
Quincy: Detecting Host-Based Code Injection
Attacks in Memory Dumps

Thomas Barabosch, Niklas Bergmann, Adrian Dombeck, and Elmar Padilla

Fraunhofer FKIE, Zanderstrasse 5, 53177 Bonn, Germany
firstname.lastname@fkie.fraunhofer.de

Abstract. Malware predominantly employs code injections, which al-
low to run code in the trusted context of another process. This enables
malware, for instance, to secretly operate or to intercept critical infor-
mation. It is crucial for analysts to quickly detect injected code. While
there are systems to detect code injections in memory dumps, they suf-
fer from unsatisfying detection rates or their detection granularity is too
coarse. In this paper, we present Quincy to overcome these drawbacks. It
employs 38 features commonly associated with code injections to classify
memory regions. We implemented Quincy for Windows XP, 7 and 10 and
compared it to the current state of the art, Volatility ’s malfind as well
as hollowfind. For this sake, we created a high quality data set consisting
of 102 current representatives of code injecting malware families. Quincy
improves significantly upon both approaches, with up to 19.49% more
true positives and a decrease in false positives by up to 94,76%.

Keywords: Malware;Memory Forensics;Host-Based Code Injection At-
tacks;Machine Learning

1 Introduction

Malware families implement many different behaviors such as form grabbing,
information leakage, persistence or code injections. Host-Based Code Injection
Attacks (HBCIA) are a family-inherit technique utilized to execute code in a
trusted context of another process. There are two processes involved: the attacker
process Pa and the victim process Pv, which both run on the same system. Pa

injects code from its own process space into the one of Pv. Subsequently, Pa trig-
gers the execution of this code within Pv. HBCIAs allow malware, for instance,
to intercept critical information within a browser or to hide from antivirus soft-
ware. A study indicates that almost two thirds of recent malware samples utilize
this technique [7]. Amongst others, this includes prevalent families like Dridex,
Rovnix, Tinba and Zeus. This points out the relevance of HBCIAs and renders
them an interesting and valuable topic to investigate in order to detect and
mitigate malware in general.

Analysts face HBCIAs on a daily basis. Forensic analysts are confronted with
memory dumps of unknown systems and in case of a malware infection without
an initial sample. Malware analysts continue to integrate forensic analyses in

their work flow due to the improvement of memory forensic frameworks like
Volatility [27]. In both cases, a fast and accurate initial detection of malicious
code in a memory dump is crucial. There are systems such as Volatility ’s malfind
[27], hollowfind [20] and Membrane [24] that support the detection of HBCIAs in
memory dumps. However, they suffer from major drawbacks. Whereas malfind
suffers from a high false positive rate, hollowfind detects only a subgroup of
all relevant types of HBCIAs. For example, malfind fails to detect Ponmocup,
driving one of the biggest botnets out in the wild [26]. It fails because it only
considers two features: the access property of memory regions as well as the
hiding of libraries. In contrast to malfind and hollowfind, Membrane is limited
to a coarse grain detection, i.e. it detects infected processes instead of the actual
malicious regions within a process. Although this reduces the size of the hay
stack to search in, it does not pinpoint the malware exactly: for instance, the
process Explorer contains 554 memory regions yielding 405 MB of data on an
idling Windows 10 system.

In this paper, we overcome the limitations of the aforementioned systems
by presenting Quincy. Its detection heuristic is based on 38 features from seven
categories commonly associated with injected code. They include, among oth-
ers, memory region permissions, memory region sparseness and the presence of
shellcode. Quincy embeds these features in a vector space and classifies consec-
utive memory pages (in the following just memory regions) as either malicious
or benign. We implemented Quincy for three Windows versions and released it
as a Volatility plugin on our website [5]. Our evaluation with a set of 102 cur-
rent malware families and 1794 benign programs shows that our system has a
higher detection rate with only few false positives (up to 94,76%) and more true
positives (up to 19,49%) when compared to malfind and hollowfind.

The contributions of this paper can be summarized as follows:

(I) A novel approach for HBCIA detection
We propose a fully-automated system to detect Host-Based Code Injection
Attacks in memory dumps. Quincy has the idea of platform-independence
in mind and hence focuses on concepts found among all modern multi-
tasking operating systems. Our approach is based on supervised machine
learning and utilizes a combination of 38 features to detect HBCIAs. This
allows it to significantly improve upon the state of the art malfind.

(II) Implementation and evaluation
We implemented Quincy and released it as a Volatility plugin on our
website [5]. We evaluated it in a systematic evaluation with current real
world malware families and goodware. In addition, we compared it to
malfind as well as hollowfind to prove that it significantly improves upon
them.

(III) Creation and publication of our data set
During our investigation on HBCIAs in memory dumps, we gathered the
most comprehensive data set of representatives of HBCIA-employing mal-
ware families that is available today. We crafted YARA signatures for each

memory dumps

– Memory Pages
– Threads
– Modules
– ...

(a) collect features (b) embed in vector space (c) learn

negative

positive

(d) classify new samples

Fig. 1: The four phases of Quincy : it receives dumps with labeled memory regions
as input. Then, it extracts 38 HBCIA-related features, which are organized in
seven categories (a). Subsequently, it selects valuable features and embeds them
in a multi-dimensional vector space (b). It then induces a binary tree-based
classifier (c). Finally, it can classify previously unseen memory regions (d).

family to verify a successful infection and to ensure a precise ground truth.
We share this data set on our website [5].

2 Quincy

In this section, we present Quincy, our approach to detect HBCIAs in memory
dumps. At first, we give an overview of its architecture. The system consists
of the following phases: feature extraction, feature selection, embedding of these
features into a vector space, learning and classification. Subsequently, we describe
each of these phases in detail.

2.1 Overview

Figure 1 sketches Quincy ’s work flow: first, it receives memory dumps as input
and closes the semantic gap, i.e. the gap between the binary representation of
data in a memory dump and its meaning to the operating system. Internally,
this is done by the memory forensic framework Volatility [27].

