
Bee Master: Detecting Host-Based Code
Injection Attacks

Thomas Barabosch, Sebastian Eschweiler, Elmar Gerhards-Padilla

Fraunhofer FKIE,
Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
{firstname.lastname}@fkie.fraunhofer.de

www.fkie.fraunhofer.de

Abstract. A technique commonly used by malware for hiding on a tar-
geted system is the host-based code injection attack. It allows malware
to execute its code in a foreign process space enabling it to operate
covertly and access critical information of other processes. Since there
exists a plethora of different ways for injecting and executing code in
a foreign process space, a generic approach spanning all these possibili-
ties is needed. Approaches just focussing on low-level operating system
details (e.g. API hooking) do not suffice since the suspicious API set is
constantly extended. Thus, approaches focussing on low level operating
system details are prone to miss novel attacks. Furthermore, such ap-
proaches are restricted to intimate knowledge of exactly one operating
system.
In this paper, we present Bee Master, a novel approach for detecting host-
based code injection attacks. Bee Master applies the honeypot paradigm
to OS processes and by that it does not rely on low-level OS details.
The basic idea is to expose regular OS processes as a decoy to mal-
ware. Our approach focuses on concepts – such as threads or memory
pages – present in every modern operating system. Therefore, Bee Mas-
ter does not suffer from the drawbacks of low-level OS-based approaches.
Furthermore, it allows OS independent detection of host-based code in-
jection attacks. To test the capabilities of our approach, we evaluated
Bee Master qualitatively and quantitatively on Microsoft Windows and
Linux. The results show that it reaches reliable and robust detection for
various current malware families.

Keywords: Host-Based Code Injection Attacks, Malware Detection,
Computer Security

1 Introduction

In recent years the number of malware samples that we are facing each day
steadily increased. Nowadays, cyber criminals use malware for a multitude of
activities, e.g. credit card fraud or industrial espionage. Furthermore, malware
developers have started to target new operating systems in addition to the classic
one, Microsoft Windows. Mac OS X, Linux or Android are among the increas-
ingly popular targets.

www.fkie.fraunhofer.de

2 Bee Master: Detecting Host-Based Code Injection Attacks

But not only the amount of malware and the breadth of their targeted plat-
forms is increasing. Likewise, the number of techniques used by malware to cover
its presence steadily increases. One of those techniques is the host-based code
injection attack (HBCIA). HBCIAs enable malware to execute its code within
the scope of a foreign process. This stands in contrast to the common belief that
only one program is accountable for the behaviour of a process. From a mal-
ware author’s point of view a code injection results in several benefits, amongst
other avoiding detection by anti-virus software or intercepting critical informa-
tion from within the targeted process like credit card information. Based on data
by Symantec[1], four of the top five malware families in 2012 – Ramnit, Sality,
Conficker and Virut – used HBCIAs. They were responsible for 32.1% of all new
infection reports in this year. Note that this is only the tip of the iceberg and
that there exist many more current malware families that employ HBCIAs.

In this paper we present Bee Master, a novel approach for detecting host-
based code injection attacks. Bee Master detects HBCIAs by providing an envi-
ronment vulnerable to those attacks and monitoring this environment for changes
associated with HBCIAs. Thus, we apply the honeypot paradigm to the domain
of operating system processes in order to detect host-based code injection at-
tacks. The environment we provide is a set of operating system processes that
we control. Almost every modern OS uses processes in order to manage the exe-
cution of computer programs. Therefore, our approach can be applied to a wide
range of operating systems. Furthermore, it does neither depend on modification
of the OS nor the hardware.

Due to the ever increasing malware flood and the inefficient signature-based
approach used by anti-virus software, detection rates are very dissatisfying. This
especially holds true for the detection rates of targeted attacks. Typically, tar-
geted attacks slip through detection routines of anti-virus software due to being
specially crafted for only one target. In 2012, it took a business on average 210
days for detecting that a breach occurred within their network[2]. By focusing
on a feature which is wide-spread among todays malware, our approach can
not only detect a significant portion of current mass-malware but it could also
help detecting a significant amount of targeted attacks early that would oth-
erwise have stayed under the radar for several months, with potentially severe
consequences.

We have implemented Bee Master for Microsoft Windows as well as Linux
and evaluated it. In quantitative and qualitative evaluations, we show that Bee
Master is capable of detecting HBCIAs of current malware and is not limited
to one operating system. Furthermore, we show in a study with several malware
families that HBCIAs can be considered as an inherent feature, which is unlikely
to change between versions and variants.

The contributions of this paper can be summarized in the following three key
points:

(I) HBCIA is an inherent malware family feature
We show in an investigation on several malware families that host-based

Bee Master: Detecting Host-Based Code Injection Attacks 3

code injection attacks are an inherent family feature which is unlikely to
change between versions and variants of a malware family.

(II) A novel approach for detecting HBCIAs
We propose a novel and OS-independent approach for detecting host-
based code injection attacks by applying the honeypot paradigm to OS
processes.

(III) Evaluation of a prototype with prevalent malware families
We have implemented Bee Master for Microsoft Windows as well as Linux
and show its feasibility in qualitative and quantitative evaluations with
current and representative real-world malware families.

2 Code Injection Attacks

In this section we introduce code injection attacks. Firstly, we give a general
definition of code injection attacks. Afterwards, we differentiate two different
types, namely remote code injection attacks and host-based code injection at-
tacks (HBCIA). This is followed by a closer look at HBCIAs. We conclude this
section with a study on the presence of HBCIA in different versions and variants
of selected HBCIA-employing malware families.

2.1 Definition of Code Injection Attacks

We give a general definition of a code injection attack in Definition 1.

Definition 1. Let Eattacker be an entity controlled by an attacker. Let Pvictim be
a process targeted by the attacker. An active attack on Pvictim by Eattacker, that
aims at executing a payload defined by Eattacker within the context of Pvictim is
called code injection attack.

