
Chapter 1
Notion and Structure of Sensor Data Fusion

Sensor data fusion is an omnipresent phenomenon that existed prior to its
technological realization or the scientific reflection on it. In fact, all living creatures,
including human beings, by nature or intuitively perform sensor data fusion. Each in
their own way, they combine or “fuse” sensations provided by different and mutually
complementary sense organs with knowledge learned from previous experiences and
communications from other creatures. As a result, they produce a “mental picture”
of their individual environment, the basis of behaving appropriately in their struggle
to avoid harm or successfully reach a particular goal in a given situation.

1.1 Subject Matter

As a sophisticated technology with significant economic and defence implications
as well as a branch of engineering science and applied informatics, modern sensor
data fusion aims at automating this capability of combining complementary pieces of
information. Sensor data fusion thus produces a “situation picture,” a reconstruction
of an underlying “real situation,” which is made possible by efficiently implemented
mathematical algorithms exploiting even imperfect data and enhanced by new infor-
mation sources. Emphasis is not only placed on advanced sensor systems, technical
equivalents of sense organs, but also on spatially distributed networks of homoge-
neous or heterogeneous sensors on stationary or moving platforms and on the inte-
gration of data bases storing large amounts of quantitative context knowledge. The
suite of information sources to be fused is completed by the interaction with human
beings, which makes their own observations and particular expertise accessible.

The information to be fused may comprise a large variety of attributes, character-
ized, for example, by sensor ranges from less than a meter to hundreds of kilometers,
by time scales ranging from less than a second to a few days, by nearly stationary
or rapidly changing scenarios, by actors behaving cooperatively, in-cooperatively, or
even hostile, by high precision measurements or sensor data of poor quality.

W. Koch, Tracking and Sensor Data Fusion, 1
Mathematical Engineering, DOI: 10.1007/978-3-642-39271-9_1,
© Springer Verlag Berlin Heidelberg 2014
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Sensor data fusion systems emerging from this branch of technology have in effect
the character of “cognitive tools”, which enhance the perceptive faculties of human
beings in the same way conventional tools enhance their physical strength. In this type
of interactive assistance system, the strengths of automated data processing (dealing
with mass data, fast calculation, large memory, precision, reliability, robustness etc.)
are put into service for the human beings involved. Automated sensor data fusion
actually enables them to bring their characteristically “human” strengths into play,
such as qualitatively correct over-all judgment, expert knowledge and experience,
intuition and creativity, i.e. their “natural intelligence” that cannot be substituted by
automated systems in the foreseeable future. The user requirements to be fulfilled in
a particular application have a strong impact on the actual fusion system design.

1.1.1 Origins of Modern Development

Sensor data fusion systems have been developed primarily for applications, where a
particular need for support systems of this type exists, for example in time-critical
situations or in situations with a high decision risk, where human deficiencies must
be complemented by automatically or interactively working data fusion techniques.
Examples are fusion tools for compensating decreasing attention in routine and mass
situations, for focusing attention on anomalous or rare events, or complementing lim-
ited memory, reaction, and combination capabilities of human beings. In addition to
the advantages of reducing the human workload in routine or mass tasks by exploiting
large data streams quickly, precisely, and comprehensively, fusion of mutually com-
plementary information sources typically produces qualitatively new and important
knowledge that otherwise would remain unrevealed.

The demands for developing such support systems are particularly pressing in
defence and security applications, such as surveillance, reconnaissance, threat eval-
uation, and even weapon control. The earliest examples of large sensor data fusion
projects were designed for air defence against missiles and low-flying bombers and
influenced the development of civilian air traffic control systems. The development
of modern sensor data fusion technology and the underlying branch of applied sci-
ence was stimulated by the advent of sufficiently powerful and compact computers
and high frequency devices, programmable digital signal processors, and last but
not least by the “Strategic Defence Initiative (SDI)” announced by US President
Ronald Reagan on March 23, 1983.

After a certain level of maturity has been reached, the Joint Directors of Lab-
oratories (JDL), an advisory board to the US Department of Defense, coined the
technical term “Sensor Data and Information Fusion” in George Orwell’s very year
1984 and undertook the first attempt of a scientific systematization of the new tech-
nology and the research areas related to it [1, Chap. 2, p. 24]. To the present day,
the scientific fusion community speaks of the “JDL Model of Information Fusion”
and its subsequent generalizations and adaptations [1, Chap. 3], [2]. The JDL model
provides a structured and integrated view on the complete functional chain from dis-
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Fig. 1.1 Overview of the JDL-Model of Sensor Data and Information Fusion [1, Chap. 3], which
provides a structured and integrated view on the complete functional chain from distributed sensors,
data bases, and human reports to the users and their options to act including various feed-back loops
at different levels

tributed sensors, data bases, and human reports to the users and their options to act
including various feed-back loops at different levels (Fig. 1.1). It seems to be valid
even in the upcoming large fields of civilian applications of sensor data fusion and
cyber security [3]. Obviously, the fundamental concepts of sensor data fusion have
been developed long before their full technical feasibility and robust realizability in
practical applications.

1.1.2 General Technological Prerequisites

The modern development of sensor data fusion systems was made possible by sub-
stantial progress in the following areas over the recent decades:

1. Advanced and robust sensor systems, technical equivalents of sense organs with
high sensitivity or coverage are made available that may open dimensions of
perception usually unaccessible to most living creatures.

2. Communication links with sufficient bandwidths, small latencies, stable connec-
tivity, and robustness against interference are the backbones of spatially distrib-
uted networks of homogeneous or heterogeneous sensors.
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3. Mature navigation systems are prerequisites of (semi-)autonomously operating
sensor platforms and common frames of reference for the sensor data based on
precise space–time registration including mutual alignment.

4. Information technology provides not only sufficient processing power for deal-
ing with large data streams, but also efficient data base technology and fast
algorithmic realizations of data exploitation methods.

5. Technical interoperability, the ability of two or more sub-systems or compo-
nents to interact and to exchange and to information mutually understood, is
inevitable to build distributed “systems of systems” for sensor exploration and
data exploitation [4].

6. Advanced and ergonomically efficient Human–Machine Interaction (HMI) tools
are an integral part of man-machine-systems presenting the results of sensor data
fusion systems to the users in an appropriate way [5].

The technological potential enabled by all these capabilities is much enhanced by
integrating them in an overall sensor data fusion system.

1.1.3 Relation to Information Systems

According to this technological infrastructure, human decision makers on all levels
of hierarchy, as well as automated decision making systems, have access to vast
amounts of data. In order to optimize use of this high degree of data availability
in various decision tasks, however, the data continuously streaming in must not
overwhelm the human beings, decision making machines, or actuators involved. On
the contrary, the data must be fused in such a way that at the right instant of time the
right piece of high-quality information relevant to a given situation is transmitted to
the right user or component and appropriately presented. Only if this is the case, the
data streams can support goal-oriented decisions and coordinated action planing in
practical situations and on all levels of decision hierarchy.