Second, it extracts low-level information, including processes, threads and
memory regions. The features are based on this low-level information. They are
closely related to HBCIAs such as memory region permissions, dynamic API
resolving and the presence of shellcode. Quincy extracts these features for each
region in a memory dump. A memory region is a set of consecutive pages within
a process. Whereas the typically page size is four kilobyte on x86, a memory
region consisting of many pages may have a size of several megabytes. Virtual
Address Descriptor (VADs) is the term for a memory region on Windows. Note
that such regions may be shared between processes, e.g. system libraries that
are mapped with EXECUTE WRITECOPY permissions on Windows.

Third, Quincy embeds these features for every memory region in a multi-
dimensional vector space. Fourth, it induces a binary classifier. As a result, it
can classify previously unseen memory region as either malicious or benign.

2.2 Feature Extraction

The following sections describe the 38 features organized in seven categories
that Quincy may employ for classification. We engineered these features based
upon domain knowledge in the fields of malware analysis and memory forensics.
Table 1 summarizes the features. Later, we conduct a feature selection to discard
less valuable features (see Section 4.1). Thereby, we create a feature set for
each operating system. This optimizes our detection rate while minimizing the
resources required.

(1) API System interaction such as network communication and file access
can only be accomplished through the operating system via syscalls. On most
operating systems high-level APIs are available that are more comfortable to use.
This included Windows. These APIs are an important keystone in the malware
analysis process: the presence of certain function calls allows to draw conclusions
about the behavior of a binary. For instance, we can deduce from a call to
CreateRemoteThread that an HBCIA is likely to occur.

The feature apigeneral api strings checks for the presence of API calls in general
by scanning for common string prefixes such as Create, Get or Open. This enables
us to differentiate memory regions that might communicate with the OS and the
ones that might not. As a consequence this detects regions hosting executable
files. The feature apihbcias explicitly scans for a set of API calls that are related
to HBCIAs such as CreateToolhelp32Snapshot and ZwSetContextThread.

Since the presence of API calls lessens the analyst’s burden, malware authors
obfuscate API names. Hence, they deobfuscate them just in time and dynam-
ically resolve the pointers to the API code. This can also be done via a set of
special functions. The feature apidynamic loading checks for the presence of such
functions like LoadLibrary and GetProcAddress. A more sophisticated method
is to manually resolve APIs by enumerating all libraries that are mapped into
the process space. This requires access to process data structure, e.g. the Pro-
cess Environment Block (PEB) on Windows. The feature apihashing searches for
code patterns that access such data structures to detect code that implements
api hashing.

(2) Binary Executable programs and libraries are building blocks of each pro-
cess. They are also known as modules, which typically pose as a memory region.
Programs and libraries match formats like the Portable Executable (PE) stan-
dard on Windows or the ELF standard on Linux and have a well-defined header.
The following features interpret header structures in memory regions in case they
are available.

The feature binaryhas header checks if a memory region starts with a well-
known header. However, malware may overwrite its header to impede its analy-
sis. The feature binarywiped header covers this case by checking for a zeroed-out
beginning of a memory region that is followed by code. Although benign pro-
grams come in the form of a stand-alone executable or a library, malware often

Overview of Quincy ’s features

category feature rank description

(1) API

dynamic loading 29/26/16 presence of dynamic loading APIs

general api strings 08/11/13 common API call prefixes

hashing 09/10/17 code fragments related to API hashing

(2) binary

exports 30/19/33 exports API calls

has header 23/21/20 starts with a header

imports 35/33/28 imports API calls

is dynamic library 32/20/27 has been loaded dynamically

is module 16/13/22 registered module known to the OS

is pe or dll 14/16/10 a PE executable or shared library

wiped header 37/34/36 executable header has been wiped

(3) code

functions 10/08/18 common assembler function prologues

hooks 04/05/12 memory region contains code hooks

indirect calls 05/03/05 ratio of indirect calls to all calls

indirect jumps 12/04/07 ratio of indirect jumps to all jumps

shellcode 01/15/11 shellcode patterns

(4) cryptography
cipher 33/29/30 constants of ciphers

encoding 26/23/21 constants of encoding schemes

hashing 28/20/25 constants of hashing algorithms

(5)
countermeasure
detection

debugger 17/18/29 strings and code patterns to detect debuggers

sandbox 22/27/15 strings and code patterns to detect sandboxes

vm 36/36/35 strings and code patterns to detect virtual machines

(6) memory

embedded exe 38/38/38 embedded executable after header

english strings 27/35/23 strings of Google’s top 1000 English search terms

high entropy areas 07/06/06 areas of high entropy

is heap 34/32/32 memory region is a heap

is sparse 03/01/02 ratio of zero bytes

mapped 15/37/37 corresponds to a memory mapped file

network strings 06/07/14 strings related to networking

persistence 24/30/19 strings related to persistence

private 18/14/08 tagged as private memory

protection 13/17/01 protection of memory region

tag 20/09/05 tagged by allocation functions

threads 11/12/09 count of threads originated in memory region

victim strings 19/31/26 names of typical HBCIA victims

(7) trojan
banking 25/28/31 strings related to online banking

cookies 21/23/24 strings related to cookie stealing

credentials 31/24/34 strings related to credential stealing

Table 1: Summary of the 38 features utilized by Quincy. The categories and
features within them are alphabetically arranged. The rank of a feature is based
on its importance determined in the feature selection on Windows XP/7/10.
Note that the final models do not employ all features (see Section 4.6).

injects shellcode into its victim processes. The feature binaryis pe or dll checks
if a memory region is a stand-alone executable or library by reading a field of
the corresponding header. Benign executables and libraries are either loaded at
process start or dynamically during runtime with the help of the OS, which
keeps track of these modules. The feature binaryis module encodes if a memory
region is registered as an official module by parsing the PEB. Malware obfus-
cates its API usage and therefore imports few or none API functions. The feature
binaryimports encodes whether or not a memory region imports such functions.

Malware may also inject entire libraries into victim processes. System libraries
export up to several hundreds functions. In contrast, malware may only export
a handful of functions, if any. The feature binaryexports checks if a region has
exported functions.

(3) Code The following features scrutinize assembly code properties of a mem-
ory region. We assume that every meaningful program is split into several units
of code, which is reflected by low-level assembly functions. Therefore, the fea-
ture codefunctions searches for patterns of common function prologues in mem-
ory regions. We assume these byte sequences to indicate code presence. Mal-
ware families like GozNym do not inject executable modules such as stand-
alone executables and libraries but rather shellcode. On execution, this position-
independent code has to determine its current address in memory to act. The
feature codeshellcode scans memory regions for code patterns that determine their
position in memory. For example, it considers patterns like a call to the next
instruction, followed by a pop to a register, which determines the current address
in memory.