Eattacker can be any entity on a system that allows the attacker to execute the
code that undertakes the code injection into Pvictim. Such entities include OS
processes, kernel modules or even hardware devices. In the following, however,
we assume that the entity used by the attacker is an OS process and therefore
we will refer to Pattacker.

There are two kinds of code injection attacks: host-based and remote code
injection attacks. The first is limited to one computer system i.e. the attacking
process Pattacker is executed on the same machine as Pvictim. Malware uses
this kind of code injection intensively, e.g. for hiding purposes (cf. section 2.2).
The latter code injection attack involves two systems: the attacker system and
the victim system, which are interconnected by a network. The attacker sends
a special payload to a network service – executed in the context of a victim
process Pvictim – of the victim via the network. This payload – called exploit
– aims at triggering a software vulnerability in the addressed network service.
In case the network service is vulnerable to the exploit, parts of the payload
are executed within the victim′s network service process space. Many Internet

4 Bee Master: Detecting Host-Based Code Injection Attacks

worms use this technique as infection vector. However, our solutions solely focus
on the detection of host-based code injection attacks.

The execution of code within a victim process Pvictim usually has never been
intended by the author of the underlying program. Even though there are some
legitimate uses of code injections such as debugging or hot patching, based on
our experience we believe that such benign code injections present only a very
small fraction of all code injections.

2.2 Host-Based Code Injection Attacks

HBCIAs are used by all kinds of malware ranging from consumer-focused mal-
ware like banking Trojans to malware used in targeted attacks on enterprises
like remote administration tools (RATs). Therefore, this problem affects private
parties as well as office or even government computers.

Attacker Model Before discussing HBCIAs in a malware context, we introduce
the attacker model that we assume throughout the remainder of the paper. We
assume that a malicious binary – creating a process Pattacker and targeting at
least one process Pvictim on the local system – already resides on the victim
machine. We do not assume a specific way how this binary has been transferred
to the machine. Possible ways are for example a drive-by-download, a download
by the user due to social engineering or the use of an infected removable medium.
Furthermore, we do not assume a specific way how or by whom this binary is
executed. Possible ways are for example execution by the user due to social
engineering or the execution by shellcode. Finally, we do not assume a specific
privilege level of the entity that executes the malicious binary. The success of
HBCIAs depends of course on the privilege level of Pattacker.

HBCIA in a Malware Context Malware uses HBCIAs due to various rea-
sons. Firstly, when malware executes its code in Pvictim – which shelters a benign
program – it can possibly avoid detection by anti-virus software. Secondly, mal-
ware might bypass personal firewalls by using HBCIAs. Thirdly, malware can
gather critical information handled by Pvictim.

Since Microsoft Windows is still the platform most targeted by malware,
we consider Microsoft Windows as a running example in the following. Our ap-
proach is not limited to this platform, though (cf. section 4.4). There exist many
ways of achieving HBCIAs on Microsoft Windows. For example, malware uses
functionality provided by Microsoft Windows APIs for debugging and interpro-
cess communication or even functionality provided in the kernel space for its
HBCIAs.

Family Feature Host-Based Code Injection Attacks Using HBCIAs comes
with a lot of advantages from a malware author’s point of view like access to
unencrypted critical information. However, there is one architectural weakness:

Bee Master: Detecting Host-Based Code Injection Attacks 5

once HBCIA is implemented, it is an integral component of the malware. Such
an implementation decision influences a great deal of the malware’s code base,
e.g. the synchronization between infected processes.

Therefore, it is very unlikely that a malware author changes its malware’s
injection method or even completely removes the HBCIA feature. Furthermore,
the implementation decision of using HBCIAs is usually taken at the very begin-
ning of the malware’s implementation process, once given the objectives that it
should accomplish. This especially holds for malware that is derived from other
malware families, e.g. by code reusage as in the case of several successors of the
banking Trojan Zbot.

Given those considerations, we claim the following working hypothesis

Hypothesis 1. The HBCIA is an inherent malware family feature, i.e. a mal-
ware author does neither remove this feature nor does he change the underlying
injection method over time.

2.3 Family Feature Investigation

In the following, we corroborate Hypothesis 1 with an investigation over time of
eight code injecting malware families. At first we present the considered dataset.
Then we explain the realisation of the study. Finally we describe our observations
and results of the investigation.

Description of the Dataset Our dataset consists of eight code injecting mal-
ware families. We have gathered several versions as well as several variants of
each version. The exact numbers are given in Table 1. Even though we are
dealing with an incredible flood of malware samples each day, the number of
malware families is actually by several orders of magnitude smaller[3]. Tables
1 summarizes the malware families included in the dataset. In total we consid-
ered 32514 samples of eight malware families. Even though Citadel comprises the
lion’s share of the data set, this does not affect the results since we examine each
family separately. For all the considered malware families, we list the number of
samples, the number of versions as well as the time span that lies between the
first and the last version. The time span has been determined with the help of
VirusTotal (first time seen)[4], except in the cases of Bebloh and Citadel where
in-house unpackers exist that enable us to read the timestamp of the original PE
file. Based on this information, Figure 1 shows the distribution of the considered
samples over time.

Realisation of the Investigation We manually inspected a couple of samples
of each family in order to understand how it employs its HBCIAs. As a result,
we were able to extract a characteristic API call sequence for each malware fam-
ily. Then we implemented a Cuckoo sandbox[5] behaviour analysis processing
module and ran each member of the family in this sandbox. We used a Win-
dows XP SP3 32 bit virtual machine in this investigation (cf. section 4.2). The

6 Bee Master: Detecting Host-Based Code Injection Attacks

2007 2008 2009 2010 2011 2012 2013
year

Zbot

Sality

Eyestye

Dorkbot

Cridex

Conficker

Citadel

Bebloh
m
al
w
ar
e
fa
m
ily

Fig. 1. Distribution of the considered samples over time

behaviour processing module processed the recorded API calls looking for the
characteristic API call sequence.

