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Source: http://www.snoopwall.com/wp-content/uploads/2015/03/android-malware.jpg 
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Host-Based Code Injection Attacks (HBCIAs) 

n  In a nutshell: run code in the context of another process  

n  HBCIAs consist of three steps [1] 

n   Victim selection 

n   Copying of code 

n   Triggering of execution 
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Host-Based Code Injection Attacks (HBCIAs) 

n Benefits 

n Covert operation 

n Escalation of privileges 

n  Interception of critical information 

n Very popular with 2/3 of current Windows malware [1]  

n Several platforms are prone to this attack 
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Disinfection of HBCIA-infected Processes 

n  Never trust an infected system 

n  However, in some cases a reboot is not possible (e.g. 
industrial plants) 

n  Systematic disinfection has been shunned 

n Works on detection and prevention (e.g. [2], [3], [4]) 

n Disinfection of Conficker [5] 



© Cyber Defense Research Group, Fraunhofer FKIE  

6 

PARASITEEX 
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ParasiteEx 

n  Disinfects HBCIA-infected process spaces systematically 

n  Relies on common concepts found in almost all OSes 

n Processes (victim selection) 

n Memory regions (code copying) 

n Threads (execution triggering) 

n  Platform-independent 

n   Prototype exists for Windows and Linux 
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ParasiteEx: Algorithm 
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ParasiteEx: Infection Detection (1/2) 

n  Assumption: good set of signatures 

n  Scans all memory pages 

n If memory page matches signature -> 
whole region is assumed to be infected 

BAD STRING 
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ParasiteEx: Infection Detection (2/2) 

n  Then malicious threads are 
determined 

n  A thread is malicious IFF it 
originates in infected region 

BAD STRING 
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ParasiteEx: Detection and Removal Hooks 

n  Detects jumps from 
libraries to infected 
regions 

crypt32.dll 

BAD STRING 

JMP 
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ParasiteEx: Detection and Removal Hooks 

n  Detects jumps from 
libraries to infected 
regions 

n  Replaces affected 
libraries 

crypt32.dll 

BAD STRING 
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EVALUATION 
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Data set 

n   Fifteen representatives of prevalent malware 
families  

n  Bebloh, Sality, Vawtrack, … 

n  Hanthie  

n  334 benign programs 
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Start VM Execute 
sample 

Wait 2 
minutes 

Execute 
ParasiteEx Test VM 

Methodology 

n Environment 

n Hardend VMs (Windows XP, Ubuntu Linux 13.10) 

n No Internet connection 

n  Preparation: Create signatures 
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Results 

n  No false positives  

n  Cleans successfully 11/14 Windows families 

n  Cleans successfully Hanthie on Linux 

n  Problems in three cases 

n  Hooks 

n  Detection of all malicious threads 
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FUTURE WORK & CONCLUSION 
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Future Work 

n  Improvement of hook detection & removal engine 

n  Minimizing risk of system instability 

n  Dynamic Software Updating [6] 

n  Move ParasiteEx out of User Space 
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Conclusion 

n  ParasiteEx disinfects HBCIAs platform-independently 

n  Relies on concepts like threads or memory regions 

n  Prototype for Windows and Linux  

n  Prototype showed very promising results 
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