Due to position-independence and obfuscation reasons, malware contains sig-
nificantly more branches with dynamically calculated targets in relation to direct
calls and jumps. The features codeindirect calls and codeindirect jumps describe the
ratio of indirect calls/jumps to all calls/jumps. The feature codehooks searches
for code hooks that point from one memory region into another region. The
presence of such hooks may reveal, for example, the presence of banking tro-
jans that hook libraries in browsers to intercept banking credentials. On the
downside, searching for hooks in memory dumps is computational expensive.
For instance, Volatility ’s apihooks may take up to a couple of minutes to scan a
memory image. Therefore, we opted to scan memory regions for strings related
to hooking of browser APIs functions like Firefox ’s Netscape Portable Runtime
(NSPR), which are commonly hooked by code-injecting banking trojans.

(4) Cryptography Malware may try to hide its presence and communication
by extensive use of cryptography, e.g. files are encrypted with AES, network traf-
fic is encoded with Base64 or network packets are hashed with SHA256. Usually
malware does not rely on external libraries like Microsoft’s Cryptographic API,
but rather statically links the cryptographic algorithms into its binary in order
to increase analysis costs. Features of this category look for constants or strings
related to prominent encryption (cryptocipher), encoding (cryptoencoding) and
hashing algorithms (cryptohashing).

(5) Countermeasure Detection Malware authors want to postpone analysis
as long as possible. Therefore, many malware families impede their analysis
by including countermeasure techniques. We distinguish between three types:
first, the feature counterdebugger checks for traces of anti-debugging techniques
that aim at manual analysis. These traces include code fragments, e.g. accessing

the beingDebugged flag of the process space, and strings related to malware
analysis tools such as debuggers and process inspectors. Second, the feature
countersandbox checks for the presence of certain sandbox related strings, e.g.
such as Anubis or Cuckoo. Third, the feature countervm scans for strings and
code fragments that detect virtual machines, which are commonly employed in
malware analysis. For example, malware can detect VirtualBox VMs due to its
default MAC address prefix 0x080027.

(6) Memory The following features focus on the properties of memory regions
themselves. They are arranged in three subcategories.

Statistical features: many memory regions are sparse, i.e. they have a high
ratio of zero bytes. In contrast, memory regions of binaries are more densely
filled with data. Therefore, the feature memoryis sparse measures the ratio of
zero bytes to find nearly empty regions.

Lyda et al. [18] proposed the entropy of data to detect compressed or en-
crypted data. Quincy leverages entropy analysis to detect areas of high entropy.
We chose the area size to be four kilobyte as the typical page size on the In-
tel x86 architecture and the entropy threshold to be 6.5 as suggested by Lyda
et al. [18]. The feature memoryhigh entropy areas encodes the percentage of high
entropy areas within a memory region.

Memory region properties: this subcategory considers mostly flags as-
signed to a memory region by the operating system: heap flag (memoryis heap),
its protections (memoryprotection) such as readable, writable or executable, mem-
ory mapped file flag (memorymapped), private memory flag (memoryprivate)
and memory allocation function tag (memorytag). Furthermore, the feature
memorythreads determines if any thread has been started within a region.

Strings: whereas strings may be obfuscated on hard disk, there are sur-
prisingly many strings in memory. This also holds for malware employing ex-
ecutable packing. The feature memoryenglish strings matches a word frequency
list of the thousand most frequent search terms on Google consisting of more
than three characters. We assume that this may help to identify rather benign
regions. The feature memorynetwork strings detects memory regions that contain
networking vocabulary such as HTTP or POST since network communication
is an integral part of today’s malware. HBCIA-employing malware prefers cer-
tain victim processes [7]. The feature memoryvictim strings searches for victim
names in regions such as explorer.exe or svchost.exe to identify memory regions
of HBCIA-employing malware. The feature memorypersistence detects strings re-
lated to persistence, e.g. the Windows registry key . . . \CurrentVersion\Run to
find code that may have achieved persistence on the system.

(7) Trojan One reason to inject code into another process is to intercept in-
formation. Therefore, code injections are especially important to trojans like
GozNym, Xswkit or KINS. Since the main objective of banking trojans is to di-
vert money in banking sessions, the feature trojansbanking scans every memory

region for a comprehensive list of financial vocabulary and bank names. Further-
more, they target cookies and general credentials such as Facebook or LinkedIn
accounts. The two features trojanscookies and trojanscredentials scan for strings
related to cookies and credentials correspondingly.

2.3 Feature Selection and Embedding in Vector Space

Before utilizing machine learning, we select a set of appropriate features and
embed them in a vector space without standardization. We employ machine
learning algorithms that are unaffected by varying feature scales (tree-based
algorithms, see next section). Most features are of binary nature, e.g. the feature
memoryembedded executable. However, there are also continuous features such as
memoryhigh entropy areas and codeindirect calls.

Initially, the vector space has 38 dimensions. We carry out a recursive feature
elimination (RFE) as proposed by Guyon et al. [16]. RFE employs an external es-
timator that weights features based on their importance. It is recursively trained
with decreasing feature sets, where it pruns the weakest feature in each iteration.
For this sake, we employ Random Forests as external estimator as proposed by
Genuer et al. [13].

2.4 Learning and Classification

Quincy learns a model to classify memory regions either as malicious or be-
nign. There are several classes of machine learning algorithms for classification
problems such as Support Vector Machines, Logistic Regression and Decision
Tree-based algorithms. Tree-based algorithms pose several advantages includ-
ing the comprehensibility of predictions, the simplicity of the algorithms and
the minimal effort required in data preparation. Therefore, we opt for Decision
Tree-based algorithms, considering CART-Decision Trees [10], Random Forests
[9], Extremely Randomized Trees [14], AdaBoost [11] and GradientBoosting [12].

2.5 Implementation

We implemented Quincy in Python. It leverages the memory forensic framework
Volatility [27] to extract features and scikit-learn [3] to learn. Our implementa-
tion analyzes all Windows NT versions from Windows XP onwards.