Results of our Investigation The result of our observation backs our hypoth-
esis. All eight families did not remove or change their injection behaviour over
time. Thus, HBCIA can be considered as an elementary feature of malware fam-
ilies. Especially, it is invariant over different versions and variants of a malware
family.

The vast majority of the samples – Bebloh, Citadel, Cridex, Dorkbot and
Zbot – used WriteProcessMemory/CreateRemoteThread for injecting code into
their target processes. Conficker uses a two-stage injection process. Firstly, it
creates a thread in the victim process that loads Conficker as a library. Then
it triggers the execution of the libraries’ main function from the attacking pro-
cess. Sality uses a message hook in order to load a dynamic linked library into
other processes. Eyestye is able to inject code into foreign processes via either
ZwWriteVirtualMemory/CreateRemoteThread or during child process creation
by hooking NtResumeThread.

Another interesting observation is that Citadel’s HBCIA code is identical to
the code of its predecessor Zbot. We verified this by creating a binary diff of a
Zbot variant and a Citadel variant. The intuition here is that malware authors
rather build on leaked source code than fundamentally change it due to, for
example, lack of time or missing deep knowledge of the original code base.

Bee Master: Detecting Host-Based Code Injection Attacks 7

Table 1. Summary of the dataset for the family feature investigation

malware family considered samples versions date of first/last sample

Bebloh 701 63 2007-10-21/2013-07-02

Citadel 31713 18 2012-02-14/2013-10-10

Conficker 5 5 2008-11-22/2009-10-31

Cridex 12 4 2011-01-04/2012-11-07

Dorkbot 21 7 2009-04-01/2013-10-16

Eyestye 12 4 2009-06-06/2013-10-17

Sality 20 6 2006-10-27/2013-07-02

Zbot 30 10 2007-07-07/2013-06-09

Total 32514 117 2006-10-27/2013-10-17

3 Bee Master

There exist several ways how a HBCIA can be accomplished. This includes local
exploitation or functionality provided by the underlying OS. However, Pattacker

must somehow insert code into its victim process Pvictim and this code must be
visible to the OS in order to run. This forms a paradox known as the Rootkit
Paradox [6]. Hence, this hidden code can be detected.

Our approach – called Bee Master – for detecting host-based code injection
attacks transfers the honeypot paradigm to OS processes. In short, we create
processes and observe them for signs of attacks. Since we previously know the
behaviour of those observed processes, any behaviour that deviates – such as new
memory pages or new threads – from our expectations is considered suspicious.
With it, we are able to detect HBCIAs without the knowledge of any special OS
API – e.g. Microsoft Windows debugging API – by only relying on concepts –
for example processes, threads or memory pages – common to almost all current
multi-tasking operating systems.

Figure 2 depicts the architecture of Bee Master. The Queen Bee checks pro-
cesses for signs of HBCIAs. These processes spawned by the Queen Bee are
called Worker Bees. To ensure full knowledge of the Worker Bee’s internals for
the Queen Bee, the Worker Bees are created as child processes of the Queen
Bee.

Due to the fact that the Queen Bee can totally observe its Worker Bees,
it can detect HBCIAs within them. This is represented in Figure 2 by either
a hazardous symbol or a green circle, signifying code has been injected or not,
respectively.

The underlying assumption is that malware chooses its victim process either
by resolving a process name to a process space or via a shotgun approach, mean-
ing blindly injecting code in every accessible process space. In order to detect
both kinds of approaches, the Queen Bee can deploy Worker Bees with random
and configurable names. By the latter the Queen Bee may trick a malware into
injecting in the Worker Bee despite checking for its process name. To our knowl-
edge, there exist no malware family that verifies the genuineness of its victim
processes.

8 Bee Master: Detecting Host-Based Code Injection Attacks

Fig. 2. Overview of the approach′s architecture: the Queen Bee and its Worker Bees

The following sections describe the Queen Bee and its Worker Bees in detail.
Finally, we discuss limitations of our approach.

3.1 Queen Bee

The Queen Bee is the main component of our approach. It creates and han-
dles Worker Bees, aggregates information from all of them and detects HBCIAs
within them. Each Worker Bee is intended to pose as a Pvictim. Once the Queen
Bee has detected a HBCIA, it creates a memory dump of the attacked Worker
Bee for further analysis and shuts down the attacked Worker Bee. Note that in a
real-world scenario the user should be warned and appropriate countermeasures
should be taken.

Figure 3 sketches how the Queen Bee handles one of its Worker Bees. Firstly,
the Queen Bee starts a Worker Bee. Note that this process creation depends on
the privilege level of the Queen Bee: in user space the Queen Bee relies on
the underlying operating system’s API, in kernel space or as a virtual machine
introspection component it could directly create those processes by manipulating
kernel data structures. Subsequently this newly created Worker Bee is monitored
by the Queen Bee.

This monitoring is split in three steps: gathering information on the Worker
Bee’s state, analysing this information and deciding whether or not a suspicious
change occurred within the Worker Bee. In the first step the Queen Bee gath-
ers information on the state of the Worker Bee. Two requirements have to be
met for a successful HBCIA: the planting of additional code in a victim process
and afterwards the execution of this code. Therefore, the Queen Bee gathers
information on loaded libraries, memory pages as well as executed threads. This
information comprises the two components that are needed. The source of the
information depends on the actual implementation. In a user space implemen-
tation it has to rely on information provided by the OS, for example through

Bee Master: Detecting Host-Based Code Injection Attacks 9

setup
Worker Bee

record
information

analyse
information

terminate
Worker Bee

new
information

create
memory dump

no suspicious
change

setup
finished

Fig. 3. Control flow of the Queen Bee′s Worker Bee handling algorithm

system calls. In an implementation as a virtual machine introspection component
it could parse several sources including the kernel’s internal data structures.

