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Abstract

Common goals of malware authors are detection avoid-
ance and gathering of critical information. There exist
numerous techniques that help these actors to reach their
goals. One especially popular technique is the Host-Based
Code Injection Attack (HBCIA). According to our research
63.94% out of a malware set of 162850 samples use
HBCIAs. The act of locally copying malicious code into
a foreign process space and subsequently executing it is
called a Host-Based Code Injection Attack.

In this paper, we define HBCIAs and introduce a taxon-
omy for HBCIA algorithms. We show that a HBCIA algo-
rithm can be broken down into three steps. In total there
are four classes of HBCIA algorithms. Then we examine a
huge set of malware samples and estimate the prevalence
of HBCIA-employing malware and their target process dis-
tribution. Moreover, we analyse Intrusion Prevention Sys-
tem data and show that HBCIA-employing malware prefers
network-related processes for its network communication.

To the best of our knowledge, we are the first to thor-
oughly describe and formalize this phenomenon and give
an estimation of its prevalence. Thus, we build a solid foun-
dation for future work on this topic.

1. Introduction

Several reports have been published about malware
families that operated for years without being detected
(Uroburos, Careto or Stuxnet). Even though they have been

implemented with different goals in mind, they share one
common feature: they all inject code locally into foreign
process spaces. One reason for this behaviour is detection
avoidance. However, code injections are not limited to tar-
geted malware. Mass-malware also uses code injections in
order to stay under the radar (ZeroAccess, ZeusP2P or Con-
ficker). Detection avoidance is not the only advantage of us-
ing code injections from a malware author’s point of view.
Further reasons for using code injections are interception of
critical information, privilege escalation or manipulation of
security products.

The above mentioned examples are all malware fami-
lies for Microsoft Windows. However, code injections are
platform-independent. In fact all established multitasking
operating systems (OS) are prone to HBCIAs. Malware
families such as Flashback (Apple Mac OS X) [16], Hanthie
(Linux) [14] or Oldboot (Android) [7] employ HBCIAs on
mobile and non-mobile operating systems. This fact shows
that HBCIAs are present on mobile and non-mobile oper-
ating systems today. HBCIAs are therefore a relevant tech-
nique for security researchers.

In this paper, we examine the phenomenon of Host-
Based Code Injection Attacks (HBCIA) employed by mal-
ware in-depth. We describe the motivation for malware
authors to use HBCIAs. We define HBCIAs and propose
a taxonomy for classifying them. Several evaluations on
a large set of malware samples discover the prevalence of
HBCIA-employing malware, typical target processes and
network communicators.

The contributions of this paper can be summarized in the
following three key points:

(I) Formalization of Host-Based Code Injection At-
tacks used by malware and its key components
We derive definitions for key terms associated with
Host-Based Code Injection Attacks. By formalizing
HBCIAs, we build a solid foundation for future re-
search on this topic.

(II) Proposal of a Host-Based Code Injection Attack



algorithm taxonomy
We examine the algorithms used for employing HB-
CIAs and derive a classification scheme for them. We
show that there exist four different classes.

(III) Prevalence estimation of Host-Based Code Injec-
tion Attacks used by current malware
We estimate the prevalence of HBCIAs used by cur-
rent malware based on a set of 162850 malware sam-
ples. We show in addition that not all processes are
targeted equally and that such malware prefers a dif-
ferent set of processes for network communication.

2 Code Injections

Probably the first code-injecting malware was the Morris
worm [8] in 1988. It was able to infect large parts of the
Internet by remotely exploiting a buffer overflow.

We discuss Code Injections and more specifically Host-
Based Code Injection Attacks employed by malware in this
section. At first, the term Code Injection is defined. Then
we define Host-Based and Remote Code Injections. After-
wards, we differentiate between Host-Based and Remote
Code Injections and Host-Based and Remote Code Injec-
tion Attacks.

While Remote Code Injections Attacks have been inten-
sively researched (e.g. [18] or [25]), there is little research
on Host-Based Code Injection Attacks.

2.1 Code Injections

In this and the latter sections, we define the term Host-
Based Code Injection Attack. We achieve this by develop-
ing a set of definitions beginning with simple Code Injec-
tions.