In civilian applications, management information or data warehouse systems
are designed in order to handle large information streams. Their equivalents in
the defence and security domain are called C4ISTAR Systems [4]. This acronym
denotes computer-assisted functions for C4 (Command, Control, Communications,
Computers), I (Intelligence), and STAR (Surveillance, Target Acquisition and Recon-
naissance) in order to enable the coordination of defence-related operations. While
management information or data warehouse systems are primarily used to obtain
competitive advantages in economic environments, C4ISTAR systems aim at infor-
mation dominance over potential military opponents. The observation that more or
less the same terminology is used in both areas for characterizing the struggle to
avoid harm or successfully reach goals, is an indication of far-reaching fundamental
commonalities of decision processes in defence command & control as well as in
product development and planing, in spite of different accentuations in particular
aspects.
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A basic component of C4ISTAR information systems, modular and flexibly
designed as “systems of systems,” is the combination of sensor systems and data
bases with appropriate sensor data and information fusion sub-systems. The objec-
tive at this level is the production of timely, consistent and, above all, sufficiently
complete and detailed “situation pictures,” which electronically represent a complex
and dynamically evolving overall scenario in the air, on the ground, at sea, or in
an urban environment. The concrete operational requirements and restrictions in a
given application define the particular information sources to be considered and data
fusion techniques to be used.

A Characteristic Example

A particularly mature example of an information system, where advanced sensor data
fusion technology is among its central pillars, is given by a distributed, coalition-
wide C4ISTAR system of systems for wide-area ground surveillance. It mirrors many
of the aspects previously addressed and has been carried out within the framework
of a multinational technology program called MAJIIC (Multi-Sensor Aerospace-
Ground Joint ISR Interoperability Coalition) [4, Chap. 20]. By collaboratively using
interoperable sensor and data exploitation systems in coalition operations, MAJIIC
has been designed to improve situational awareness of military commanders over
the various levels of the decision making hierarchy.

Based on appropriate concepts of deployment and the corresponding tactical pro-
cedures, technological tools for Collection, Coordination and Intelligence Require-
ments Management (CCIRM) are initiated by individual sensor service requests of
deployed action forces. The CCIRM tools produce mission plans according to super-
ordinate priorities, task sensor systems with appropriate data acquisition missions,
initiate data exploitation and fusion of the produced sensor data streams in order to
obtain high-quality reconnaissance information, and, last but not least, guarantee the
feedback of the right information to the requesting forces at the right instant of time.

Under the constraint of leaving existing C4ISTAR system components of the
nations participating in MAJIIC unchanged as far as possible, the following aspects
are addressed with particular emphasis:

1. The integration of advanced sensor technology for airborne and ground-based
wide-area surveillance is mainly based on Ground Moving Target Indicator
Radar (GMTI), Synthetic Aperture Radar (SAR), electro-optical and infrared
sensors (E/O, IR) producing freeze and motion imagery, Electronic Support
Measures (ESM), and artillery localization sensors (radar- or acoustics-based).

2. Another basic issue is the identification and implementation of common stan-
dards for distributing sensor data from heterogeneous sources including appro-
priate data and meta-data formats, agreements on system architectures as well
as the design and implementation of advanced information security concepts.

3. In addition to sensor data fusion technology itself, tools and procedures have
been developed and are continuously enhanced for co-registration of hetero-
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Fig. 1.2 MAJIIC system architecture emphasizing the deployed sensors, databases, and distributed
sensor data fusion systems (Interoperable ISR Exploitation Stations)

geneous sensors, cross-cueing between the individual sensors of a surveillance
system, the sensors of different systems, and between sensors and actuators, as
well as for exploitation product management, representation of the “Coalition
Ground Picture,” for coordinated mission planning, tasking, management, and
monitoring of the MAJIIC sub-systems.

4. MAJIIC-specific communications have been designed to be independent of
network-types and communication bandwidths, making it adaptable to varying
requirements. Commercially available and standardized internet- and crypto-
technology has been used in both the network design and the implementation
of interfaces and operational features. Important functionalities are provided
by collaboration tools enabling ad-hoc communication between operators and
exchange of structured information.

5. The central information distribution nodes of the MAJIIC C4ISTAR system
of systems are so-called Coalition Shared Data servers (CSD) making use of
modern database technology. Advanced Data Mining and Data Retrieval tools
are part of all MAJIIC data exploitation and fusion systems.

6. From an operational point of view, a continuous interaction between Concept
Development and Experimentation (CD&E process, [6]) by planning, running,
and analyzing simulated and live C4ISTAR experiments is an essential part of
the MAJIIC program, fostering the transfer of MAJIIC capabilities into national
and coalition systems.

Figure 1.2 provides an overview of the MAJIIC system architecture and the deployed
sensor systems.



1.2 Characterization as a Branch of Applied Science 7

1.2 Characterization as a Branch of Applied Science

The object of knowledge in sensor data fusion as a branch of applied science is
sensor data fusion technology discussed previously. In other words, it aims at the
acquisition of knowledge required to build automated sensor data fusion systems,
often being part of larger information systems, by using appropriately developed
scientific methodologies. This includes the elicitation, collection, analysis, modeling,
and validation of this knowledge.

In order to reach this goal, scientific research in sensor data fusion is performed
in an interdisciplinary way by applying fundamental results gathered from other
sciences, such as natural sciences dealing with physical object properties perceptible
by sensors and the underlying sensing principles, engineering sciences, mainly sensor
engineering, metrology, automation, communications, and control theory, but also
applied mathematics and statistics, and, last but not least, applied informatics. Two
characteristic features of sensor data fusion can be identified.

1. The available sensor data and context knowledge to be fused typically provide
incomplete and imperfect pieces of information. These deficiencies have man-
ifold reasons and are unavoidable in real-world applications. For dealing with
imperfect sensor and context data, sophisticated mathematical methodologies
and reasoning formalisms are applied. Certain aspects of them are developed by
extending the underlying methodology, thus providing contributions to funda-
mental research. Reasoning with uncertain information by using probabilistic
or other formalisms is therefore a major scientific feature characterizing sensor
data fusion.

2. As a branch of applied science, sensor data fusion is closely related to the practi-
cal design of surveillance and reconnaissance components for information sys-
tems. In implementing fundamental theoretical concepts, a systematic way of
finding reasonable compromises between mathematical exactness and pragmatic
realization issues as well as suitable approximation methodologies are therefore
inevitable. System aspects such as robustness and reliability even in case of
unforeseeable nuisance phenomena, priority management, and graceful degra-
dation are of particular importance in view of practicability. This is equally true
for comprehensive evaluation and prediction of fusion system performance and
identification of relevant factors for system control and operation, based, for
example, on extensive Monte-Carlo-simulations and the analysis of theoretical
bounds [7].