To speed up the analysis process, Quincy copies memory images to a RAM
disk and conducts the feature extraction in memory. Hence, the read speed of
the machine’s memory is crucial to the general runtime. Furthermore, Quincy ’s
feature extraction is single-threaded. Therefore, we expect further speed up by
parallelizing the feature extraction.

3 Data Set Creation

We follow the advices of Rossow et al. [25], based on the fact that an evaluation
requires a comprehensive data set. This section describes how we created the data

data set year publication R1 R2 R3 R4

cwsandbox 2007 [29] 7 7 3 7

Malicia 2013 [21] 7 7 3 7

Malware Classification Challenge 2015 [19] 3 7 3 7

Table 2: Matching of publicly available data sets to our four requirements to an
evaluation data set discussed in Section 3.1

set for our evaluation and what kind of data it comprises. First, we describe
the considered binaries and how we generated memory dumps from them for
the evaluation. Next, we show how we properly labeled the memory regions to
ensure a reliable ground truth. Finally, we conduct an initial data analysis of the
extracted data.

3.1 Data Set

We require an evaluation data set to contain:

R1 a considerable amount of HBCIA-employing malware families
R2 recent malware families
R3 only Windows malware
R4 goodware programs to estimate false positives

The data set should contain a considerable amount of different families to evalu-
ate the systems with different code injection techniques (R1). Next, we want to
ensure that our evaluation results are valid for recent malware (R2) that runs
on the prevalent target Microsoft Windows (R3). Finally, the set should contain
goodware programs to estimate false positives (R4). Table 2 matches these four
requirements to three publicly available data sets. cwsandbox as well as malicia
contain only older malware strains and hence violate requirement R2. Malware
Classification Challenge consists of a considerable amount of samples. However,
they belong to less than ten families, not all of which employing code injections.
Since none of these data sets matches our requirements, we opted to create our
own and contribute it to the research community.

We considered 1794 benign as well as 102 malicious binaries and generated
a memory dump for each of them. Memory dumps of malware contain benign
and malicious memory regions, while dumps generated with benign binaries are
assumed to contain only benign regions. In the following sections, we describe
which binaries we considered in detail.

Benign Binaries Benign binaries comprise software included in Windows and
other widespread programs. For this sake, we extracted programs from the sys-
tem directory of Windows XP, 7 and 10. Additionally, we collected binaries of
widespread programs from an archive of portable freeware applications [1]. In
total, we collected 1794 benign binaries. However, the programs that we were

able to execute varied among Windows versions. Some programs were not com-
patible with each version. Moreover, we did not execute system programs of one
version on another to ensure compatibility. A list of all benign binaries and their
hashes is provided on our website [5].

Malicious Binaries Our set of malicious binaries consist of 102 representa-
tives of HBCIA employing malware families. Barabosch et al. [6] showed that
HBCIAs are an inherent malware family feature, i.e. it is unlikely to change be-
tween versions and variants of a family. Therefore, it is sufficient to consider one
representative per family. Note that this minimizes family specific overfitting by
focusing on the employed HBCIA techniques. We gathered family representa-
tives over the last months. On the one hand, we consulted IT security blogs, e.g.
of antivirus companies, that carried out in-depth analysis of malware families.
On the other hand, we included families that we internally analyzed at our insti-
tute. Later, we manually verified the HBCIA capability of the obtained families
(see Section 3.3). The set of malicious families contains a wide range of current
malware that represent today’s threat landscape, for instance, viruses (Sality),
banking trojans (Xswkit), spamming bots (Cutwail) and droppers (Nymaim).
Some samples are not compatible with every Windows version, therefore the
number of executable families varies. We share the malicious binaries on our
website [5].

3.2 Creation of Memory Dumps

We generated memory dumps for Windows XP SP3, Windows 7 SP1 and Win-
dows 10. We automated the memory dump generation process with a tool, which
is based on the virtualization software VirtualBox [22]. First, it creates an ISO
image containing the sample. Then, it starts the virtual machine in a predefined
state and mounts the ISO image on the virtual CD Drive. The guest system runs
a script, which executes the sample with administrator privileges. We grant each
sample two minutes to initialize, which is a common timeout of sandboxing sys-
tems. At the end, it dumps the memory state of the virtual machine to a file.

The virtual machines were not connected to the Internet during the infection,
since no command and control server communication was required. They were
hardened against several virtual machine detection techniques, since malware
may be environment sensitive [17]. First, we utilized the tool Pafish [23] to
find ways to detect our VMs. Subsequently, we hardened detection points, e.g.
by removing strings of the hypervisor from the registry. Note that sometimes
hardening is not feasible. For instance, fixing subtle differences between a real
x86 CPU and the implementation provided by VirtualBox are out of scope for
this work.

3.3 Establishing a Ground Truth

A proper labeling of the data set is essential for a reliable evaluation of our model
and comparison with the state of the art malfind [27] and hollowfind [20]. We

OS binaries memory regions

benign malicious benign malicious

Windows XP 1205 71 2729563 398
Windows 7 1264 72 5306368 319
Windows 10 977 73 7266226 710

Total (unique) 1794 102 15302157 1427

Table 3: Data distribution of benign and malicious binaries as well as benign
and malicious memory regions for all three considered Windows versions.

established our labeling as follows: we assumed all memory regions of goodware
dumps as benign. We can not make a similar assumption for malware dumps:
the regions may be malicious or benign. Therefore, we opt to employ YARA
signatures [2] to reliably detect malicious artifacts in memory dumps. For this
sake, we manually reverse engineered the malware families and wrote signatures
for each of them. Even though some preliminary work on automatic signature
generation exists [15], it is limited to static signatures. However, malware usually
is packed, i.e. the original binary and the executed code in memory significantly
differ.

We estimated the detection rates of malfind and hollowfind by interpreting
their results as follows: in case they did not mention a memory region then it
was labeled as benign. In the other case, it was labeled as malicious.