Firstly, we define a Code Injection as follows

Definition 1 A Code Injection denominates copying of
code from an injecting entity εinject into a victim entity
εvictim and executing this code within the scope of εvictim.

For example, these entities εinject and εvictim can be hard-
ware devices or operating system processes. But they are
not limited to these examples. It is important to notice that
there are two crucial things needed for a Code Injection:
executable code and an execution context for this code.

2.2 Host-Based Code Injections versus
Remote Code Injections

The definition of a Code Injection does not specify the
place of residence of εinject and εvictim. It can be distin-
guished between two cases. The attacker and the victim
reside on the same system (Host-Based Code Injection) and

the attacker and the victim reside on different systems (Re-
mote Code Injection).

We define a Host-Based Code Injection as follows

Definition 2 A Host-Based Code Injection (HBCI) is a
Code Injection, where the two entities εinject and εvictim
reside on the same computer system.

εinject injects code into εvictim typically with the help of
the operating system. In this scenario, εinject or εvictim can
be, for example, a user space process, a kernel module or a
hardware device.

In contrary to a Host-Based Code Injection, εinject and
εvictim reside on two different systems in a Remote Code
Injection. That leads to Definition 3 for a Remote Code
Injection.

Definition 3 A Remote Code Injection (RCI) is a Code In-
jection, where the two entities εinject and εvictim do not
reside on the same computer system. They communicate by
means of a connecting channel.

For example, such a connecting channel can be a computer
network. The injection is typically triggered by exploiting
a vulnerability in a network service. In such an scenario
εinject would be a network client and εvictim a network ser-
vice. εinject sends a specially crafted payload containing
code to exploit εvictim. In case εvictim is vulnerable to this
exploit, the code is executed within the scope of εvictim.

2.3 HBCI/RCI vs. HBCIA/RCIA

Host-Based and Remote Code Injections are not mali-
cious per se. There are legitimate uses for injecting code.
These legitimate uses include hot patching [12], software
diagnostics [9], malware analysis [22] and debugging [19].
The Microsoft patent ”Method for injecting code into an-
other process” also suggests benign use cases, because their
”invention relates generally to computer software diagnos-
tic tools” [9]. In general, injecting code is seldom a fea-
ture that is needed by a common program in order to ful-
fil its task. It is rather needed during application devel-
opment. However, there is no way to distinguish between
Host-Based/Remote Code Injections and corresponding at-
tack versions without taking the purpose of the injection
into account.

Thus, we define a Host-Based Code Injection At-
tack/Remote Code Injection Attack as follows.

Definition 4 If a Host-based Code Injection or a Remote
Code Injection serves a nefarious purpose, i.e. it has not
been intended by the original author of εvictim, then it is
called a Host-Based Code Injection Attack (HBCIA) or Re-
mote Code Injection Attack (RCIA), respectively.



3 HBCIAs from a Malware Author’s Point of
View

Host-Based Code Injection Attacks are an important
technique for the successful operation of several malware
families such as Citadel [21], Flame [2] or Flashback [16].

On the one hand, using HBCIAs comes with a lot of ad-
vantages from a malware author’s point of view such as
privilege escalation or detection avoidance. On the other
hand, a malware author has to meet additional challenges
when implementing HBCIA-employing malware such as
maintaining system stability or handling increased architec-
tural complexity. This section discusses these advantages
and disadvantages.

3.1 Advantages of Employing HBCIAs

Using HBCIAs is beneficial for a malware author. HB-
CIAs allow malware to intercept critical information, es-
calate privileges, avoid detection and manipulate security
products.

3.1.1 Interception of Critical Information

Once malware has injected itself into a foreign process
space, it can access all information that this process space
holds. There is no access restriction within a process. Mal-
ware can therefore read or write data, but also code. This
enables malware to intercept critical information. Even if
the information is encrypted before transmission to a com-
munication partner.

For example, malware can hook API functions of a
browser or it can scarpe the process space for valuable data.
The first behaviour can be seen in banking Trojans like
Citadel [21]. The latter behaviour is a feature shown by
Point-of-Sale (POS) malware like Dexter.