1.2.1 Pioneers of Sensor Data Fusion

Since sensor data fusion can be considered as a branch of automation with respect
to imperfect sensor data and non-sensor information, a historical reflection on its
roots could identify numerous predecessors in automation engineering, cybernetics,
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and Bayesian statistics, who developed fundamental notions and concepts relevant to
sensor data fusion. Among many other pioneers, Carl Friedrich Gauss, Thomas

Bayes and the Bayesian statisticians, as well as Rudolf E. Kalman have created
the methodological and mathematical prerequisites of sensor data fusion that made
the modern development possible.

Carl Friedrich Gauß

Many achievements in science and technology that have altered today’s world can be
traced back to the great mathematician, astronomer, geodesist, and physicist Carl

Friedrich Gauss (1777–1855). This general tendency seems also to be true in
the case of sensor data fusion. After finishing his opus magnum on number theory,
Gauss re-oriented his scientific interests to astronomy. His motive was the discovery
of the planetoid Ceres by the Theatine monk Giuseppe Piazzi (1746–1826) on Jan
1, 1801, whose position was lost shortly after the first astronomical orbit measure-
ments. Gauss succeeded in estimating the orbit parameters of Ceres from a few
noisy measurements by using a recursively defined least-squares error compensation
algorithm [8], a methodology, which can be interpreted as a limiting case of Kalman
filtering, one of the most important backbone algorithms of modern target tracking
and sensor data fusion. Based on his results, Heinrich Olbers (1758–1840) was
able to rediscover Ceres on Jan 1, 1802. The discovery of three other planetoids
followed (Pallas 1802, Juno 1804, Vesta 1807). Although until then, Gauss was
well-known to mathematical experts only, this success made his name popular, lead-
ing to his appointment at Göttingen University in 1807 as a Professor of Astronomy
and Director of the Observatory. Gauss’ personal involvement in this new scientific
branch of reasoning with imprecise observation data is indicated by the fact that he
called his first borne child Joseph, after Father Guiseppe Piazzi [9, p. 15]. Three
others of his children were named after the discoverers of Pallas, Juno, and Vesta.

Bayesian Statisticians

In sensor data fusion, the notion of “Bayesian probability” is of fundamental impor-
tance. It interprets the concept of probability as “a measure of a state of knowledge”
(see [10], e.g.) and not as a relative frequency as in classical statistics. According to
this interpretation, the probability of a hypothesis given the sensor data is propor-
tional to the product of the likelihood function multiplied by the prior probability. The
likelihood function represents the incomplete and imperfect information provided by
the sensor data themselves as well as context information on the sensor performance
and the sensing environment, while the prior probability the belief in the hypothesis
before the sensor data were available (see Chap. 3 Bayesian Knowledge Propagation
of this book).

The term ‘Bayesian’ refers to Thomas Bayes (1702–1761), a British mathe-
matician and Presbyterian minister, who proved a special case of this proposition,

http://dx.doi.org/10.1007/978-3-642-39271-9_3


1.2 Characterization as a Branch of Applied Science 9

which is now called Bayes’ theorem (published posthumously by his friend Richard

Price (1723–1791) in 1763, [11]). The roots of ‘subjective probability’ can even be
traced back to the great Jewish philosopher Moses Maimonides (1135/38-1204)
and the medieval rabbinic literature [12, Chap. 10]. It was Pierre- Simon Laplace

(1749–1827), however, who introduced a more general version of Bayes’ theorem,
apparently unaware of Bayes’ work, and used it to approach problems in celes-
tial mechanics, medical statistics, reliability, and jurisprudence [13, Chap. 3]. In the
sequel, the foundations of Bayesian statistics were laid by many eminent statisticians.

Of particular importance is Abraham Wald (1902–1950, [14]), an Austro-
Hungarian mathematician, who immigrated to the USA in 1938, where he created
Sequential Analysis, a branch of applied statistical decision making, which is of
enormous importance for sensor data fusion, especially in track management and
consistency testing (see Chap. 4 Sequential Track Extraction of this book). In his
influential work on Statistical Decision Functions [15], he recognized the funda-
mental role of Bayesian methods and called his optimal decision methods ‘Bayes
strategies’.

Rudolf E. Kalman and his Predecessors

The beginning of modern sensor data fusion is inextricably bound up with the name
of Rudolf E. Kalman (*1930), a Hungarian-American system theorist, though
he had many predecessors. The Kalman filter is a particularly influential example
of a processing algorithm for inferring a time variable object state from uncertain
data assuming an uncertain object evolution, which can elegantly be derived from
Bayesian statistics. Among Kalman’s predecessors, Thorvald Nicolai Thiele

(1838–1910), a Danish astronomer, actuary and mathematician, derived a geomet-
ric construction of a fully developed Kalman filter in 1889 [16, Chap. 4]. Also
Ruslan L. Stratonovich (1930–1997), a Russian physicist, engineer, proba-
bilist, and Peter Swerling (1929–2000), one of the most influential RADAR the-
oreticians in the second half of the twentieth century [17, Appendix], developed
Kalman-type filtering algorithms earlier using different approaches.

Stanley F. Schmidt (*1926) is generally credited with developing the first
application of a Kalman filter to the problem of trajectory estimation for the NASA
Apollo Spaceflight Program in 1960, leading to its incorporation in the Apollo nav-
igation computer. The state-of-the-art until 1974 is summarized in the influential
book Applied Optimal Estimation, edited by Arthur Gelb [18].

Contemporary Researchers

Independently of each other, Günther van Keuk (1940–2003) and Singer first
applied Kalman filtering techniques to single air target tracking problems in multiple
radar data processing [19, 20]. The foundations of multiple hypothesis tracking
methods for dealing with data of uncertain origin related to multiple objects were

http://dx.doi.org/10.1007/978-3-642-39271-9_4
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laid by Robert W. Sittler, who first posed the problem [21], while Donald

B. Reid published a method for solving it [22]. Van Keuk, Sam S. Blackman,
and Yaakov Bar- Shalom were among the first, who transformed Reid’s method
into practical algorithms (see [23, 24] for an overview of the development until 2004).

In the vast research literature published since then, however, it is impossible to
identify all important scientists and engineers. The following discussion of significant
contributions is therefore by no means complete, reflects the author’s personal point
of view, and is related to methodological framework presented in Part 1 of this book.