3.4 Initial Data Analysis

We conducted an initial analysis of the extracted data to get a first impression.
According to Table 3, it exhibits a skewed class distribution. The benign binaries
outnumber the malicious binaries by an order of magnitude. Benign binaries
are easier to access than properly labeled representatives of HBCIA-employing
malware. Thereby, the distribution is even more skewed in the case of benign
and malicious memory regions, because there are typically more benign processes
and hence more benign memory regions than infected processes and malicious
regions, respectively. Nevertheless, we argue that this is exactly the haystack
scenario that detection systems face in the wild.

4 Model Evaluation

We select features and conduct an optimization and evaluation of our model in
Section 4.1 - 4.3. This is followed by the evaluation of our optimized model and a
comparison with malfind as well as hollowfind in Section 4.4. Then, we conduct
a temporal analysis to estimate how well Quincy detects future malware families
in Section 4.5. Section 4.6 summarizes the final models that we learned on the
whole data sets. Finally, we discuss evasion strategies for Quincy in Section 4.7.

Fig. 2: Relative feature importance in percent for the top 15 features on Windows
XP. We obtained these values during the recursive feature elimination phase in
the model learning stage. They are based on the estimation of the Random
Forests.

4.1 Methodology of the Model Evaluation

We did the following ten times for each data set of the three Windows versions,
in a cross-validation loop in order to cope with variance.

At first, we randomly split the whole data set consisting of the malicious
and benign memory regions into two sets. The first set is the training set dtrain
and the second set is the validation set dvalidation. dtrain was utilized in model
training and model optimization, whereas dvalidation was exclusively utilized to
estimate the final performance of our optimized model. Therefore, we evaluated
our optimized model on unseen data to estimate its potential for generalization.
Please note that we split the data set such that the malicious regions of one
family were either in dtrain or in dvalidation but never in both sets. This ensured
that our model did not face malicious regions of one family in training and
validation.

We showed that the class distribution is heavily skewed in our initial data
analysis (see Section 3.4). Machine learning algorithms may perform poorly and
misclassify many minority class instances due to optimizing the overall accuracy
and hence shifting their focus to the majority class. Therefore, we treated the

two classes separately. We split malicious regions with a ratio of 60%/40% into
dtrain and dvalidation and benign regions with a ratio of 10%/90%. On the one
hand, this ensured that there are sufficient malicious samples in dtrain. On the
other hand, this added noise in form of benign regions to dvalidation. Noise that
Quincy, malfind and hollowfind are confronted with in the real world.

We selected the optimal set of features on dtrain using Recursive Feature
Elimination (RFE) with Random Forests. Afterwards, we trained and optimized
several tree-based models on dtrain for comparing them later. The model opti-
mization took place on the whole set of dtrain and was carried out in form of
a randomized grid search. Finally, we evaluated the optimized models together
with malfind and hollowfind on dvalidation.

4.2 Feature Selection

The feature selection took place on dtrain using Recursive Feature Elimination
(RFE) with Random Forests. Figure 2 shows the relative feature importance on
Windows XP. Note that the results are similar on Windows 7 and Windows 10.
Table 1 lists the ranking of the features for the three operating systems.

There are only a few features that significantly contribute to the model
with an average of more than 5%. The top three features are codeshellcode,
memorycontains HBCIA strings and memoryis sparse. Whereas the first two fea-
tures directly aim at detecting malicious memory regions, the third feature de-
tects close to empty and hence probably benign memory regions. Surprisingly,
memorycontains HBCIA strings performs well even though it scans for strings.
Furthermore, all features of the categories code and API as well as one half of
the features of memory are contained within the top 15 features. They cover
the two integral parts of a code injection: the injected code and its execution
context. In contrast, the two categories trojan and cryptography do not perform
as expected. The assumptions on which these two categories are based did not
hold. Whereas in the case of cryptography we assumed that malware prefers to
statically link cryptographic algorithms, in the case of trojan we assumed that
data theft related vocabulary is present in many malware strains.

There are few features that have an importance of less than one percent. They
are either rare cases like memoryembedded executable and binarywiped header or they
are common in regular programs like cryptocipher. The feature memoryprotection
on which malfind heavily relies on is only of medium importance to our model.

4.3 Optimization of Hyperparameters

The optimization of hyperparameters is an important step towards an optimal
model. They are defined outside of the machine learning algorithm, e.g. maximal
tree depth or the number of base estimators in a learning ensemble. We opted
for a randomized grid search to optimize the hyperparameters of our tree-based
models. It does not search over every grid point of the hyperparameter space,
instead it randomly samples grid points and evaluates the model with them.
Bergstra et al. [8] showed that randomized grid search is more effective than

algorithm trees learning rate max. features tree depth

AdaBoost [11] [10,400] [0.1,1.0] - -

CART [10] 1 -
√

|f |, |f | [3,12] + ∞
Extremely Randomized Trees [14] [10,400] -

√
|f |, |f | -

GradientBoosting [12] [10,400] [0.1,1.0] - [4,8]

Random Forest [9] [10,400] -
√

|f |, |f | -

Table 4: Hyperparameters to optimize and their value ranges for the five tree-
based machine learning algorithms. f denotes the total number of features.

exhaustive grid search as it converges to a close-to-optimum solution at a high
rate. We sampled 64 grid points in total as suggested by Bergstra et al. [8] and
conducted a 10-fold cross validation for every sampled grid point. We chose the
best performing parameters for our final model. The evaluation metric was the
area under the receiver operating characteristic curve (ROC AUC score).

We considered five algorithms: CART-Decision Trees, Random Forests, Ex-
tremely Randomized Trees, AdaBoost and GradientBoosting. All of them have
several hyperparameters: some of these hyperparameters affect the whole en-
semble like the learning rate and some of them affect the individual trees like
the maximal tree depth. Optimizing all of these parameters is computationally
expensive. Therefore, we decided to optimize only the most significant four hy-
perparameters and set the others to scikit-learn’s [3] default values. Table 4 lists
the hyperparameters and their respective value ranges.

4.4 Model Evaluation

After having trained and optimized our models, we evaluated their final per-
formance on unseen data to estimate how well they generalize. In addition, we
compared them to the state of the art approach malfind in version 2.5 [27] as
well as hollowfind [20], the Volatility plugin contest winner of 2016. malfind
extensively focuses on memory region related features like memory region per-
missions. hollowfind detects process hollowing by finding discrepancies in process
data structures. For an exact description of malfind and hollowfind see Section
5.