The interception of critical information is typically done
in user mode [6]. Since data that is sent over the network
is usually encrypted with the help of user mode libraries.
This information cannot be intercepted in clear text in ker-
nel mode.

3.1.2 Privilege Escalation

HBCIAs can also be used for escalating privileges. Mal-
ware can gain the same access rights as the foreign process
space by injecting its code into it. This might enable mal-
ware to access files or bypass process-based local firewall
rules. One example is the POS malware Dexter. It injects
its code into Microsoft Windows’ Internet Explorer in order
to circumvent local firewall policies [11].

3.1.3 Detection Avoidance

Another reason for using HBCIAs is avoiding detection. If
a user is suspicious, he might investigate the currently run-
ning processes. In case he finds a suspicious process name,
he might kill this process. On account of this the malware
stops operating and the actor in-behind loses a valuable re-
source. But also automatic detection by security products
might be evaded. Once malware resides in a victim pro-
cess space, it blends into the behaviour of its victim. Hiding
within another process space might enable malware to con-
tinue its operation for an even longer period of time. One
example is the cyber espionage malware Flame. It uses HB-
CIAs in order to avoid its detection [2].

3.1.4 Manipulation of Security Products

Another application of HBCIAs is the manipulation of se-
curity products. Since a security product’s goal is detecting
and removing malware, it is natural that malware employs
self-defence. Its objective is making security products un-
responsive or even removing them completely in order to
survive.

The malware injects itself into processes of security
products. Once injected, several options exist in order to
manipulate a victim process. One option is terminating the
process from within. Other processes would suppose that
this behaviour has been intended by the victim process. But
malware can also alter the code of the victim process. Mal-
ware can achieve this via hooks, but also via overwriting
critical code section with no operation instructions (NOPs).
One example is the ZeroAccess rootkit. It uses HBCIAs in
order to terminate security products [10].

3.2 Disadvantages of Employing HBCIAs

Even though employing HBCIAs comes with a lot of
advantages from a malware author’s point of view, there
exist at least two disadvantages, when compared with non
HBCIA-employing malware. These disadvantages are an
increased architectural complexity as well as the risk of sys-
tem instability.

3.2.1 Architectural Complexity

One clear disadvantage of using HBCIAs is the increased
architectural complexity of the malware. The implementa-
tion costs increase from a malware author’s point of view.
Due to the fact that instead of implementing a self-contained
– i.e. single process software – they have to implement a
parasitic component for other process spaces.

In some cases malware authors even have to implement a
distributed system. The nodes of such a distributed system
are the processes that are currently running. They have to



deal additionally with characteristics of distributed systems
such as timing issues, failure tolerance, message passing or
synchronization. Furthermore, the testing and debugging
increases in complexity. Not only the malware analyst has
to grapple with such a piece of code, but also its developer.

3.2.2 Risk of System Instability

Injecting code into foreign process spaces is risky. Every
bug in the injected code could crash the victim process. This
could lead to system instability. This holds especially true
if code has been injected into critical system processes. The
probability increases that the user gets suspicious and that
he starts investigations. These investigations might lead to a
removal of the malware and to a loss of a valuable resource.
Hence, the malware author has to work very carefully dur-
ing the development of a HBCIA-employing malware. He
has not only to cope with the behaviour of its own code’s
threads, but also with the behaviour of the victim process’
threads. Furthermore, he has to ensure that these threads do
not interfere with each other.

4 Taking a Closer Look at HBCIA Algo-
rithms

This section takes a closer look at the algorithms that
underlie HBCIAs. We assume in the following sections that
εvictim is a process. Since today’s malware targets exclu-
sively processes.

The basic idea of a HBCIA algorithm can be sketched by
the simplified HBCIA algorithm in Figure 1. At first the at-
tacking entity has to select a victim process (step one). Once
it has found a victim process, the attacking entity copies the
to be executed code into the victim process (step two). Then
it executes the injected code within its victim process (step
three). This algorithm repeats for other processes or it ter-
minates. Each step can result in an error. However, we have
omitted possible failure states for clarity reasons in this fig-
ure.