In particular due to their monographs on target tracking and sensor data fusion
issues, Yaakov Bar- Shalom [25], Sam S. Blackman [26], and Alfonso

Farina [27] are highly influential researchers and have inspired many developments.
Henk A. P. Blom introduced stochastic hybrid processes into data fusion [28],
which under the name of “Interacting Multiple Models” still define the state-of-the-
art in target dynamics modeling. He in particular applied Bayesian data fusion to large
air traffic control systems under severe reliability constraints. Countless realization
aspects in fusion systems design are covered by Oliver Drummond’s contributions.
Already in his PhD thesis [29], where he has addressed many important issues in mul-
tiple object tracking at a very early time. Larry Stone is a pioneer in Bayesian sonar
tracking and data fusion in complex propagation environments [30]. Neil Gordon

was among the first, who applied sequential random Monte-Carlo-techniques to non-
linear tracking problems, known under the name of “Particle Filtering”, and inspired
a rapid development in this area [31]. Numerous contributions to problems at the bor-
derline between advanced signal processing, distributed detection theory, and target
tracking were made by Peter K. Willett. Xiao- Rong Li provided important
solutions to radar data fusion. The integration of modern mathematical non-linear
filtering to practical radar implementation is among the merits of Fred Daum.
Numerous achievements in non-linear filtering, distributed sensing, and resources
management were provided by Uwe D. Hanebeck. Hugh Francis Durrant-

Whyte is generally credited with creating decentralized data fusion algorithms as
well as with simultaneous localization and navigation. The stormy development of
efficient multitarget tracking based on random set theory with Probabilistic Hypothe-
sis Density Filtering (PHD) as an efficient realization has been developed by Ronald

Mahler [32]. Finally, Roy Streit first introduced Expectation Maximization tech-
niques to solve efficiently the various data association problems in target tracking
and sensor data fusion and exploited the use of Poisson-point precesses in this area
[33].

A well readable introduction to sensor data fusion was published by
H. B. Mitchell [34]. The handbook “Advanced Signal Processing: Theory and
Implementation for Sonar, Radar, and Non-Invasive Medical Diagnostic Systems”
[35] deals with many advanced sensor data fusion applications. Martin E. Lig-

gins, James Llinas, and David L. Hall edited the compendium “Handbook
of Multisensor Data Fusion: Theory and Practice” [1]. An excellent introduction to
more advanced techniques with emphasis on particle filtering is provided by Fredrik

Gustafsson [36].
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1.2.2 Organization of the Research Community

The interdisciplinary significance of sensor data fusion is illustrated by the fact that
numerous institutions with different profiles are working world-wide on particu-
lar aspects of it. For this reason, the “International Society of Information Fusion
(ISIF)” was founded in 1998 as a scientific framework organization. According to
its constitution, it is “an independent, non-profit organization dedicated to advanc-
ing the knowledge, theory and applications of information fusion” [37]. Since that
year, ISIF has been organizing the annual International Conferences on Informa-
tion Fusion, the main scientific conference of the international scientific information
fusion community.

1.2.3 Important Publication Platforms

To publish high-quality scientific papers on sensor data and information fusion, sev-
eral well-established scientific journals are available, such as the IEEE Transactions
on Aerospace and Electronic Systems and on Signal Processing, the most visible
publication platforms, the ISAF Journal of Advances in Information Fusion, or the
Elsevier Journal on Information Fusion. Besides the proceedings of the FUSION
conferences, the annual SPIE Conference Series Signal and Data Fusion of Small
Targets (SPIE SMT) organized by Oliver E. Drummond since 1989 in the USA,
numerous special sessions at radar and automated control conferences as well as
several national fusion workshops, such as the German IEEE ISIF Workshop Series
Sensor Data Fusion: Trends, Solutions, Applications (SDF) [41], provide forums,
where the latest advances and research results are presented and discussed among
researchers and application engineers.

1.3 From Imperfect Data to Situation Pictures

Sensor data fusion typically provides answers to questions related to objects of inter-
est such as: Do objects exist at all and how many of them are moving in the sensors’
fields of view? Where are they located at what time? Where will they be in the future
with what probability? How can their overall behavior be characterized? Are anom-
alies or hints to their possible intentions recognizable? What can be inferred about
the classes the objects belong to or even their identities? Are there clues for char-
acteristic interrelations between individual objects? In which regions do they have
their origin? What can be said about their possible destinations? Are there observ-
able over-all object flows? Where are sources or sinks of traffic? and many other
questions.
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Fig. 1.3 Sensor data and information fusion for situation pictures: overview of characteristic aspects
and their mutual interrelation

The answers to those questions are the constitutive elements, from which near
real-time situation pictures can be produced that electronically represent a complex
and dynamically evolving overall scenario in the air, on the ground, at sea, under
water, as well as in out- or in-door urban environments, and even more abstract spaces.
According to the previous discussion, these “situation elements” must be gained from
the currently received sensor data streams while taking into account all the available
context knowledge and pre-history. Since situation pictures are fundamental to any
type of computer-aided decision support, the requirements of a given application
define which particular information sources are to be fused.

The sensor data to be fused are usually inaccurate, incomplete, or ambiguous.
Closely spaced moving objects are often totally or partially irresolvable. The mea-
sured object parameters may be false or corrupted by hostile measures. The context
information is in many cases hard to formalize and even contradictory in certain
aspects. These deficiencies of the information to be fused are unavoidable in any
real-world application. Therefore, the extraction of ‘information elements’ for sit-
uation pictures is by no means trivial and requires a sophisticated mathematical
methodology for dealing with imperfect information. Besides a precise requirement
analysis, this is one of the major scientific features that characterizes and shapes
sensor data fusion as branch of applied science.
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1.3.1 Discussion of Characteristic Aspects

Figure 1.3 provides an overview of different aspects within this context and their
mutual interrelation, which should be emphasized:

1. The underlying sensor systems can be located in different ways (collocated,
distributed, mobile) producing measurements of the same or of different type.
A multisensor system potentially increases the coverage or data rate of the total
system and may help to resolve ambiguities.

2. Even by fusing homogeneous sensors, information can be obtained that is unac-
cessible to each sensor individually, such as in stereoscopic vision, where range
information is provided by fusing two camera images taken from different view-
points.

3. Fusion of heterogeneous sensor data is of particular importance, such as the
combination of kinematic measurements with measured attributes providing
information on the classes to which objects belongs to. Examples for measured
attributes are Signal Intelligence (SIGINT), Jet Engine Modulation (JEM), radial
or lateral object extension, chemical signatures, etc.

4. Especially for defense and security applications, the distinction between active
and passive sensing is important as passive sensors enable covert surveillance,
which does not reveal itself by actively emitting radiation.

5. Multi-functional sensor systems, such as phased-array radar, offer additional
operational modes, thus requiring more intelligent strategies of sensor manage-
ment that provide feedback to the process of information acquisition via appro-
priate control or correction commands. By this, the surveillance objectives can
often be reached much more efficiently.

6. Context information is given, for example, by available knowledge on sensor and
object properties, which is often quantitatively described by statistical models.
Context knowledge is also given by environmental information on roads or topo-
graphical occlusions and provided by Geographical Information Systems (GIS).
Seen from a different perspective, context information, such as road-maps, can
also be extracted from real-time sensor data directly.

7. Relevant context knowledge (e.g. doctrines, planning data, tactics) and human
observer reports (HUMINT: Human Intelligence) is also important information
in the fusion process. The exploitation of context information of this kind can
significantly improve the fusion system performance.