Once the state of the Worker Bee has been obtained, the Queen Bee analyses
this information. It compares this information with the assumed behaviour of
the Worker Bee. Since every Worker Bee’s behaviour is previously known, any
change within a Worker Bee is highly suspicious. As soon as the Queen Bee
detects a suspicious change, it creates a memory dump of the Worker Bee for
further analysis. Finally the Queen Bee terminates the Worker Bee.

The Queen Bee can be either implemented as a user space program, a kernel
module or even as a virtual machine introspection component. In the last case
the Queen Bee is executed with higher privileges than any malware executed
inside of the virtual machine. We recommend to implement the Queen Bee with
the highest privilege level possible to ensure its integrity.

3.2 Worker Bees

Worker Bees are the second component of our approach. Each Worker Bee is
a common process created by the Queen Bee and it serves the Queen Bee as
a sensor. There can be one or more Worker Bees acting as a possible victim
process. Thus, the user can model multiple processes – e.g. by using different
process names – that pose as a possible target for an attacker.

The behaviour of each Worker Bee is passive. It is just waiting for being
compromised. For it, a Worker Bee can be configured up front. Configurable
parameters of a Worker Bee are parameters that are common to almost every
current multi-tasking OS. In this way it is possible to imitate real processes, e.g.
a web browser. Therefore, a malware is tricked into believing that it is targeting
the alleged process. At the moment configurable parameters include the number
of threads, memory mapped files, the list of loaded libraries, the process name,
the process window name, in case it is executed in a graphical environment, and
the command line string of the process.

10 Bee Master: Detecting Host-Based Code Injection Attacks

3.3 Limitations

We discuss limitations of Bee Master in this section.

Missing Attacks The success of detecting HBCIAs depends on the process
identification feature used by the malware. Currently, this can be, for exam-
ple, the process name, the process window name or loaded libraries. Since it is
not feasible to provide a process for every possible process identification feature
combination, it is possible that attacks are missed. Note that network honey-
pots suffer from a similar problem: presenting the right network service on the
right port in the right version. Furthermore, note that in many cases no process
identification takes place at all and malware injects code into every accessible
process space.

Detection of Process Hollowing Bee Master cannot detect process hollow-
ing. While injected code is usually executed in parallel with the original code
of the process space, in process hollowing the injected code replaces the origi-
nal code and the process just executes the injected code[7]. For it, the attacker
has to have full control over the victim process. Therefore, the victim process is
usually created by the attacker. Hence, our approach is not capable of detecting
such HBCIAs. This stems from the fact that processes which are not created by
the Queen Bee cannot be controlled by it.

4 Evaluation

In this section we evaluate a prototype implementation of Bee Master. While
most of the evaluation focuses on Microsoft Windows – due to the fact that it
is still the prevalent target for malware –, we show in a case study with a Linux
banking Trojan that our approach is not limited to solely one operating system.

First off, we explain the prototype implementation and configuration of Bee
Master used throughout the evaluation. Then we describe the evaluation envi-
ronment. Subsequently we proceed to evaluate Bee Master ’s ability to detect
HBCIA in a quantitative evaluation. In this evaluation we also show that our
approach can handle a broad variety of prevalent malware families. This quan-
titative evaluation is followed by two detailed case studies in order to show the
capturing process in detail as well as the OS-agnosticism of our approach. At
the end of this section we conduct a performance evaluation of our prototype
implementation.

4.1 Implementation and Configuration of the Prototype

This section describes briefly how the prototype of Bee Master was implemented
and how it was configured for the evaluation.

Bee Master: Detecting Host-Based Code Injection Attacks 11

Implementation We have implemented a prototype of Bee Master for Mi-
crosoft Windows as well as Ubuntu Linux. Our prototype implementation is split
into two layers: an OS abstraction layer and a logic layer. The OS abstraction
layer helps abstracting from the underlying OS and allows a quick portability
to other operating systems. Based on this layer the logic layer implements all
OS independent functionality. The Queen Bee and its Worker Bees are both
implemented as user mode programs. The Queen Bee uses the Windows Debug-
ging API on Microsoft Windows and procfs on Ubuntu Linux for continuously
checking on its Worker Bees.

Of course malware can detect if a process is being debugged. This and the
fact that the prototype is implemented as a user mode program are two short-
comings of the prototype. Note that these shortcomings do not apply to the
underlying approach in general. Possible solutions for these drawbacks are dis-
cussed in section 6.

Configuration We ran Bee Master with the default configuration. There is one
configuration file for each OS Bee Master is executed on. These configuration
files were compiled based on our experience with HBCIA-employing malware.
On Microsoft Windows the configuration file comprises five victim processes:
the Windows shell (explorer.exe), the default Microsoft browser (iexplore.exe),
a popular browser (firefox.exe), a service (svchost.exe) and a random process
(pdtyzgxm.exe). The first four processes are known to be frequently attacked.
The latter one is chosen in order to discover HBCIA malware families that em-
ploy a shotgun approach. On Linux the configuration file just compromises two
victim processes: a popular browser (firefox) and a random process (pdtyzgxm).
These two victim processes were chosen for the same reasons as above.

4.2 Description of the Evaluation Environments

We used VirtualBox 4.2.10 as a virtualization environment throughout the eval-
uation. Three different Windows versions – namely Windows XP SP3 32 bit,
Windows 7 SP1 32 bit and Windows 8 SP0 32 bit – and one Linux distribu-
tion – Ubuntu 13.04 64 bit – were used. The Windows VMs are 32 bit systems,
because in our experience the majority of malware families focuses on this archi-
tecture. The Linux VM is a 64 bit system because the considered malware family
requires such a system in order to execute. Each VM has one GB of RAM and
one core of a Intel Core i7-2760QM CPU running at 2.40 GHz. All VMs have
been installed without additional software packages. We have hardened all VMs
against several VM detection methods in order to cope with evasive malware.

