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Host-Based Code Injection Attacks (HBCIAs)

B In a nutshell: run code in the context of another process
B HBCIAs consist of three steps [1]

Victim selection

Copying of code

Triggering of execution
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Host-Based Code Injection Attacks (HBCIAs)

M Benefits

Covert operation
Escalation of privileges

Interception of critical information

B Very popular with 2/3 of current Windows malware [1]

M Several platforms are prone to this attack
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Disinfection of HBCIA-infected Processes

B Never trust an infected system

B However, in some cases a reboot is not possible (e.g.
industrial plants)

B Systematic disinfection has been shunned
Works on detection and prevention (e.q. [2], [3], [4])

Disinfection of Conficker [5]
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ParasiteEx

B Disinfects HBCIA-infected process spaces systematically

B Relies on common concepts found in almost all OSes
Processes (victim selection)
Memory regions (code copying)
Threads (execution triggering)

B Platform-independent

Prototype exists for Windows and Linux
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ParasiteEx: Algorithm

C Access Process Space

Y

C Detect Infected Regions
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( Detect Malicious Threads
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( Kill Malicious Threads
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Close Process Space

( Free Hooks
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ParasiteEx: Infection Detection (1/2)

B Assumption: good set of signatures

M Scans all memory pages

If memory page matches signature ->
whole region is assumed to be infected
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ParasiteEx: Infection Detection (2/2)

= 3

® Then malicious threads are
determined

B A thread is malicious IFF it
originates in infected region

%b

~ Fraunhofer

FKIE



ParasiteEx: Detection and Removal Hooks

M Detects jumps from
libraries to infected
regions

. -

BAD STRING
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ParasiteEx: Detection and Removal Hooks

M Detects jumps from
libraries to infected
regions

B Replaces affected
libraries

BAD STRING

~ Fraunhofer

FKIE

\l



EVALUATION
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Data set

B Fifteen representatives of prevalent malware
families

Bebloh, Sality, Vawtrack, ... 5

Hanthie Q

B 334 benign programs
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Methodology

M Environment
Hardend VMs (Windows XP, Ubuntu Linux 13.10)
No Internet connection

B Preparation: Create signatures

Execute Wait 2 Execute
> >tart VM sample minutes ParasiteEx WAV

\

~ Fraunhofer

FKIE



Results

B No false positives
B Cleans successfully 11/14 Windows families
B Cleans successfully Hanthie on Linux

B Problems in three cases

Hooks

Detection of all malicious threads

~ Fraunhofer

FKIE

\l



FUTURE WORK & CONCLUSION
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Future Work

B Improvement of hook detection & removal engine
Minimizing risk of system instability
B Dynamic Software Updating [6]

B Move ParasiteEx out of User Space
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Conclusion

M ParasiteEx disinfects HBCIAs platform-independently
B Relies on concepts like threads or memory regions
B Prototype for Windows and Linux

B Prototype showed very promising results
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