1.3.2 Remarks on the Methods Used

Situation elements for producing timely situation pictures are provided by integra-
tively and spatio-temporally processing various pieces of information that in them-
selves often may have only limited value for understanding the situation. Essentially,
logical cross-references, inherent complementarity, and redundancy are exploited.
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More concretely speaking, the methods used are characterized by a stochastic
approach (estimating relevant state quantities) and a more heuristically defined
knowledge-based approach (modeling actual human behavior when exploiting infor-
mation).

Among the data exploitation products of data fusion systems, object ‘tracks’ are
of particular importance. Tracking faces an omnipresent aspect in every real-world
application insofar as it is dealing with fusion of data produced at different instants of
time; i.e. tracking is important in all applications where particular emphasis is placed
on the fact that the sensor data to be exploited have the character of a time series.

Tracks thus represent currently available knowledge on relevant, time-varying
quantities characterizing the instantaneous “state” of individual targets or target
groups of interest, such as aircraft, ships, submarines, vehicles, or moving persons.
Quantitative measures that reliably describe the quality of this knowledge are an
integral part of a track. The information obtained by ‘tracking’ algorithms [25, 26,
42] also includes the history of the targets. If possible, a one-to-one association
between the target trajectories in the sensors’ field of view and the produced tracks
is to be established and has to be preserved as long as possible (track continuity).
The achievable track quality does not only depend on the performance of the sensors
used, but also on target properties and the operational conditions within the sce-
nario to be observed. If tracks ‘match’ with the underlying real situation within the
bounds defined by inherent quality measures being part of them, we speak of ‘track
consistency.”

Tracking algorithms, including Bayesian multiple hypothesis trackers as particu-
larly well-understood examples, are iterative updating schemes for conditional prob-
ability density functions representing all available knowledge on the kinematic state
of the objects to be tracked at discrete instants of time tl . The probability densities
are conditioned on both, the sensor data accumulated up to some time tk , typically
the current data acquisition time, as well as on available context information, such as
on sensor characteristics, the object dynamics, the environment, topographical maps,
or on certain rules governing the object behavior. Depending on the time instant tl at
which estimates for the state xl are required, the related estimation process is referred
to as prediction (tl > tk), filtering (tl = tk), or retrodiction (tl < tk) [43, 44].

1.3.3 A Generic Sensor Data Fusion System

Figure 1.4 shows a generic scheme of functional building blocks within a multiple
sensor tracking and data fusion system along with its relation to the underlying
sensors. In the case of multi-functional sensors, there is feedback from the tracking
system to the process of sensor data acquisition (sensor management). The following
aspects should be emphasized:



1.3 From Imperfect Data to Situation Pictures 15

Sensor System

Sensor Data to
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Track Processing:

-Track Cancellation     
-Object Classification / ID
-Track-to-Track Fusion
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-Object Environment
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Data
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Detection Process: 
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Fig. 1.4 Generic scheme of functional building blocks within a tracking/fusion system along with
its relation to the sensors (centralized configuration, type IV according to O. Drummond)

Sensor Systems

After passing a detection process, essentially working as a means of data rate reduc-
tion, the signal processing provides estimates of parameters characterizing the wave-
forms received at the sensors’ front ends (e.g. radar antennas). From these estimates
sensor reports are created, i.e. measured quantities possibly related to objects of
interest, which are the input for the tracking and sensor data fusion system. By using
multiple sensors instead of one single sensor, among other benefits, the reliability and
robustness of the entire system is usually increased, since malfunctions are recog-
nized easier and earlier and often can be compensated without risking a total system
breakdown.

Interoperability

A prerequisite of all further processing steps, which at first sight seems to be trivial,
is technical interoperability. It guarantees that all relevant sensor data are transmitted
properly, in a timely way, and completely including all necessary meta-data describ-
ing the sensor performance, the platform parameters, and environmental character-
istics. This type of meta-data is necessary to transform the sensor data into common
frames of reference, to identify identical pieces of data, and to merge similar pieces
of data into one single augmented piece of information. The process of combining
data from different sources and providing the user with a unified view of these data
is sometimes also referred to as data integration. Often interoperability acts as a
bottleneck in designing real-world data fusion systems of systems [4, Chap. 20].
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Fusion Process

All sensor data that can be associated to existing tracks are used for track main-
tenance (using, e.g., prediction, filtering, and retrodiction). The remaining data are
processed for initiating new tentative tracks (multiple frame track extraction). Asso-
ciation techniques thus play a key role in tracking/fusion applications. Context infor-
mation in terms of statistical models (sensor performance, object characteristics,
object environment) is a prerequisite for track maintenance and initiation. Track con-
firmation/termination, classification/identification, and fusion of tracks related to the
same objects or object groups are part of the track management functionalities.

Human–Machine Interface

The scheme is completed by a human–machine interface with display and interac-
tion functions. Context information can be updated or modified by direct human
interaction or by the track processor itself, for example as a consequence of object
classification or road-map extraction. For an introduction to the vast literature on the
related problems in human factors engineering and on practical systems solutions
see Ref. [5].

1.3.4 On Measuring Fusion Performance

In sensor data fusion, the underlying ‘real’ situation is typically unknown. Only in
expensive and time-consuming experiments certain aspects of a dynamically evolv-
ing situation are monitored, sometimes even with questionable accuracy. For this
reason, experiments are valuable for demonstrating the “proof of concept” as well
as to understand the underlying physical phenomena and operational problems, for
example. They are of limited use, however, in performance evaluation and predic-
tion. This underlines the role of comprehensive Monte-Carlo-simulations in fusion
system performance evaluation.

According to the previous discussion, sensor data fusion systems try to establish
one-to-one relations between objects in the sensors’ fields of view and identified
object tracks in the situation picture. Strictly speaking, this is only possible under ideal
conditions regarding the sensor performance and the underlying target scenario. It
seems thus reasonable to measure the performance of a given tracking/fusion system
by its characteristic deficiencies when compared to this ideal goal. In general, two
categories of deficiencies can be distinguished that are either caused by mismatch
regarding the input data or by non-optimal processing and unfavorable application
constraints.
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Selected Performance Measures

Selected performance measures or ‘measures of deficiency’ in the sense of the pre-
vious discussion, which have practical relevance in fusion systems design should be
emphasized in the following.

1. Usually a time delay is involved until a track has been extracted from the sensor
data. A corresponding performance measure is thus given by the ‘extraction
delay’ between the first detection of a target by a sensor and a confirmed track.

2. False tracks, i.e. tracks related to unreal or unwanted targets, are unavoid-
able in the case of a high density of false or unwanted data (e.g. by clutter,
jamming/deception). Corresponding ‘deficiencies’ are: mean number of falsely
extracted targets per time and mean life time of a false track before its deletion.

3. Targets should be represented by one and the same track until leaving the field
of view. Related performance measures are: mean life time of true target tracks,
probability of an ‘identity switch’, and probability of a target not being repre-
sented by a track.