4.3 Quantitative Evaluation

We have evaluated Bee Master in quantitative evaluations on Windows XP,
Windows 7 and Windows 8. At first, we have evaluated it on a set of malware
families known to employ HBCIAs. This is followed by an evaluation on benign
programs in order to estimate potential false positives.

12 Bee Master: Detecting Host-Based Code Injection Attacks

Description of the Datasets We have compiled two datasets for the quan-
titative evaluation: one dataset consists of malware families known to employ
HBCIAs and one consists of goodware.

The dataset for the known malware family evaluation compromises represen-
tatives of 38 malware families. Again, we would like to point out that HBCIAs
are a family feature (cf. Hypothesis 1 in section 2.2) and therefore it is sufficient
to pick one representative for each malware family. The malware dataset also
includes those four families that were responsible for 32,1% of all new infection
reports in 2012[1]. In addition we added 34 prevalent malware families such as
Carberp, Hesperbot or Vawtrak. We host a full list of all malware families used
in this paper on our server[8]. We have manually verified in all 38 cases, that the
representative employs HBCIAs. As stated in section 3.3, process hollowing can-
not be detected with our approach. Therefore, we did not consider any malware
family that uses this technique.

Unfortunately, malware as any other software is not compatible with every
OS. While we have been able to successfully execute each sample of the dataset
on Windows XP, we were not able to execute samples from some malware families
on Windows 7 and Windows 8 due to incompatibilities. In the case of Windows
7 no representative of the Poison family executed. In the case of Windows 8 we
could not find a working representative for the following families: Bamital, Con-
ficker, Gamker, Ice X, Poison and Sykipot. Therefore, the dataset for Windows
7/Windows 8 were reduced to 37 and 32 families, respectively.

The dataset for the false positive estimation consists of goodware ranging
from system tools to office software. The goodware has been obtained from two
sources. Firstly, we have gathered Microsoft Windows system tools originating
from Windows’ system paths (321 for Windows XP, 440 for Windows 7, 470
for Windows 8). Secondly, we have chosen 13 very common programs such as
web browsers, instant messaging clients or encryption software. In total this
sums up to 334/453/483 known goodware programs for Windows XP/Windows
7/Windows 8.

Realisation of the Evaluation We have conducted this evaluation as de-
scribed in the following. At first we prepared a virtual machine (VM) with our
prototype implementation already set up and running and took a snapshot of
this original state. We configured the prototype as described in section 4.1. Then
each representative was executed for five minutes in this VM. Afterwards, the
logs and dumped files were extracted from the VM and the VM was reverted to
its original state.

Malware Families In all cases we have been able to detect at least one HBCIA
in one of the five processes by each malware family. Hence, we have detected the
malicious behaviour in all cases on all three Windows operating system versions.

In Figure 4 the total observed injections per process are shown. Many of the
considered malware families employ at least one injection into explorer.exe. On
Windows XP 34 families (89%) show this behaviour. Whereas we can observe

Bee Master: Detecting Host-Based Code Injection Attacks 13

explorer.exe iexplore.exe svchost.exe firefox.exe pdtyzgxm.exe
process name

0

10

20

30

40

ob
se
rv
ed

 in
je
ct
io
ns
 p
er
 p
ro
ce
ss

34

28
26

24

2827
29

21 21
2324

22
20

23

20

Windows XP
Windows 7
Windows 8

Fig. 4. Observed injections on Windows XP, Windows 7 and Windows 8

few injections in firefox.exe. Intuitively this process is either attacked by banking
Trojans or malware families that employ a shotgun approach. Malware families
that target an exclusive set of processes are more likely to select those targeted
processes from processes that are already installed and running by default on
the OS. Another interesting fact is that a significant quantity attacks the ran-
dom process (24 families [63%]/21 families [56%]/23 families [69%] on Windows
XP/7/8).

Figure 5 shows the count of targeted processes per malware family on Mi-
crosoft Windows XP. Two thirds of the malware families target at least four
or all Worker Bees. This includes especially information stealing malware fam-
ilies such as Cridex, Hesperbot or Zeus. In particular, there is a considerable
amount of malware families that attack all Worker Bees. Again this implies that
many malware families use a shotgun approach. Further, there is a large share
of families attacking four Worker Bees.

Interestingly, a lot of those families attack the random Worker Bee but skip
one of the other processes. Most probably, some malware families have imple-
mented a blacklist feature in order to exclude specific processes. One third of
the considered families target one, two or three Worker Bees. The sample set
incorporates a wide range of malware types such as RATs (Poison), network
worms (Conficker) but also banking Trojans (Tinba). As all selected samples
utilize HBCIAs, it can be considered a reliable indicator of compromise (IOC).
Above all, we would be able to detect all families of our dataset with just two
Worker Bees, because all malware families target at least either explorer.exe or
iexplore.exe.

14 Bee Master: Detecting Host-Based Code Injection Attacks

5 processes
42.1%

4 processes

21.1%

3 processes

13.2%

2 processes

10.5%

1 process

13.2%

Fig. 5. Count of targeted processes per sample on Windows XP

Goodware After conducting experiments with malware, we determine the false
positive rate of our detector. The setup for this experiment is in line with the
setup for the known malware families experiment. Our system could not detect
any sign for HBCIAs during any of the 334 executions on Windows XP, 453
executions on Windows 7 and 483 executions on Windows 8.