The following sections examine each of the sketched
steps. The last section closes with the proposal of a
HBCIA algorithm taxonomy.

4.1 Victim Process Selection

The attacker entity εinject has to select a victim entity
εvictim before the actual injection can take place. A mal-
ware family might use either Shotgun Injections or Targeted
Injections. These two terms are introduced in this section.

4.1.1 Needed Definitions

Before we can define Shotgun and Targeted Injections, we
have to introduce the set of all εvictim entities and the set

Victim
Selection
(step one)

Code
Copying

(step two)

Code
Execution
(step three)

HBCIA
Successful

Figure 1. Simplified HBCIA algorithm consist-
ing of three steps

of all accessible εvictim entities from an arbitrary attacker’s
point of view.

We define set A as the set of all entities that can be de-
tected by an arbitrary entity. For example, this can be the
list of running processes that is provided by the Linux tool
ps. A is defined in Definition 5.

Definition 5 Let A = {εvictim1
, ..., εvictimn

} be the set of
all εvictim entities that can be seen by an arbitrary εinject,
where n ∈ N>0.

There might be many possible victim entities running on a
system, but not all of them are accessible for an attacker. For
example, even though the list provided by the Linux tool
ps includes processes started by the root user, a malware
might run with lower privileges and cannot access processes
created by the root user. We need therefore the second set
B. It is the set of all εvictim entities accessible to εinject,
which is defined as follows.

Definition 6 Let B = {εvictim1
, ..., εvictimm

} be the set
of all entities that are accessible to εinject, where m ∈
N>0,m ≤ n,B ⊆ A.

4.1.2 Shotgun Injection

A malware family uses a Shotgun Injection, if it blindly
injects code into all accessible victim entities. These vic-
tim entities usually include important system processes. A
Shotgun Injection is defined as follows

Definition 7 If εinject injects code into every element of B,
then this is called a Shotgun Injection.

Shotgun injecting malware uses a greedy victim process se-
lection method. This kind of malware tries to inject itself
into every running process on a system. This might lead
to complications, because the malware author cannot antic-
ipate what processes will be running. The malware could
therefore target antivirus processes and raise suspicion.

Credential stealing malware such as Zeus [24] uses Shot-
gun Injections. Such malware injects itself into as many
processes as possible for accomplishing its goal.



4.1.3 Targeted Injection

While shotgun injecting malware attacks all accessible vic-
tim entities, malware that implements Targeted Injections
only attacks a subset of them. We define a Targeted Injec-
tion as in Definition 8.

Definition 8 If εinject injects code only into a subset C ⊂
B, then this is called a Targeted Injection.

Malware must therefore carry out a selection process. It
detects its victim entities through several features. The most
simple one and commonly used feature is the process name.
Malware matches the process name of each currently run-
ning process against an internal list. If a match is found,
then the malware attacks this process. But there exist fur-
ther ways how malware detects or could detect its victim
processes like signatures, the parent process or opened file
handles.

One advantage is that this kind of injection is less sus-
picious compared to the Shotgun Injection. Risky victim
entities like system processes can be shunned. Furthermore,
the malware does not waste unnecessarily system resources.
Because it does not infect every accessible victim entity. It
is therefore not occupying at least one thread and several
megabytes of memory in each of the attacked victim enti-
ties.

The cyber espionage malware Flame [2] uses Targeted
Injections. For such a kind of malware it is crucible to care-
fully select its victim entities, if it does not want to raise
suspicion due to frequent system crashes.

4.2 Code Copying

After εinject has chosen an εvictim, it has to copy its
code into εvictim. There exist several ways how code can
be copied into εvictim. Exemplarily can be named the fol-
lowing: debugging APIs of the OS [9], via a kernel module
[10] or a buffer overflow exploitation [15].

4.3 Code Execution

Once εinject has copied its code into εvictim, it has to
trigger the execution of this code. There exist several OS-
dependent ways of triggering a code execution. For ex-
ample, this can be achieved with the help of debugging
APIs (e.g. CreateRemoteThread) or Asynchronous proce-
dure calls (e.g. QueueUserAPC) on the Windows NT plat-
form.