4. The track inaccuracy (given by the error covariance matrix of a state estimate,
e.g.) should be as small as possible. Furthermore, the deviations between the esti-
mated and actual target characteristics should correspond with the error covari-
ance matrices produced (consistency). If this is not the case, ‘track loss’ usually
occurs.

In a given application it is by no means simple to achieve a reasonable compromise
between the various, competing performance measures and the user requirements.
Optimization with respect to one measure may easily degrade other performance
measures, finally deteriorating the entire system performance. This is especially true
under more challenging conditions.

1.3.5 Tracking-Derived Situation Elements

The primary objective of multiple sensor target tracking is to explore the underlying
target kinematics such as position, velocity, or acceleration. In other words, standard
target tracking applications gain information related to ‘Level 1 Fusion’ according to
the well-established terminology of the JDL model of information fusion (see e.g. [1,
Chap. 2] and the literature cited therein). Kinematic data of this type, however, are by
no means the only information to be derived from target tracks. In many cases, reliable
and quantitative higher level information according to the JDL terminology can be
obtained. To be more concrete, wide-area air and ground surveillance is considered
here as an important real-world example serving as a paradigm for other challenging
tracking and fusion applications.
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Inferences based on Retrodicted Tracks

The first type of higher JDL level information to be inferred from tracking data is
based on a closer analysis of the histories of the kinematic object states provided by
retrodiction techniques. The statements derived typically refer to object character-
istics that are either time invariant or change with time on a much larger scale than
kinematics quantities usually tend to do. This is the main reason why the gain in
accuracy achievable by retrodiction techniques can be exploited.

• Velocity History. The analysis of precisely retrodicted velocity histories enables
the distinction of objects belonging to different classes such as moving persons,
boats, vehicles, vessels, helicopters, or jet aircraft. If the object speed estimated
with sufficiently high accuracy has exceeded a certain threshold, certain object
classes can be reliably be excluded. As an example, uncertainty whether an object
is a helicopter or a wing aircraft can be resolved if in the track history a veloc-
ity vector ‘Zero’ exists. Depending on the context of the underlying application,
classifications of this type can be essential to generate an alert report.

• Acceleration History. Similar considerations are valid if acceleration histories are
taken into account. High normal accelerations, e.g., are a clear indication of a
fighter aircraft. Moreover, one can safely conclude that a fighter aircraft observed
with a normal acceleration > 6 g, for example, is not carrying a certain type of
weaponry (any more). In other words, conclusions on the threat level connected
with the objects observed can be drawn by analyzing kinematic tracks.

• Heading, Aspect Angle. Precise reconstructions of the targets’ heading vectors are
not only important input information for threat evaluation and weapon assignment
in themselves, but also enable estimates of the aspect angle of an object at a given
instant of time with respect to other sensors, such as those producing high range
or Doppler resolution spectra. Track-derived information of this type is basic for
fusing spectra distributed in time and can greatly improve object classification thus
providing higher-JDL-level information.

• Rare Event Detection. Analysis of JDL-level-1 tracks can be the key to detecting
rare or anomalous events by fusing kinematic tracks with other context informa-
tion such as annotated digital road-maps and general rules of behavior. A simple
example in the area of continuous-time, wide-area ground surveillance can be the
production of an alert message if a large freight vehicle is observed at an unusual
time on a dirt road in a forest region. There are analogous examples in the maritime
or air domain.

Inferences based on Multiple Target Tracking

A second type of higher JDL level information related to mutual object interrelations
can be inferred from JDL level 1 tracking data if emphasis is placed on the results
of multiple target tracking.
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• Common History. Multiple target tracking methods can identify whether a set of
targets belongs to the same collectively moving group, such as an aircraft forma-
tion or a vehicle convoy, whose spatial extension may be estimated and tracked.
If an aircraft formation has split off after a phase of penetration, e.g., the inter-
relation between the individual objects is to be preserved and provides valuable
higher-JDL-level information that is important, e.g., when a former group target is
classified as ‘hostile’ since this implies that all other targets originally belonging
to the same group are likely to be hostile as well.

• Object Sources and Sinks. The analysis of large amounts of target tracks further-
more enables the recognition of sources and sinks of moving targets. By this type
of reasoning, certain areas can be identified as air fields, for example, or an area of
concentration of military forces. In combination with available context informa-
tion, the analysis of multiple object tracks can also be used for target classification
by origin or destination. A classification as hostile or suspect directly leads to an
alert report.

• Split-off Events. By exploiting multiple target tracking techniques, certain split-
off events can be identified as launches of air-to-air or air-to-surface missiles. The
recognition of such an event from JDL-level-1 tracking information not only has
implications on classifying the original target as a fighter aircraft, but can also
establish a certain type of ‘book-keeping’, such as counting the number of missile
launches. This enables estimates of the residual combat strength of the object,
which has direct implications on countermeasures, e.g.

• Stopping Events. In the case of MTI radar (Moving Target Indicator), Doppler
blindness can be used to detect the event ‘A target under track has stopped’, pro-
vided this phenomenon is described by appropriate sensor models. If there is pre-
vious evidence for a missile launcher, e.g., missing data due to Doppler blindness
may indicate preparation for launch with implications on potential countermea-
sures. In combination with other tracks, a stopping event may also establish new
object interrelations, for example, when a target is waiting for another and then
moving with it.

1.3.6 Selected Issues in Anomaly Detection

Anomaly detection can be regarded as a process of information fusion that combines
incomplete and imperfect pieces of mutually complementary sensor data and context
information in such a way that the attention of human decision makers or decision
making systems is focused on particular events that are “irregular” or may cause
harm and thus require special actions, such as exploiting more specialized sensors or
initiating appropriate activities by military or security personnel [45]. Fusion-based
anomaly detection thus improves situational awareness. What is actually meant by
“regular” or “irregular” events is higher-level information itself that depends on the
context of the underlying application. Here, it is either assumed to be a priori known
or to be learned from statistical long-time analysis of typical situations.
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Fig. 1.5 Illustration of sea lanes and strategic passages in Pacific Asia

In complex surveillance applications, we can often take advantage of context infor-
mation on the sensing environment insofar as it is the stationary or slowly changing
“stage” where a dynamic scenario evolves. Typical examples of such environmental
information are digital road or sea-/air-lane maps and related information, which can
essentially be regarded as spatial motion constraints (see Fig. 1.5 as an illustration). In
principle, this information is available by Geographical Information Systems (GIS).
Another category of context information is provided by visibility models and littoral
or weather maps indicating regions, where a high clutter background is to be taken
into account, for example. Moreover, rather detailed planning information is often
available. This category of information is not only important in mission planning
or in the deployment and management of sensor systems, but can be used to decide
whether an object is moving on a lane or leaving it, for example. In addition, ground-,
sea- or air-lane information information can be used to improve the track accuracy of
lane-moving vehicles and enhance track continuity. See Sect. 9.1 for a more detailed
discussion.