Discussion In the quantitative evaluation we have shown that our approach
can cope with prevalent malware families and it detects each malware family in
the dataset. As expected, the explorer.exe process is the one targeted by most
families. A majority of the considered families attacks all five processes including
the random process. This suggests that the shotgun approach is widely spread.
Furthermore, many families attack four processes including the random process
which suggest that there exists blacklisting employed by HBCIA malware. A key
observation is that with only two Worker Bees – explorer.exe and iexplore.exe
– it is possible to cover 100% of our dataset. Furthermore, we have shown for a
diverse set of goodware, ranging from system tools to office programs, that our
detector has a false positive rate of 0%.

4.4 Case Studies

We examine two malware families in the case studies. Each case study details a
HBCIA on a different operating system. At first we look at Hanthie, a banking
Trojan for Linux. Then we cover Poison, a RAT for Microsoft Windows.

Hanthie Hanthie is the first Linux banking Trojan that has been seen in the
wild[9]. It gained a lot of attention in August 2013. This banking Trojan is
capable of form-grabbing in a handful of browser like Firefox.

Bee Master: Detecting Host-Based Code Injection Attacks 15

Therefore, it injects a shared object into all processes except the ones that
match some predefined substrings like dbus. In order to load a shared object
into a foreign process space, the injecting process has to attach to the targeted
process. This is achieved with the help of a system call (ptrace) that allows the
manipulation of processes on Linux. Once the injecting process has attached to
its victim process, it tries to determine the address of a function (dlopen) that
is part of the interface to the dynamic linking loader on Linux. With it, it is
possible to load shared libraries during runtime. The injecting process uses this
function in order to let the victim process load such a shared library. Once the
shared library has been loaded by the dynamic linking loader, its initialisation
function is executed (init).

In this case study we used Ubuntu Linux as evaluation environment. There-
fore, we booted the Ubuntu 13.04 VM and started Bee Master with the de-
fault configuration for Linux (cf. section 4.1). Afterwards, we executed Hanthie.
Once executed, Hanthie installed itself and started its injection mechanism. Our
prototype detected two new threads and new modules within its two Worker
Bees. Hence, it dumped the new modules for further analysis. Manual analy-
sis revealed that the linux-based prototype had successfully captured Hanthie’s
injected shared library.

Poison Poison is a RAT consisting of a server component and a client compo-
nent. The server component has to be installed on the victim′s machine and can
be remotely administrated with the help of the client component. It is publicly
distributed by its author[10]. This RAT emerged in 2006 and the last publicly
available version dates back to 2008.

While malware families such as Zbot or Conficker inject their code into their
victim process as a whole, Poison injects its position-independent code function
by function to several memory regions. The main reason for this behaviour is that
it allows flexibility because only needed parts of the code have to be deployed.
This also implies that the analysis is more complex compared to other injecting
malware families such as Zbot or Conficker. Because the reverse engineer has to
dump not only one memory region but several regions.

We conducted this case study on Windows XP SP3. We started the Queen
Bee with the default configuration for Microsoft Windows (cf. section 4.1). Once
the Queen Bee and its Worker Bee have been started, we started Poison. The
Queen Bee immediately detected 19 new memory regions and one new thread
within one of its Worker Bees, namely iexplore.exe. Hence, it created a memory
dump of it. We verified the successful attack by manually inspecting the created
memory dump.

Discussion We have evaluated our approach’s prototype in two detailed case
studies on two different types of malware (a banking Trojan and a RAT) as
well as on two different operating systems (Linux and Microsoft Windows). Bee
Master detects the HBCIAs in both case studies. Furthermore, it delivers a
memory dump and many valuable pointers towards the intrusion technique used.

16 Bee Master: Detecting Host-Based Code Injection Attacks

This qualitative evaluation shows in detail that Bee Master is not limited to
the type of the underlying operating system and that it can be easily ported to
possible platforms prone to HBCIAs.

In addition to the above, it has to be noted that none of the considered
malware families check the genuineness of their victim process before the actual
injection. This clearly shows that current malware families are prone to detection
at this stage of their execution.

4.5 Performance Evaluation

After evaluating the functionality of our prototype, we focus on its performance
on Windows XP SP3 32 bit (cf. section 4.2) in this section.

For it, we have evaluated the CPU usage of the prototype with a different
number of Worker Bees. The considered number of Worker Bees were {1,3,5,7}.
The measured time period was 300 seconds. No other programs were running
on the system during the measurements. The CPU usage was captured with the
help of Performance Counters provided by Microsoft Windows.

Figure 6 shows the results of the performance evaluation. The first observa-
tion is that the more Worker Bees need to be handled, the more CPU usage is
needed. But as one can see in section 4.3, only a limited set of Worker Bees is
needed in order to detect a large set of prevalent malware families.

The second observation is the pattern of the graphs. Our prototype checks on
all its Worker Bees every two seconds. Therefore, the graphs show spikes every
two seconds.

Since this parameter is configurable, one can tweak it to his needs. From a
pragmatic point of view, we believe that the choice of two seconds in combination
with a small set of Worker Bees is an acceptable one. Without occupying to many
CPU cycles in such a scenario, we are able to instantaneously detect HBCIAs.

5 Related Work

We split the discussion of related work in detecting changes in the process be-
haviour in general, detecting HBCIAs and honeypots.

Detecting Changes in Process Behaviour Forrest et al. [11] propose a
method for detecting anomalies in Unix processes. They record sequences of
system calls and use them to build process specific signatures beforehand. Then
they apply these signatures on-line in order to detect anomalies in the system.
Warrender et al. present further data models for anomaly detection based on
system calls[12].

Wagner et al. propose an approach for detecting anomalies in the program
behaviour by applying a static analysis to each program that should run on a
system[13]. Thereby, they model a transition system that is capable of detecting
anomalies in system call traces.