Even though there exist several ways of triggering a code
execution, only two distinguishable execution models exist:
Concurrent Execution and Thread Manipulation. While in
Concurrent Execution the original code of εvictim continues
to execute, it does not so in Thread Manipulation.

4.3.1 Needed Definitions

Before we can formally define Concurrent Execution and
Thread Manipulation, we need to introduce several defini-
tions. At first, we introduce εvictim’s program and the set
of its possibly spawned threads in Definition 9.

Definition 9 Let victimprogram be the program that is
executed in the context of εvictim. Let Tprogram =
{tprogram1 , ..., tprogramn} be the set of all threads that can
be possibly spawned by victimprogram, where n ∈ N>0.

The payload that is injected into εvictim as well as the set of
its possibly spawned threads is defined as follows.

Definition 10 Let payload be the payload that is in-
jected into εvictim by εinject. Let Tpayload =
{tpayload1 , ..., tpayloadm} be the set of all threads that can
be possibly spawned by payload, where m ∈ N>0.

Finally, the set of currently running threads in the context
of εvictim is defined as follows.

Definition 11 Let Tcurrent = {t1, ..., to} be the set of
currently running threads of victimprogram, where ti ∈
Tprogram ∪ Tpayload and i, o ∈ N>0 ∧ i ≤ o.

4.3.2 Concurrent Execution

If εinject copies its payload in addition to εvictim’s original
program victimattack and executes this payload in addition
to victimprogram, then this is called Concurrent Execution.

We define Concurrent Execution as in Definition 12.

Definition 12 If the following assumptions hold after the
injection of the payload into εvictim by εinject

1. ∃ti ∈ Tprogram

2. ∃tj ∈ Tpayload

3. ti, tj ∈ Tcurrent, where i, j ∈ N>0 ∧ i 6= j.

then this is called Concurrent Execution.

A prerequisite for a running process is at least one thread
that is responsible for the process’ behaviour. Once εinject
has copied its payload into εvictim and has executed it, the
number of active threads has been increased at least by one.
Afterwards, there exist at least two threads, which define
the behaviour of the victim entity.

Figure 2 depicts Concurrent Execution. In this figure two
scenarios are depicted: the state of two processes during an
ongoing HBCIA (1) and after a HBCIA (2). While the left
side shows the attacker process space, the right side shows
the victim process space. In (1) the attacker process runs
a dropper module, which has a pointer to a payload. The



Figure 2. Concurrent execution: a dropper in-
jects code into an office program

victim process is running the main program Notepad. Ad-
ditional modules are mapped into this process space that en-
sure Notepad’s functionality. There exists only one thread
in the victim process space. In this depiction the attacker
process is about to inject its payload into the victim pro-
cess space. In (2) the attacker process does not exist any
more, because it has terminated itself. Now the victim pro-
cess has loaded additional modules (payload and crypt32).
A new thread is also associated with the payload. It is run-
ning concurrently with the original thread of Notepad. This
breaks with the common belief that there is only one pro-
gram responsible for the behaviour of a process.

Concurrent Execution is used by banking Trojans like
Zeus [24]. They inject their code into a running browser
in order to employ a Man-in-the-Browser-Attack (MitBA).
While the user interacts with the browser, the banking Tro-
jan intercepts unencrypted banking credentials.

4.3.3 Thread Manipulation

If εinject has copied its payload to εvictim and executes this
payload by bypassing εvictim’s threads, then this is called
Thread Manipulation. Threat Manipulation typically ren-
ders victimprogram useless. A special case of Thread Ma-
nipulation is Return-Oriented Programming [20]. So far
there is no malware family known that implements its whole
logic with the help of this technique.

Even though a malicious payload is running inside of
the victim process space, a lot of information about the vic-
tim process has not been changed. On first sight a HBCIA
is hard to detect. In contrary to concurrent execution, the
original program of the victim entity does not reflect 100%
of the original code’s behaviour. In many cases it reflects
100% of the payload’s behaviour.

Thread Manipulation is formally defined in Definition
13.

