
© Fraunhofer FKIE

ParasiteEx
Disinfecting Parasitic Malware Platform-Independently

Thomas Barabosch, Adrian Dombeck, Elmar Gerhards-Padilla
firstname.lastname@fkie.fraunhofer.de

Future Security 2015, Berlin

Cyber Analysis & Defense (CA&D)

© Cyber Defense Research Group, Fraunhofer FKIE

2

Source: http://www.snoopwall.com/wp-content/uploads/2015/03/android-malware.jpg

© Cyber Defense Research Group, Fraunhofer FKIE

3

Host-Based Code Injection Attacks (HBCIAs)

n  In a nutshell: run code in the context of another process

n  HBCIAs consist of three steps [1]

n  Victim selection

n  Copying of code

n  Triggering of execution

© Cyber Defense Research Group, Fraunhofer FKIE

4

Host-Based Code Injection Attacks (HBCIAs)

n Benefits

n Covert operation

n Escalation of privileges

n  Interception of critical information

n Very popular with 2/3 of current Windows malware [1]

n Several platforms are prone to this attack

© Cyber Defense Research Group, Fraunhofer FKIE

5

Disinfection of HBCIA-infected Processes

n  Never trust an infected system

n  However, in some cases a reboot is not possible (e.g.
industrial plants)

n  Systematic disinfection has been shunned

n Works on detection and prevention (e.g. [2], [3], [4])

n Disinfection of Conficker [5]

© Cyber Defense Research Group, Fraunhofer FKIE

6

PARASITEEX

© Cyber Defense Research Group, Fraunhofer FKIE

7

ParasiteEx

n  Disinfects HBCIA-infected process spaces systematically

n  Relies on common concepts found in almost all OSes

n Processes (victim selection)

n Memory regions (code copying)

n Threads (execution triggering)

n  Platform-independent

n  Prototype exists for Windows and Linux

© Cyber Defense Research Group, Fraunhofer FKIE

8

ParasiteEx: Algorithm

© Cyber Defense Research Group, Fraunhofer FKIE

9

ParasiteEx: Infection Detection (1/2)

n  Assumption: good set of signatures

n  Scans all memory pages

n If memory page matches signature ->
whole region is assumed to be infected

BAD STRING

© Cyber Defense Research Group, Fraunhofer FKIE

10

ParasiteEx: Infection Detection (2/2)

n  Then malicious threads are
determined

n  A thread is malicious IFF it
originates in infected region

BAD STRING

© Cyber Defense Research Group, Fraunhofer FKIE

11

ParasiteEx: Detection and Removal Hooks

n  Detects jumps from
libraries to infected
regions

crypt32.dll

BAD STRING

JMP

© Cyber Defense Research Group, Fraunhofer FKIE

12

ParasiteEx: Detection and Removal Hooks

n  Detects jumps from
libraries to infected
regions

n  Replaces affected
libraries

crypt32.dll

BAD STRING

© Cyber Defense Research Group, Fraunhofer FKIE

13

EVALUATION

© Cyber Defense Research Group, Fraunhofer FKIE

14

Data set

n  Fifteen representatives of prevalent malware
families

n  Bebloh, Sality, Vawtrack, …

n  Hanthie

n  334 benign programs

© Cyber Defense Research Group, Fraunhofer FKIE

15

Start VM Execute
sample

Wait 2
minutes

Execute
ParasiteEx Test VM

Methodology

n Environment

n Hardend VMs (Windows XP, Ubuntu Linux 13.10)

n No Internet connection

n  Preparation: Create signatures

© Cyber Defense Research Group, Fraunhofer FKIE

16

Results

n  No false positives

n  Cleans successfully 11/14 Windows families

n  Cleans successfully Hanthie on Linux

n  Problems in three cases

n  Hooks

n  Detection of all malicious threads

© Cyber Defense Research Group, Fraunhofer FKIE

17

FUTURE WORK & CONCLUSION

© Cyber Defense Research Group, Fraunhofer FKIE

18

Future Work

n  Improvement of hook detection & removal engine

n  Minimizing risk of system instability

n  Dynamic Software Updating [6]

n  Move ParasiteEx out of User Space

© Cyber Defense Research Group, Fraunhofer FKIE

19

Conclusion

n  ParasiteEx disinfects HBCIAs platform-independently

n  Relies on concepts like threads or memory regions

n  Prototype for Windows and Linux

n  Prototype showed very promising results

© Cyber Defense Research Group, Fraunhofer FKIE

20

References
n  [1] T. Barabosch, S. Eschweiler, E. Gerhards-Padilla, Bee Master: Detecting Host-

Based Code Injection Attacks, DIMVA 2014

n  [2] T.Barabosch, E. Gerhards-Padilla, Host-Based Code Injection Attacks: A Popular
Technique Used By Malware, MALCON 2014

n  [3] G. S. Kc, A. D. Keromytis and V. Prevelakis, Countering code-injection attacks
with instruction-set randomization, CCS 2003

n  [4] A. Papadogiannakis, L. Loutsis, V. Papaefstathiou and S. Ionnidis, ASIST:
architectural support for instruction set randomization, CCS 2013

n  [5] F. Leder and T. Werner, Containing Conficker, 2009

n  [6] C. Giuffrida, C. Iorgulescu, A. S. Tanenbaum, Mutable Checkpoint-Restart:
Automating Live Update for Generic Server Programs, Middleware 2014