Bee Master: Detecting Host-Based Code Injection Attacks 17

0 50 100 150 200 250 300
time in seconds

0

20

40

60

80

100

cp
u
us
ag

e
in
 p
er
ce
nt 1 Worker Bee

0 50 100 150 200 250 300
time in seconds

0

20

40

60

80

100

cp
u
us
ag

e
in
 p
er
ce
nt 3 Worker Bees

0 50 100 150 200 250 300
time in seconds

0

20

40

60

80

100

cp
u
us
ag

e
in
 p
er
ce
nt 5 Worker Bees

0 50 100 150 200 250 300
time in seconds

0

20

40

60

80

100

cp
u
us
ag

e
in
 p
er
ce
nt 7 Worker Bees

Fig. 6. System load in relation to running Worker Bees

While these approaches are more general than Bee Master, they fail to detect
an attack if the malware mimics the original application. Bee Master is not
vulnerable to mimicry attacks since it does not depend on system call tracing.

Detecting Host-Based Code Injection Attacks While there has been a
lot work on thwarting code injection attacks (e.g. [14] or [15]), the research
community has not focused intensively on detecting (host-based) code injection
attacks.

Sun et al. [16] propose a system for detecting HBCIAs by hooking certain
system calls associated with this behaviour. The hooking is performed in kernel
mode. Since the approach relies on certain system calls it depends on low-level
OS details. Furthermore, the system by Sun et al. is not capable of detecting
unknown code injection attacks, because it only hooks system calls known to be
related to code injection attacks.

White et al. [17] describe an approach for detecting the provenance of ma-
licious code in memory dumps of Microsoft Windows operating systems. They
achieve this by hashing memory pages and compare the hashes to a previously
built hash database. Thereby they can reduce the amount of memory pages
that has to be analysed manually. The memory forensic framework Volatility[18]
comes with a plug-in called Malfind for detecting HBCIAs in memory dumps.
Malfind detects host-based code injection attacks based on several low-level char-
acteristics of Microsoft Windows. Those characteristics include Virtual Address
Descriptors and PE file format characteristics. Both approaches focus on foren-

18 Bee Master: Detecting Host-Based Code Injection Attacks

sic analysis. Thus, they are not suited for real-time analysis. Furthermore, both
approaches rely on low-level details of Microsoft Windows and cannot be easily
ported to another OS.

Hanel [19] presents a tool for detecting HBCIAs in Windows processes. This
is achieved by scanning each process for a handful of low-level characteristics
similar to Volatility. Furthermore, this tool can spawn an instance of the Internet
Explorer and scan it for those aforementioned characteristics. While this tool
focuses on real-time analysis, it suffers from relying on low-level details, non-
portability as well as not being extensible in order to detect a larger set of
malware families.

To the best of our knowledge, there exists no related approach that is capa-
ble of detecting host-based code injection attacks OS-independently as well as
detecting previously unknown host-based code injection attacks during runtime.

Honeypots Honeypots have been intensively researched during the last years.
But the majority of honeypot research focuses on network attacks. This includes
honeypots that are waiting to be exploited (server honeypots) like [20] and hon-
eypots that are actively trying to be exploited (client honeypots) like [21]. Bee
Master does not focus on network-based attacks, but rather on attacks on local
processes. Nevertheless, those attacks can be part of a larger attack chain, origi-
nating in one of todays common malware spreading techniques such as drive-by
downloads or social engineering.

Poeplau et al. [22] present a honeypot that is able to emulate removable
USB-devices. Therefore, they target malware that spreads via removable media.
Their work can be considered the most related work to our approach. However,
they focus on a different malware family feature. While Bee Master ’s scope is
a persistence feature, they focus on a spreading feature. By that they are able
to detect a different class of malware. Therefore, a comparison between the two
approaches is difficult.

Even though Bee Master applies the honeypot paradigm to OS processes, we
do not consider it as a honeypot but rather as a detector.

6 Conclusion and Outlook

In this paper we have introduced a novel approach – called Bee Master – to
detect host-based code injection attacks. At first we have shown in a study with
eight malware families that such attacks are a family feature, i.e. the injection
technique does not change between variants and versions. Then we have pre-
sented Bee Master, a novel approach for detecting such attacks. This is achieved
by transferring the paradigm of honeypots to OS processes. Bee Master consists
of two components: the Queen Bee and its Worker Bees. The Queen Bee contin-
uously checks on all its Worker Bees. Therefore, it detects suspicious behaviour
within a Worker Bee. In such a case, the Queen Bee creates a memory dump of
the attacked Worker Bee for further analysis and terminates it.

Bee Master: Detecting Host-Based Code Injection Attacks 19

Bee Master does not rely on special hardware or modifications of the under-
lying OS. Since Bee Master does not rely on an OS or any special API, it can
be deployed on a wide range of operating systems. Further, Bee Master only
assumes concepts – such as processes, threads or libraries – common to almost
all current multi-tasking operating systems.

We have implemented Bee Master for Microsoft Windows as well as Ubuntu
Linux. The evaluation results show that Bee Master can detect HBCIAs with
high detection rates and no false positives by only relying on concepts – such
as threads or memory pages – common to almost every current multitasking
operating system. Furthermore, we have shown that current malware is very
vulnerable during its HBCIA-stage and that it can be easily detected at this
stage since it does not check its victim process for genuineness.

Future work focuses on the limitations of our current implementation. The
Queen Bee will be reimplemented on a higher level of privileges to counter the
current limitations of our implementation. This will improve the tamper resis-
tance. Furthermore, we will focus on improving the overall performance making
our approach even more appealing as a complementary security measure to tra-
ditional anti-virus software.

Acknowledgements We would like to thank Niklas Bergmann for the help he
provided during the implementation of the prototype, Daniel Plohmann for the
data he provided as well as the anonymous reviewers of this paper for discussions
and comments.

The final publication is available at Springer via https://doi.org/10.

1007/978-3-319-08509-8_13.