Definition 13 If the following three assumptions hold

Figure 3. Thread Manipulation: a dropper hol-
lows an office program

1. Tcurrent 6= ∅

2. Tcurrent ∩ Tεvictimprogram
= ∅

3. Tcurrent ⊆ Tpayload
then this is called Thread Manipulation.

Figure 3 depicts Thread Manipulation. This figure shows
the state of two processes during an ongoing HBCIA (1)
and after a HBCIA (2). The setting for this figure is the
same as in Figure 2 in section 4.3.2. Additionally, we as-
sume that the attacker process started the victim process. In
(2) the attacker process does not exist any more, because it
terminated itself. Now the victim process’ old main module
(Notepad) has been replaced by the payload. The payload
has loaded an additional module (crypt32). The original
thread executes the injected payload.

Stuxnet uses Thread Manipulation for operating secretly
on a targeted system [15].

4.4 HBCIA Algorithm Taxonomy

We have identified three fundamental steps of a HBCIA
algorithm in the previous sections. These steps are victim
process selection, code copying and code execution. We use
these fundamental steps for classifying HBCIA algorithms.

Two different models exist for the victim selection and
code execution steps. There exist four different HBCIA
algorithm classes in total if we combine these four mod-
els. For the first step – victim selection – exist the Tar-
geted Injection (TI) and the Shotgun Injection (SI). For the
third step – code execution – it can be distinguished be-
tween Concurrent Execution (CE) and Thread Manipula-
tion (TM).

It is possible to name the four different classes given
these abbreviations. An example would be the HBCIA al-
gorithm of Conficker. It consists of a Targeted Injection
(TI) and Concurrent Execution (CE). This allows the HB-
CIA algorithm of Conficker to be classified as TICE.



HBCIA Algorithm Class Malware Family Example
TICE Hanthie (Linux)
TITM Stuxnet (Windows)
SICE Flashback (Mac OS X)
SITM -

Table 1. HBCIA algorithm taxonomy

Table 1 lists the four different HBCIA algorithm classes.
It also lists a malware family as an example, if one exists. In
only one case an example is missing. This class is the Shot-
gun Injection and Thread Manipulation algorithm (SITM).
So far we could not encounter any malware family imple-
menting such an algorithm. Manipulating the threads of as
many processes as possible can be rather seen as a denial-
of-service attack than a HBCIA.

5 Evaluation

We quantify the problem of HBCIAs in this section.
Firstly, we estimate the prevalence of HBCIA-employing
malware in a large set of samples. Subsequently, we ap-
proximate the distribution of the different HBCIA algorithm
classes based on a random sampling. Then we take a look at
host-based as well as network-based data. We determine the
preferred victim processes and preferred network communi-
cators with this data. A discussion of the results concludes
this section.

5.1 Prevalence of HBCIAs in Malware

We estimate the prevalence of HBCIA-employing mal-
ware in this section. There has not been an estimation of
the prevalence of HBCIA-employing malware to the best of
our knowledge. Though it is possible to derive that HBCIA-
employing malware is a relevant problem. Four of the top
five malware families in 2012 use HBCIAs as based on data
by Symantec [23]. They were responsible for 32.1% of all
new infection reports in this year.

5.1.1 Dataset & Methodology

The considered dataset consists of 162850 samples. They
were collected between 2013-03-21 and 2014-06-19. Un-
fortunately, the data set is not continuous. There are peri-
ods of weeks where no sample is available. These periods
are (2013-09-05, 2013-09-21), (2013-11-06, 2013-11-14),
(2014-03-06, 2014-03-12) and (2014-03-25, 2014-04-21).

All samples were analysed on Windows XP SP3 32 bit
using the automated malware analysis system VSAMAS [1].
Each sandbox report has been parsed for sequences of suspi-
cious behaviour that suggest a HBCIA occurred. An exam-
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Figure 4. Weekly percentage of HBCIA-
employing malware from 2013-03-21 until
2014-06-19

ple is the sequence AllocateVirtualMemory, WriteMemory
and CreateRemoteThread.

