ParasiteEx
Disinfecting Parasitic Malware Platform-Independently

Thomas Bara bOSCh, Adrian Dombeck, Elmar Gerhards-Padilla
firstname.lastname@fkie.fraunhofer.de
Future Security 2015, Berlin

(%er Analysis & Defense (CA&D)

Z Fraunhofer

FKIE

Source: http://www.snoopwall.com/wp-content/uploads/2015/03/android-malware.jpg

Fraunhofer

FKIE

Host-Based Code Injection Attacks (HBCIAs)

B In a nutshell: run code in the context of another process
B HBCIAs consist of three steps [1]

Victim selection

Copying of code

Triggering of execution
1.)

r==="""7
} |

Dropper - — ———— > Payload E kernel32 ntdll
! |

,,,,,,,,

Attacker Process Victim Process

- [kernel32 |: Payload crypt32

Attacker Process Victim Process

\

~ Fraunhofer

FKIE

Host-Based Code Injection Attacks (HBCIAs)

M Benefits

Covert operation
Escalation of privileges

Interception of critical information

B Very popular with 2/3 of current Windows malware [1]

M Several platforms are prone to this attack

\

~ Fraunhofer

FKIE

Disinfection of HBCIA-infected Processes

B Never trust an infected system

B However, in some cases a reboot is not possible (e.g.
industrial plants)

B Systematic disinfection has been shunned
Works on detection and prevention (e.q. [2], [3], [4])

Disinfection of Conficker [5]

\

~ Fraunhofer

FKIE

PARASITEEX

~ Fraunhofer
FKIE

ParasiteEx

B Disinfects HBCIA-infected process spaces systematically

B Relies on common concepts found in almost all OSes
Processes (victim selection)
Memory regions (code copying)
Threads (execution triggering)

B Platform-independent

Prototype exists for Windows and Linux

\

~ Fraunhofer

FKIE

ParasiteEx: Algorithm

C Access Process Space

Y

C Detect Infected Regions

Y

(Detect Malicious Threads

Y

(Kill Malicious Threads

Y

-
)
)
’
T
)
y
}

Y

Detect Hooks

Y

—_
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
|
I
I
|
I
|
I
|
I
I
|
I
|
|
I
|

Close Process Space

(Free Hooks

\

~ Fraunhofer

FKIE

ParasiteEx: Infection Detection (1/2)

B Assumption: good set of signatures

M Scans all memory pages

If memory page matches signature ->
whole region is assumed to be infected

N\

~ Fraunhofer

FKIE

ParasiteEx: Infection Detection (2/2)

= 3

® Then malicious threads are
determined

B A thread is malicious IFF it
originates in infected region

%b

~ Fraunhofer

FKIE

ParasiteEx: Detection and Removal Hooks

M Detects jumps from
libraries to infected
regions

. -

BAD STRING

\

~ Fraunhofer

FKIE

ParasiteEx: Detection and Removal Hooks

M Detects jumps from
libraries to infected
regions

B Replaces affected
libraries

BAD STRING

~ Fraunhofer

FKIE

\l

EVALUATION

~ Fraunhofer
FKIE

Data set

B Fifteen representatives of prevalent malware
families

Bebloh, Sality, Vawtrack, ... 5

Hanthie Q

B 334 benign programs

Z Fraunhofer

FKIE

Methodology

M Environment
Hardend VMs (Windows XP, Ubuntu Linux 13.10)
No Internet connection

B Preparation: Create signatures

Execute Wait 2 Execute
> >tart VM sample minutes ParasiteEx WAV

\

~ Fraunhofer

FKIE

Results

B No false positives
B Cleans successfully 11/14 Windows families
B Cleans successfully Hanthie on Linux

B Problems in three cases

Hooks

Detection of all malicious threads

~ Fraunhofer

FKIE

\l

FUTURE WORK & CONCLUSION

~ Fraunhofer
FKIE

Future Work

B Improvement of hook detection & removal engine
Minimizing risk of system instability
B Dynamic Software Updating [6]

B Move ParasiteEx out of User Space

\

~ Fraunhofer

FKIE

Conclusion

M ParasiteEx disinfects HBCIAs platform-independently
B Relies on concepts like threads or memory regions
B Prototype for Windows and Linux

B Prototype showed very promising results

~ Fraunhofer

FKIE

\l

References

[1] T. Barabosch, S. Eschweiler, E. Gerhards-Padilla, Bee Master: Detecting Host-
Based Code Injection Attacks, DIMVA 2014

[2] T.Barabosch, E. Gerhards-Padilla, Host-Based Code Injection Attacks: A Popular
Technique Used By Malware, MALCON 2014

[3] G. S. K¢, A. D. Keromytis and V. Prevelakis, Countering code-injection attacks
with instruction-set randomization, CCS 2003

[4] A. Papadogiannakis, L. Loutsis, V. Papaefstathiou and S. lonnidis, ASIST:
architectural support for instruction set randomization, CCS 2013

[5] F. Leder and T. Werner, Containing Conficker, 2009

[6] C. Giuffrida, C. lorgulescu, A. S. Tanenbaum, Mutable Checkpoint-Restart:
Automating Live Update for Generic Server Programs, Middleware 2014

\

~ Fraunhofer

FKIE

