, “REcompile: A De-
compilation Framework for Static Analysis of Binaries,” in Proceedings
of the 8th IEEE International Conference on Malicious and Unwanted
Software (MALWARE), 2013.

[41] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
Discovering Vulnerabilities with Code Property Graphs,” in Proceedings
of the 35th IEEE Symposium on Security and Privacy (S&P), 2014.

[42] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, “Chucky:
Exposing Missing Checks in Source Code for Vulnerability Discov-
ery,” in Proceedings of the 20th ACM Conference on Computer and
Communications Security (CCS), 2013.

[43] J. Zeng, Y. Fu, K. A. Miller, Z. Lin, X. Zhang, and D. Xu, “Obfuscation
Resilient Binary Code Reuse Through Trace-oriented Programming,” in
Proceedings of the 20th ACM Conference on Computer and Communi-
cations Security (CCS), 2013.

15

http://www.backerstreet.com/rec/rec.htm
http://www.backerstreet.com/rec/rec.htm
http://www.hex-rays.com/idapro/
http://www.hex-rays.com/idapro/
http://www.debugmode.com/dcompile/disc.htm
http://www.debugmode.com/dcompile/disc.htm

	Introduction
	Background & Problem Definition
	Background
	Abstract Syntax Tree (AST)
	Control Flow Graph (CFG)
	Structural Analysis

	Problem Definition
	Running Example

	Dream Overview
	Pattern-Independent Control-Flow Structuring
	Reaching Condition
	Graph Slice
	Deriving and Simplifying Conditions

	Structuring Acyclic Regions
	Abstract Syntax Tree Refinement

	Structuring Cyclic Regions
	Initial Loop Nodes and Successors
	Successor Refinement and Loop Membership
	Loop Type and Condition

	Side Effects
	Summary

	Semantics-Preserving Control-Flow Transformations
	Restructuring Abnormal Entries
	Restructuring Abnormal Exits
	Summary

	Post-Structuring Optimizations
	Evaluation
	Metrics
	Experiment Setup & Results
	Correctness Experiment
	Correctness Results
	Structuredness and Compactness Experiment
	Structuredness & Compactness Results
	Malware Analysis


	Related Work
	Conclusion
	References