Integration of Planning Information

In certain applications, rather detailed planning information is available, which pro-
vides valuable context knowledge on the temporal evolution of the objects involved

http://dx.doi.org/10.1007/978-3-642-39271-9_9
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and can in principle be incorporated into the tracking formalism. Planning informa-
tion is often approximately described by space–time waypoints that have to be passed
by the individual objects during a preplanned operation, i.e. by a set of position vec-
tors to be reached at given instants of time and possibly via particular routes (roads,
lanes) between the waypoints. In addition, we assume that the acceptable tolerances
related to the arrival of the objects at the waypoints are characterized by known error
covariance matrices, possibly individually chosen for each waypoint and object, and
that the association between the waypoínts and the objects is predefined.

The impact of waypoints on the trajectory to be estimated from future sensor
data (under the assumption that the plan is actually kept) can simply be obtained
by processing the waypoints as additional artificial ‘measurements’ via the standard
Bayesian tracking paradigm, where the tolerance covariance matrices are taken into
account as the corresponding ‘measurement error covariances’. If this is done, the
processing of sensor measurements with a younger time stamp are to be treated
as “out-of sequence” measurements with respect to the artificial waypoint mea-
surements processed earlier. For dealing with out-of-sequence measurements see
Sect. 5.1. According to these considerations, planning information can well improve
both track accuracy and continuity as well as facilitate the sensor-data-to-track asso-
ciation problems involved, provided the plan is actually kept.

Detecting Regularity Pattern Violation

A practically important class of anomalies results from a violation of regularity
patterns such as those previously discussed (motion on ground-, sea-, or air-lanes or
following preplanned waypoints and routes). An anomaly detector thus has to decide
between two alternatives:

• The observed objects obey an underlying pattern.
• The pattern is not obeyed (e.g. off-lane, unplanned).

Decisions of this type are characterized by decision errors of first and second kind.
In most cases, it is desirable to make the decisions between both alternatives for
given decision errors to be accepted. A “sequential likelihood ratio” test fulfills this
requirement and has enormous practical importance. For a more detailed discussion
see Chap. 9.2. As soon as the test decided that the pattern is obeyed, the calculation
of the likelihood ratio can be restarted since it is more or less a by-product of track
maintenance. The output of subsequent sequential ratio tests can serve to re-confirm
“normality” or to detect a violation of the pattern at last. The most important theoret-
ical result on sequential likelihood ratio tests is the fact that the test has a minimum
decision length on average given predefined statistical decision errors of first and
second kind.

http://dx.doi.org/10.1007/978-3-642-39271-9_5
http://dx.doi.org/10.1007/978-3-642-39271-9_9
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Tracking-derived Regularity Patterns

We have discussed moving targets that obey certain space–time constraints that are
a priori known (roads/lanes, planned waypoints). A violation of these constraints
was quite naturally interpreted as an anomaly. Seen from a different perspective,
however, moving targets that are assumed to obey a priori unknown space–time
constraints and to be observed by wide-area sensors, such as vehicles on an unknown
road network, produce large data streams that can also be used for extracting the
underlying space–time constraint, e.g. a road-map. After a suitable post-processing,
the produced tracks of motion-constrained targets simply define the corresponding
constraints and can thus be extracted from tracking-based results. See Sect. 9.2 for a
more detailed discussion. Extracted road-maps can be highly up-to-date and precise.
A discussion where such ideas are used in wide-area maritime surveillance using
AIS data can be found in [46] (AIS: Automatic Identification System).

1.4 Future Perspectives of Sensor Data Fusion

Due to the increasing availability of inexpensive, but powerful sensor, communica-
tion, and information technology, its technical prerequisites, sensor data fusion, or
more general, information fusion, increasingly emancipates from its roots in defense
related applications. A commonplace example of this trend is the advent of naviga-
tion systems, which have developed a mass market by fusing military global naviga-
tion satellite system data with digital road-maps in combination with an appealing
graphical interface. We can therefore expect that information fusion will become
a key technology driver for developing numerous innovative products penetrating
everyone’s daily life and changing it profoundly. In this context, many new research
questions are expected to emerge that will foster the further evolution of information
fusion as an also economically eminent branch of applied informatics.

1.4.1 New Everyday Life Applications

Even now, intelligent filtering, analysis, evaluation, and graphical presentation of
multiple sensor information enable numerous products that make everyday life safer
or more secure. For example, in intelligent car-driver assistance systems, image and
video data from cameras and miniaturized automotive radar sensors are automati-
cally fused in order to perceive road obstacles and pedestrians or to exclude “ghost
objects.” At airport security checks, assistance systems can be used, which directly
take advantage of military surveillance technology. By fusing signatures of stand-off
chemical sensors and miniaturized gamma-spectrometers, for example, with person
trajectories, carry-on items contaminated with hazardous materials or explosives can
be detected. This may be a contribution to avert threats or avoid terrorist attacks.

http://dx.doi.org/10.1007/978-3-642-39271-9_9
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Other areas where information fusion based assistance systems will increasingly
be important are medical and health care, process control, logistics, industrial pro-
duction, precision agriculture, and traffic monitoring. A particularly stormy evolution
can currently be observed for assistance systems, where physical activities and the
health status of elderly or handicapped human beings can be monitored, allowing
them to live in their usual everyday environment much longer than now. In the vast
fields of fire, disaster, and pollution control, quick exploitation and fusion of com-
plex data streams can be essential for safety analysis and designing corresponding
concepts as well as for developing sophisticated emergency information and man-
agement systems.

Since sensor data fusion has actually evolved into a mature technology in major
fields and provides a coherent and powerful inventory of methodologies and algo-
rithms already proven in ambitious applications, the further realization of its inherent
application potential is much alleviated by the very fact that research and develop-
ment for new products can be done on a sound technology base that does not need
to be created in a time-consuming and expensive way. For this reason, the expected
development cycles for innovative products are short, while the development risks
involved are calculable. Due to its traditional strengths in high-tech industries, such
as system technology or software engineering, sensor or RFID technology, highly
industrialized and research-intensive countries like Germany can use their potential
especially in those branches where they are traditionally well-positioned—for exam-
ple in automotive technology, automation and aerospace industries, in security, safety
and medical technology, and last but not least, in information system technology in
general.

1.4.2 Discussion of Large-Scale Trends

More generally speaking, information fusion technology already provides mature
results with profitable market opportunities, especially in those areas where physical
or technical sensor data are to be fused with quantitative context information on the
basis of well-understood mathematical algorithms, often making use of Bayesian
reasoning.

Human Assistance Systems

Typically “human” fusion processes, however, characterized by associative reason-
ing, negotiating of reasonable compromises, or extrapolating incomplete information
creatively and in an intuitive way, seem to be still unfit for automation, perhaps fun-
damentally unfit. Nevertheless, technical data fusion systems can offer assistance
functionalities also here, by which specifically human competencies of judgment are
freed from routine or mass tasks, quite in the sense of a “cognitive tool” as discussed
earlier. Moreover, highly promising research areas are and will increasingly be those
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that aim at modeling and formalizing this specific human expert knowledge and
expertise of situation assessment and incorporate it into the process of automated
multiple sensor data.