We evaluated Quincy with five tree-based machine learning algorithms. The
following holds true for all three operating systems: the standard decision tree
algorithm CART yields more true positives than malfind but comes with an
order of magnitude more false positives. AdaBoost and GradientBoosting detect
less false positives than malfind, however they also detect less malicious regions,
resulting in an overall worse performance. These two algorithms exhibit far better
results than non-boosting algorithms on the training data, which lets us conclude
that they most likely overfit. The two best performing algorithms are Random
Forests and Extremely Randomized Trees. Both algorithms are bagging-based.
They dominate malfind in all cases, with Extremely Randomized Trees being the

Windows Quincy malfind hollowfind

AUC TP FP AUC TP FP AUC TP FP

XP 93.8% 149.1 813.5 90.2% 137.9 15538.3 52.24% 7.7 1306.4
7 88.5% 94.4 547.3 80.4% 76.0 7488.0 52.70% 6.6 9176.8
10 84.4% 187.3 1828.5 81.9% 175.6 3672.0 51.57% 8.8 110.1

Table 5: Final data of the evaluation of Quincy with Extremely Randomized
Trees, malfind and hollowfind on dvalidation: Area Under Curve (AUC), True
Positives (TP) and False Positives (FP).

most successful. Quincy and malfind dominated hollowfind in all cases, which
showed only slightly better performance than throwing a coin.

Table 5 lists the final results of Quincy with Extremely Randomized Trees,
malfind and hollowfind. All values represent the mean of the 10-fold cross valida-
tion. Our system dominates malfind when comparing their area under the ROC
curve. Its highest score is 93,8% on Windows XP. The greatest difference between
their AUC scores can be observed on Windows 7 with 8,09%. Both Quincy and
malfind outperform hollowfind, which only detects process hollowing. This is a
special case of HBCIAs.

Quincy with Extremely Randomized Trees detects more true positives than
malfind with up to 19,49% on Windows 7. Since Quincy incorporates one of
malfind ’s two features, we assumed equal performance at least. However, our
system considers more features and detects more malicious memory regions. In
contrast to malfind, it detects, for instance, malware families like Ponmocup and
Dridex, which inject libraries into their victim processes.

Quincy has also less false positives than malfind with up to 94,76% on Win-
dows XP. malfind considers every non-empty memory area with RWX permis-
sions as malicious. Malware authors might forget to cover their traces or the
architecture (e.g. shellcode) demands these permissions. This allows malfind at
least to partially detect a family. However, once these permissions are adjusted
well (i.e. only RX permissions are set), Quincy outperforms malfind due to its
comprehensive set of other features. False positives of our approach include pro-
grams like Dropbox Portable that exhibit similar signs like the malicious regions:
high entropy areas (probably due to packing), presence of shellcode to determine
its position in memory, RWX memory permissions and extensive use of cryptog-
raphy. This results in similar features like of malicious regions. They are therefore
falsely classified as malicious. Another observation is that falsely assumed mali-
cious regions decrease with more modern Windows versions. Therefore, malfind
false positive rate decreases, however our system benefits from this as well.

Table 6 shows the family detection and family completeness. We consider
a family detected if one approach detects at least one of the family’s memory
regions. Note that a malware infection may result in many distinctive memory
regions distributed over several processes. A detection is considered complete
when all memory regions are detected. On average, Quincy detects more malware
families on Windows 7 than malfind. Even though both exhibit a similar family

Windows families Quincy malfind hollowfind

detection complete detection complete detection complete

XP 29 24.3 20.9 24.4 19.5 4.7 0
7 29 26.4 18.1 24.3 11.9 4.6 0
10 30 23.7 18.1 23.6 15.2 4.9 0

Table 6: Family detection and family completeness of Quincy with Extremely
Randomized Trees, malfind and hollowfind on dvalidation.

detection on Windows XP and Windows 10, malfind often just detects small
malicious regions with RWX permissions but misses on the main module of the
malware family. While this may confirm an infection, it does not yield the main
payload responsible for the infection, which is essential to carry out further
investigations. This assumption is also supported by the family completeness.
On average, our system completely detects more families since it does not solely
focus on memory region permissions. hollowfind detected only the families that
employ process hollowing and none of them completely. Overall our proposed
model dominates the other approaches in all evaluation metrics.

4.5 Temporal Evaluation

After evaluating Quincy with malfind and hollowfind and showing its superiority,
we conducted a temporal evaluation of these three systems. The objective was to
evaluate how well they perform in a temporal setting, i.e. training them on older,
historical data and evaluating them on recent data. This evaluation proceeds
similar to the general one, limited to one iteration of the cross validation loop.
The chronological order is based on a family’s first occurrence in the wild. For
this sake, we queried VirusTotal [4] to arrange the malware in chronological
order and split it with a 60%/40% ratio.

Figure 3 shows the final performance as ROC curve of the three approaches
averaged over all three operating systems. It documents the superiority of Quincy
in the temporal evaluation comparing an AUC score of 90.9% versus 87.6%
of malfind and 54.3% of hollowfind. An interesting finding is that the ways of
injecting code, e.g. hollowing processes by using memory mapped files or creating
a remote thread, do not substantially differ in the two data sets, meaning that
newer families exhibit similar injection traces as older families. An explanation
may be that malware authors tend to copy from each other.

4.6 Final Models

We precomputed three models based on the full data sets, which we distribute
with Quincy ’s source code [5]. Therefore, we chose Extremely Randomized Trees
as learning algorithm based on its performance. Moreover, we carried out a
feature selection using RFE with Random Forests and optimized the hyperpa-
rameters number of trees and maximal number of considered features. Table 7
presents the number of selected features and the final hyperparameters.

Fig. 3: Final performance of Quincy (green), malfind (orange) and hollowfind
(red) in temporal evaluation illustrated as ROC curves averaged over all three
evaluated operating systems (XP, 7, 10)

4.7 Discussion of Evasion

As with every detection system, an adversary can try to understand and circum-
vent its detection heuristic. However, we utilize 38 features from seven categories.
These categories scrutinize several aspects of a memory region, from its memory
properties to its embedded code. An adversary may try to circumvent some fea-
tures, e.g. by bloating the code with zeros to resemble a sparse region, but there
are still other features like codefunctions that would indicate that the region may
contain relevant code. The number of different features and their correlations in-
creases the challenge to circumvent our system, when compared to other systems
like malfind or hollowfind.