5.1.2 Results

Almost two thirds (63.94%, 104139/162850) of the sample
set use HBCIAs. Figure 4 shows the weekly prevalence of
HBCIA-employing malware as a scatter plot. The mean has
been drawn as a straight line. The majority of weeks scat-
ters closely around the mean. The minimal and maximal
outliers are 48.43% and 78.5%. There is no clear upturn
or downturn. This suggest that HBCIAs have been a sta-
ble feature of many malware samples throughout the last
months.

The result should be considered as a lower bound. Since
malware is known to use evasive techniques like sandbox
detection [3], many HBCIA-employing samples might have
not been successfully processed. All in all the estimation
suggests that the HBCIA is a relevant problem for security
researchers.

5.2 HBCIA Algorithms Used by Current
Malware

We derived a classification scheme for HBCIA algo-
rithms in section 4.4. This taxonomy consists of four
classes. We also give examples for most of the classes in
section 4.4. However, there exists no estimation of the dis-
tribution of current malware families to these classes. The
objective of this section is therefore to roughly estimate this
distribution.



HBCIA Algorithm Class Count / Percentage
TICE 23 / 57.5%
TITM 8 / 20%
SICE 9 / 22.5%
SITM 0 / 0%

Table 2. Distribution of malware families to
HBCIA algorithm classes

5.2.1 Dataset & Methodology

We collected several representatives of HBCIA-employing
malware families over the course of the last months. We
only have to examine one representative per malware family
in order to determine the family’s HBCIA algorithm since
the HBCIA can be seen as a family feature [4]. The dataset
contains 40 malware families of different kinds. For exam-
ple, families included are banking Trojans (Bebloh), APTs
(Duqu), malware droppers (Matsnu) or click fraud malware
(Sirefef). A list of all the considered malware families is
available on our homepage [5].

At first, we analysed each representative in a sandbox for
determining its HBCIA algorithm class. In case the sample
did not execute properly in the sandbox, we analysed the
sample manually.

5.2.2 Results

More than one half implement a TICE (Targeted Injec-
tion/Concurrent Execution) algorithm. The rest is split
in a group of TITM (Targeted Injection/Thread Manipu-
lation) families and in a group of SICE (Shotgun Injec-
tion/Concurrent Execution) families. No malware family
employs a SITM (Shotgun Injection/Thread Manipulation)
algorithm. Table 2 summarizes our findings.

The results show that Targeted Injection (TICE + TITM
= 77.5%) is more popular than Shotgun Injection. They
show also that Concurrent Execution (TICE + SICE =
80%) is more popular than Thread Manipulation.

5.3 Preferred Victim Processes

Not only the amount of HBCIA-employing samples is of
interest, but also the distribution of their victim processes.
The victim processes should not be evenly distributed since
not all HBCIA-employing malware families use Shotgun
Injections. An analyst could prioritize the processes he in-
vestigates in order to speed up the analysis process, if this
would be true.
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Figure 5. Relative distribution of victim pro-
cesses

5.3.1 Dataset & Methodology

We use the same dataset and methodology as in the evalu-
ation of HBCIA prevalence (section 5.1) for the determina-
tion of the preferred victim processes. Every time VSAMAS
detects a HBCIA, it logs the attacker entity and the victim
process.

5.3.2 Results

Figure 5 shows the distribution of the victim processes for
the whole dataset. The most targeted process observed is
explorer.exe. It has been targeted in 17.7% of all HBCIAs.
Furthermore, 16 processes share almost three quarter of all
attacks. These processes are all system processes – besides
of vsamas.exe – found on each Windows XP installation.

This shows that the attacks are not evenly distributed.
System processes are rather preferred than additional pro-
cesses that do not come per default with a standard Win-
dows installation.

5.4 Preferred Network Communicators

We have determined the preferred victim processes in the
previous section. In this section, we determine the preferred
network communicators. It is likely that network communi-
cation is synchronized and only one process communicates
with the Internet, since many malware families inject their
code into more than one process.