References

1. Symantec. Internet Security Threat Report 2013, Volume 18. Technical report,
2013.

2. N. Percoco. Global Security Report 2013. Technical report, Trustwave, 2013.

3. M. Bailey, J. Oberheide, J. Andersen, Z. Mao, F. Jahanian, and J. Nazario. Au-
tomated Classification and Analysis of Internet Malware. In Recent Advances in
Intrusion Detection, volume 4637 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2007.

4. VirusTotal. https://www.virustotal.com, Last access: August 21, 2017.

5. Cuckoo Sandbox. http://www.cuckoosandbox.org, Last access: August 21, 2017.

6. J. Kornblum. Exploiting the Rootkit Paradox with Windows Memory Analysis.
2006.

7. M. Hale Ligh, S. Adair, B. Hartstein, and M. Richard. Malware Analyst’s Cookbook
and DVD: Tools And Techniques For Fighting Malicious Code. Wiley Publishing,
Inc., 1 edition, 2011.

8. T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla. List of malicious samples
used in bee master: Detecting host-based code injection attacks. http://net.cs.

uni-bonn.de/wg/cs/staff/thomas-barabosch/, Last access: August 21, 2017.

https://doi.org/10.1007/978-3-319-08509-8_13
https://doi.org/10.1007/978-3-319-08509-8_13
https://www.virustotal.com
http://www.cuckoosandbox.org
http://net.cs.uni-bonn.de/wg/cs/staff/thomas-barabosch/
http://net.cs.uni-bonn.de/wg/cs/staff/thomas-barabosch/

20 Bee Master: Detecting Host-Based Code Injection Attacks

9. L. Kessem. Thieves Reaching for Linux – ”Hand of
Thief” Trojan Targets Linux. https://blogs.rsa.com/

thieves-reaching-for-linux-hand-of-thief-trojan-targets-linux-inth3wild,
August 2013 Last access: August 21, 2017.

10. Mandiant. APT1 - Exposing One of China’s Cyber Espionage Units. Technical
report, Mandiant, 2013.

11. S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for unix
processes. In In Proceedings of the IEEE Symposium on Security and Privacy
Proceeding, pages 120–128. IEEE, 1996.

12. C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system
calls: Alternative data models. In Proceedings of the 1999 IEEE Symposium on
Security and Privacy, pages 133–145. IEEE, 1999.

13. D. Wagner and D. Dean. Intrusion detection via static analysis. In In Proceedings
of the IEEE Symposium on Security and Privacy, S&P 2001, pages 156–168. IEEE,
2001.

14. G. Kc, A. Keromytis, and V. Prevelakis. Countering Code-Injection Attacks With
Instruction-Set Randomization. In In Proceedings of the 10th ACM conference
on Computer and communications security, CCS ’03, New York, NY, USA, 2003.
ACM.

15. A. Papadogiannakis, L. Loutsis, V. Papaefstathiou, and S. Ioannidis. ASIST: Ar-
chitectural Support for Instruction Set Randomization. The Proceedings of the
CCS13, November, 2013, Berlin, Germany, 2013.

16. H. Sun, Y. Tseng, and Y. Lin. Detecting the Code Injection by Hooking Sys-
tem Calls in Windows Kernel Mode. In In the Proceedings of the International
Computer Symposium 2006, 2006.

17. A. White, B. Schatz, and E. Foo. Integrity verification of user space code. Digital
Investigation, 10, 2013. The Proceedings of the Thirteenth Annual {DFRWS}
Conference 13th Annual Digital Forensics Research Conference.

18. Volatile Systems. The Volatility Framework: Volatile memory artifact extraction
utility framework. https://www.volatilesystems.com/default/volatility,
Last access: August 21, 2017.

19. A. Hanel. injdmp. http://hooked-on-mnemonics.blogspot.jp/p/injdmp.html,
2013 Last access: August 21, 2017.

20. P. Baecher, M. Koetter, M. Dornseif, and F. Freiling. The nepenthes platform: An
efficient approach to collect malware. In In the Proceedings of the 9th International
Symposium on Recent Advances in Intrusion Detection (RAID). Springer, 2006.

21. J. Nazario. PhoneyC: a virtual client honeypot. In Proceedings of the 2nd USENIX
conference on Large-scale exploits and emergent threats: botnets, spyware, worms,
and more, LEET’09, Berkeley, CA, USA, 2009. USENIX Association.

22. S. Poeplau and J. Gassen. A honeypot for arbitrary malware on USB storage
devices. In 7th International Conference on Risk and Security of Internet and
Systems (CRiSIS), 2012.

https://blogs.rsa.com/thieves-reaching-for-linux-hand-of-thief-trojan-targets-linux-inth3wild
https://blogs.rsa.com/thieves-reaching-for-linux-hand-of-thief-trojan-targets-linux-inth3wild
https://www.volatilesystems.com/default/volatility
http://hooked-on-mnemonics.blogspot.jp/p/injdmp.html

	Bee Master: Detecting Host-Based Code Injection Attacks
	Introduction
	Code Injection Attacks
	Definition of Code Injection Attacks
	Host-Based Code Injection Attacks
	Attacker Model
	HBCIA in a Malware Context
	Family Feature Host-Based Code Injection Attacks

	Family Feature Investigation
	Description of the Dataset
	Realisation of the Investigation
	Results of our Investigation

	Bee Master
	Queen Bee
	Worker Bees
	Limitations
	Missing Attacks
	Detection of Process Hollowing

	Evaluation
	Implementation and Configuration of the Prototype
	Implementation
	Configuration

	Description of the Evaluation Environments
	Quantitative Evaluation
	Description of the Datasets
	Realisation of the Evaluation
	Malware Families
	Goodware
	Discussion

	Case Studies
	Hanthie
	Poison
	Discussion

	Performance Evaluation

	Related Work
	Conclusion and Outlook