But there are HBCIAs that might not be detectable during a post-mortem
memory dump analysis. Several operating systems offer the possibility to load
arbitrary libraries into a process during its creation, e.g. AppInit DLLs on Win-
dows. If malware employs such means then detection may fail for several reasons.
Foremost, the library has been loaded by the system loader in the same fashion
as a regular library. Such modules have therefore the same permissions or they
are listed in the same data structures as regular system libraries. In the case of
the absence of other indicators these injections are especially difficult to detect.

Windows number of features number of trees maximal features

XP 27 445
√

|f |
7 34 475

√
|f |

10 23 435
√

|f |
Table 7: The number of optimal features and hyperparameters for Quincy with
Extremely Randomized Trees on the evaluated operating systems. The number
of features describes the amount of features that were selected during the fea-
ture selection. The two hyperparameters were selected during a randomized grid
search on the whole data set of each operating system.

5 Related Work

There are four systems allowing forensic detection of HBCIAs in memory dumps,
which are closely related to our approach: malfind [27], hollowfind [20], Mem-
brane [24] and Hashtest [28]. All of them are based on the memory forensic
framework Volatility. There are public implementations of each except Mem-
brane. Table 8 compares them to Quincy.

Malfind Hale Ligh proposed the current state of the art malfind [27]. It imple-
ments a combination of two features to classify memory regions. At first, it marks
entirely empty regions as benign. Pages with RWX protections and unlinked li-
braries (from the PEB) are marked as malicious. Furthermore, it detects wiped
PE headers in RWX -protected memory regions. The remaining regions are as-
sumed to be benign. Its detection heuristic may be completely circumvented by
not utilizing RWX permissions and not unlinking libraries. Lassalle proposed
malfinddeep [27], an improvement to malfind that utilizes whitelisting of mem-
ory regions based on ssdeep hashes. We did not evaluate malfinddeep since there
is no official whitelist available. Our work significantly improves upon malfind,
as shown in the evaluation. Quincy considers a superset of malfind ’s features
adding many more in order to decrease false positives, increase true positives
and render evasion more difficult.

Hollowfind The volatility plugin hollowfind [20] detects process hollowing,
which is a code injection technique, replacing code of a legitimate process and
manipulating the initial thread to execute malicious code. The behavior of the
malware blends in a trusted process, e.g. svchost.exe. hollowfind detects process
hollowing by comparing two process management data structures for discrepan-
cies. It considers the Process Environment Block (PEB), which amongst others
list the loaded modules with their paths. Furthermore, it considers a data struc-
ture in kernel space (VAD structure), which contains information about the
modules’ paths. If hollowfind finds a discrepancy for a process, then it assumes
it to be hollowed out and outputs its memory regions with RWX protection like
malfind does. Its heuristic may be circumvented by not using process hollowing

approach heuristic features granularity compatibility

malfind [27] rule-based 2 memory region XP +
hollowfind [20] rule-based 2 memory region XP +
Membrane [24] Random Forrest 23/28* process XP and 7
Hashtest [28] hash comparison 1 memory region XP and 7

Quincy Extremely Randomized Trees 38 memory region XP +

Table 8: Comparison of related approaches. XP + implies that the approach
runs on every Windows version since Windows XP. * Membrane considers 23
features on Windows XP and 28 features on Windows 7.

or by removing the discrepancies from the PEB. Overall, the scope of hollowfind
is narrower than Quincy ’s. Our system detects HBCIAs in general, a superset
including process hollowing.

Membrane Pek et al. propose Membrane [24]. It reconstructs low-level memory
paging information of Windows’s software memory management unit (MMU)
and leverages this information to detect HBCIAs. Based on domain knowledge,
they identified 23 features on Windows XP and 28 features on Windows 7 and
applied a Random Forest classifier to detect HBCIAs on process-granularity.

There are overlappings between Quincy and Membrane such as the imple-
mentation as a Volatility plugin and the utilization of one common feature
(memorymapped). However, Quincy significantly differs from Membrane. First,
Quincy ’s detection is finer. Whereas Membrane detects HBCIAs on process-
granularity, Quincy detects them on memory region-granularity. Therefore, a
direct comparison between them is not possible. Second, Pek et al.’s approach is
very prone to noise. Their results drastically decline from 98% accuracy on Win-
dows XP to 73% on Windows 7. We assume that on Windows 10 this problem
gets even worse since the noise level increases with every Windows version as our
evaluation showed. Third, they implemented their approach for two older Win-
dows versions (XP and 7). Quincy is not limited to a certain Windows version,
hence it also runs on the latest version. Fourth, Membrane is based on low-level
features. The authors had to reverse engineer parts of the Windows kernel to
implement their system. Porting Membrane to a new Windows version or even
new OS requires tedious reverse engineering.

Hashtest White et al. present Hashtest [28]. They detect HBCIAs by hashing
memory regions and subsequently searching for these hashes in a previously built
hash database. This reduces the amount of memory regions to analyze. Quincy
does not rely on whitelisting. Therefore, our approach generalizes better and can
deal with previously unseen data.

6 Conclusion

Host-Based Code Injection Attacks (HBCIAs) play an important role in modern
malware with at least two thirds employing them [7]. A fast initial detection
of injected malicious code in memory dumps is crucial. Therefore, we presented
Quincy, a system for detecting these attacks on memory region basis. It is based
on supervised machine learning, utilizing 38 HBCIA-related features, selecting
the optimal feature set, embedding these features in a vector space and train-
ing a tree-based model for classification. The evaluation showed that Extremely
Randomized Trees fit especially well to the problem.

We evaluated our system on Windows XP, 7 and 10. For this purpose, we cre-
ated a data set according to the best practices and published the data set online.
We generated memory dumps for more than one thousand benign and malicious
binaries and created a comprehensive data set of benign and malicious memory
regions based on a sound ground truth. Based on this data set, we evaluated
Quincy and compared it to the current state of the art malfind and hollowfind.
Our results show that Quincy significantly improves upon them. It has less false
positives as well as more true positives and dominates the other approaches on
all three considered Windows versions. Finally, we enable practitioners to take
advantage of our findings by publishing our implementation [5].