5.4.1 Dataset & Methodology

We analyse Intrusion Prevention System (IPS) detection
data provided by a large antivirus vendor. They deploy IPS
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Figure 6. Relative distribution of network
communicators

signatures on their customer’s computers in order to block
connection attempts by malware. Every time an IPS signa-
ture detects a connection attempt, a detection report is filed.
Such a detection report contains the signature and the pro-
cess that were responsible for triggering the alarm.

After preprocessing, i.e. removing all non HBCIA-
employing malware family signatures, the data consists of
361023 detected connection attempts. All in all 274 signa-
tures have been triggered. However, these signatures also
included different malware family variants. The data was
collected within a period of ten month (2013-07 - 2014-05).

5.4.2 Results

Figure 6 shows the relative distribution of network com-
municators. Firstly, the preferred network communicators
differ from the preferred victim processes. There is a min-
imal overlap, for example explorer.exe, svchost.exe and
rundll32.exe are in both Top 10s. Secondly, around 1/3 of
all network communication is done by only one process (sv-
chost.exe). This process is followed by other processes that
are typically communicating over the network. These pro-
cesses include rundll32.exe, iexplore.exe or chrome.exe.

Malware authors choose rather network-related pro-
cesses for network communication. A possible explanation
for their choice is that they do not want to raise suspicion.
For example, personal firewalls block processes that are not
known for network communication.

5.5 Discussion

HBCIAs are widely-used by today’s malware. Almost
two thirds (63.94%) of the malware samples in our sample

set show this characteristic. A HBCIA is therefore a reli-
able indicator of compromise (IOC) by malware. HBCIA
prevention/detection should be pursued complementary to
traditional antivirus techniques.

Even though there exist four classes of HBCIA algo-
rithms, we have only encountered malware implementing
TICE, TITM or SICE algorithms. In general malware
authors seem to prefer Target Injections to Shotgun Injec-
tions and Concurrent Execution to Thread Manipulation.
The victim processes are not distributed evenly. Since not
all HBCIA-employing malware families use Shotgun Injec-
tions. Analysts should prioritize the processes that they are
examining. Moreover, the host perception and the network
perception of a system infected with HBCIA-employing
malware differs. Only the disinfection of all network com-
municators is not sufficient. Since processes can be infected
without showing any network activity.

6 Related Work

This section discusses related work. To the best of our
knowledge, there has not been any previous work that ex-
amines the foundation of HBCIAs in-depth from an aca-
demic point of view. Nevertheless, we discuss related work
that focusses on detection or prevention of code injection
attacks.

The authors of [13] present a novel approach for thwart-
ing code injection attacks by randomizing the instruction set
of each process. This approach has some drawbacks like
the need of special support by the processor. Several im-
provements of this approach have been presented. Papado-
giannakis et. al [17] proposed the most recent one. They
present an architecture with software and hardware support
for instruction set randomization.

Buescher et al. [6] propose a system that detects ille-
gitimate manipulation of browser APIs. It is based on the
idea that malware uses HBCIAs in order to manipulate these
APIs. White et al. [26] propose a system for detecting code
injections in memory dumps. The authors of [4] present
a method for dynamically detecting HBCIAs. They apply
the honeypot paradigm to processes for detecting HBCIAs
operating system independently.

7 Conclusion

We have discussed Host-Based Code Injection Attacks
as used by today’s malware. We have shown that Host-
Based Code Injection Attacks come with a lot of advantages
from a malware author’s point of view. These advantages
include interception of unencrypted critical information or
detection avoidance. However, HBCIAs come also with in-
conveniences such as architectural complexity and risk of
system instability.



HBCIA algorithms consist typically of three steps.
These steps are victim process selection, code copying and
code execution. We have derived a taxonomy for HBCIA
algorithms based on these steps. There exist four different
HBCIA algorithm classes. An estimation of the distribu-
tion of the classes has been conducted. It shows that the
TICE algorithm is very popular. Additionally, Targeted In-
jections are preferred to Shotgun Injections and Concurrent
Execution is preferred to Thread Manipulation. We have
also shown that 63.94% of a set of 162850 malware samples
employ HBCIAs. HBCIAs are therefore a relevant prob-
lem for security researchers. The detection of HBCIAs is
a promising approach for detecting malicious behaviour in
general.
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