7 Acknowledgment

The final publication is available at Springer via https://doi.org/10.1007/

978-3-319-60876-1_10.

References

1. The Portable Freeware Collection. http://www.portablefreeware.com. Last ac-
cessed: August 21, 2017.

2. YARA. https://plusvic.github.io/yara/. Last accessed: August 21, 2017.
3. scikit-learn. http://scikit-learn.org, 2016. Last accessed: August 21, 2017.
4. VirusTotal. https://www.virustotal.com, Last access: August 21, 2017.
5. T. Barabosch, N. Bergmann, A. Dombeck, and E. Padilla. Quincy Project Site.

https://net.cs.uni-bonn.de/wg/cs/staff/thomas-barabosch/. Last accessed:
August 21, 2017.

6. T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla. Bee Master: Detecting
Host-Based Code Injection Attacks. Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2014.

7. T. Barabosch and E. Gerhards-Padilla. Host-Based Code Injection Attacks: A Pop-
ular Technique Used By Malware. Malicious and Unwanted Software (MALCON),
2014.

8. J. Bergstra and Y. Bengio. Random Search for Hyper-parameter Optimization.
Journal of Machine Learning Research (JMLR), 2012.

9. L. Breiman. Random forests. Machine learning, 45, 2001.
10. L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and regres-

sion trees. CRC press, 1984.

https://doi.org/10.1007/978-3-319-60876-1_10
https://doi.org/10.1007/978-3-319-60876-1_10
http://www.portablefreeware.com
https://plusvic.github.io/yara/
http://scikit-learn.org
https://www.virustotal.com
https://net.cs.uni-bonn.de/wg/cs/staff/thomas-barabosch/

11. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. In European conference on computational
learning theory. Springer, 1995.

12. J. H. Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, 2001.

13. R. Genuer, J.-M. Poggi, and C. Tuleau-Malot. Variable selection using random
forests. Pattern Recognition Letters, 31(14):2225–2236, 2010.

14. Geurts, Pierre and Ernst, Damien and Wehenkel, Louis. Extremely randomized
trees. Machine learning, 63, 2006.

15. K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh. Automatic generation of
string signatures for malware detection. In Recent Advances in Intrusion Detection
(RAID), 2009.

16. Guyon, Isabelle and Weston, Jason and Barnhill, Stephen and Vapnik, Vladimir.
Gene selection for cancer classification using support vector machines. Machine
learning, 2002.

17. M. Lindorfer, C. Kolbitsch, and P. M. Comparetti. Detecting environment-sensitive
malware. In Recent Advances in Intrusion Detection (RAID), 2011.

18. R. Lyda and J. Hamrock. Using Entropy Analysis to Find Encrypted and Packed
Malware. Security and Privacy (S&P), 2007.

19. Microsoft. Microsoft Malware Classification Challenge (BIG 2015). https://www.
kaggle.com/c/malware-classification, 2015, Last access: August 21, 2017.

20. K. A. Monnappa. Detecting Deceptive Process Hollowing Tech-
niques Usind Hollowfind Volatility Plugin. https://cysinfo.com/

detecting-deceptive-hollowing-techniques/, 2016. Last accessed: August 21,
2017.

21. A. Nappa, M. Z. Rafique, and J. Caballero. The MALICIA Dataset: Identification
and Analysis of Drive-by Download Operations. International Journal of Informa-
tion Security, pages 1–19, June 2014.

22. Oracle. VirtualBox. https://www.virtualbox.org. Last accessed: August 21,
2017.

23. A. Ortega. Pafish. https://github.com/a0rtega/pafish. Last accessed: August
21, 2017.

24. G. Pék, Z. Lázár, Z. Várnagy, M. Félegyházi, and L. Buttyán. Membrane: A
Posteriori Detection of Malicious Code Loading by Memory Paging Analysis. In
European Symposium on Research in Computer Security (ESORICS). Springer,
2016.

25. C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann, H. Bos,
and M. Van Steen. Prudent practices for designing malware experiments: Status
quo and outlook. In Security and Privacy (SP), 2012.

26. M. van Dantzig, D. Heppener, Y. K. Frank Ruiz, Y. Z. Hu, E. de Jong,
K. de Mik, and L. Haagsma. Ponmocup - A giant hiding in the shadows.
https://foxitsecurity.files.wordpress.com/2015/12/foxit-whitepaper_

ponmocup_1_1.pdf, 2015. Last accessed: August 21, 2017.
27. Volatility Foundation. The Volatility Framework. http://www.

volatilityfoundation.org, 2015. Last accessed: August 21, 2017.
28. A. White, B. Schatz, and E. Foo. Integrity verification of user space code. Digital

Forensic Research Workshop (DFRWS), 2013.
29. C. Willems, T. Holz, and F. Freiling. Toward automated dynamic malware analysis

using cwsandbox. Proceedings of the 28th Symposium on Security and Privacy
(S&P), 2007.

https://www.kaggle.com/c/malware-classification
https://www.kaggle.com/c/malware-classification
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://www.virtualbox.org
https://github.com/a0rtega/pafish
https://foxitsecurity.files.wordpress.com/2015/12/foxit-whitepaper_ponmocup_1_1.pdf
https://foxitsecurity.files.wordpress.com/2015/12/foxit-whitepaper_ponmocup_1_1.pdf
http://www.volatilityfoundation.org
http://www.volatilityfoundation.org

	Quincy: Detecting Host-Based Code Injection Attacks in Memory Dumps
	Introduction
	Quincy
	Overview
	Feature Extraction
	Feature Selection and Embedding in Vector Space
	Learning and Classification
	Implementation

	Data Set Creation
	Data Set
	Benign Binaries
	Malicious Binaries

	Creation of Memory Dumps
	Establishing a Ground Truth
	Initial Data Analysis

	Model Evaluation
	Methodology of the Model Evaluation
	Feature Selection
	Optimization of Hyperparameters
	Model Evaluation
	Temporal Evaluation
	Final Models
	Discussion of Evasion

	Related Work
	Malfind
	Hollowfind
	Membrane
	Hashtest

	Conclusion