Context Data Integration

Furthermore, a large-scale technology tend to be highlighted is given by the large
potential of quantitative non-sensor information available in comprehensive data-
bases, such as Geographical Information Systems (GIS), which is still waiting to be
integrated into multiple sensor data fusion systems. This is especially true in the vast
area of ground, air, sea, and underwater robotics, but has also strong implications in
guaranteeing high levels of air transportation security, even in the case of high traffic
densities, and in advanced logistics support systems, such as container monitoring
and tracking, topics with direct implications for global economy.

Network-centric Operations

A predominant trend in defence applications is given by the demand of support-
ing “Network-centric Operations”, which will still be in effect for the next decade.
Sensor data and information fusion technology is one of the major forces shaping
this process of transformation from more standard operational doctrines. Especially
for out-of-area operations and operations in an urban terrain, as well as for deal-
ing with “asymmetric” opponents, distributed high-performance reconnaissance is
inevitable. In particular, wide-area ground, sea, and underwater surveillance, belong
to this field, specially by making use of unmanned reconnaissance robots (unmanned
ground, aerial, or underwater vehicles). Moreover, intelligent security systems for
harbors, critical infrastructure, or camp protection are likely to raise many research
intensive data fusion problem.

Pervasive Passive Surveillance

A particularly exciting topic of recent research is advanced distributed signal and
data fusion for passive radar systems, where radio, TV, or mobile phone base sta-
tions are used as sources for illuminating targets of interest. Even in remote regions
of the world, each transmitter of electromagnetic radiation becomes a potential radar
transmitter station, which enables air surveillance by passively receiving reflections
of non-cooperatively emitted signals of opportunity. In this way, the reconnaissance
process remains covert and is not revealed by actively transmitting radiation. Anal-
ogous considerations are valid for sub-sea surveillance.
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Fusion-driven Communications

The communications sub-systems within a large sensor network are typically char-
acterized by many internal degrees of freedom, which can be controlled and adapted.
This opens the vast area of fusion-driven communications, where communications
and the distributed data fusion system architectures are closely tied and optimized
with respect to the particular surveillance goals to be reached [48]. In the focus
are multi-component system consisting of sensors, data bases, and communication
infrastructures that collectively behave as a single dynamically adaptive system.
Important aspects are network scalability given a limited communication bandwidth,
adaptive and optimal spectrum sharing protocols, sensor data against network objec-
tives, and in-network information. In addition, the growing use and ubiquitous nature
of sensor networks pose issues when networks deployed for multiple applications
need to be combined or need to exchange information at the network level.

‘Add-on’ Research Efforts

Since a stormy evolution of civilian information fusion applications is to be expected
in the near future, defence-related research and development on information fusion
technology will increasingly show the character of “add-on” research, which adapts
existing civilian problem solutions to specifically military requirements. This trend
is analogous to the evolution in advanced communication systems, a technology that
also had its roots in the military domain, before the civilian market opportunities
became the predominant force driving its technological and scientific progress.
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Framework



Chapter 2
Characterizing Objects and Sensors

In most cases, not all properties characterizing observed objects in a certain
application have the same importance for producing a situation picture or can be
inferred by the sensor systems involved. At the very beginning, we have to iden-
tify suitable object properties relevant to the underlying requirements, which are
called state quantities. In the context discussed here, state quantities are completely
described by numbers or appropriate collections of numbers and may be time-
dependent. All relevant properties characterizing an object of interest at a certain
instant of time tk , k ∈ N, are gathered in a collection Xk of state quantities, which
is called object state at time tk . Object states can also be composed of the individual
object states of an object group.

2.1 Examples of State Quantities

1. As a first example, consider a vehicle moving on a road approximately modeled
by a curve. If the vehicle’s position or speed on the road at a time tk only has
interest, the corresponding object state is composed by two real numbers: the
arc-length xk of a point on the curve, representing its position, and its temporal
derivative ẋk , representing its speed. The corresponding object state is thus given
by a two-dimensional vector: Xk = xk with xk = (xk, ẋk)

� ∈ R
2.

2. Another practically important example is the kinematic state Xk of an object
moving in the three-dimensional space at a given instant of time tk , which is
typically given by its position rk , velocity ṙk , and acceleration r̈k at this time. Xk

is thus represented by a 9-dimensional vector Xk =xk with xk = (r�k , ṙ�k , r̈�k )�
∈ R

9.
3. A natural generalization of this concept is the notion of the joint state of two or

more objects of interest that form an object group. If kinematic object charac-
teristics are of interest, the corresponding object state Xk is given by a possibly
high-dimensional vector Xk = xk with xk = (x1�

k , x2�
k , . . .)�.

W. Koch, Tracking and Sensor Data Fusion, 31
Mathematical Engineering, DOI: 10.1007/978-3-642-39271-9_2,
© Springer Verlag Berlin Heidelberg 2014



32 2 Characterizing Objects and Sensors

4. The notion of object states, however, is broader and includes other characteristic
state quantities. In certain applications, object attributes can be described by
positive real numbers xk ∈ R

+, related to the object’s backscattering properties,
for example, such as its characteristic mean radar cross section. In this case, a
relevant object state may be given by Xk = (xk, xk), where the individual state
quantities xk (e.g. kinematics) and xk (e.g. cross section) are taken from different
sets of numbers.

5. Stationary or moving objects may belong to distinct classes. Let the object prop-
erty “object belongs at time tk to class ik” be denoted by ik ∈ N. Moving objects,
for example, can be classified according to the dynamics mode currently in effect,
or according to certain characteristic features indicating, e.g., their chemical sig-
natures. Examples of object classes relevant to air surveillance are: bird, glider,
helicopter, sporting airplane, passenger jet, fighter aircraft, missile. In this case,
a characteristic object state is given by Xk = (xk, ik).

6. For describing spatially extended objects or collectively moving object clusters,
the kinematic state vector xk must be complemented by an additional state quan-
tity characterizing their spatial extension. For the sake of simplicity and to deal
with the extended object or cluster tracking problem as rigorously as possible, we
confine the discussion to the practically important case of ellipsoidal object or
cluster extensions. In this case, the current extension at time tk can be described
mathematically by a symmetric and positively definite matrix Xk . According to
this approach, the following object properties are covered:

• Size: volume of the extension ellipsoid
• Shape: ratio of the corresponding semi-axes
• Orientation: direction of the semi-axes.

The corresponding object state is thus given by Xk = (xk, Xk).

Since object states must be inferred from incomplete and imperfect information
sources, the collection of state quantities such as

Xk = (xk, xk, Xk, ik) (2.1)

or some of them are interpreted as a random variables. The application of other, more
general notions of uncertainty is possible (see [1], e.g.), but excluded here. According
to the Bayesian interpretation of probability theory, all available knowledge on the
objects of interest at time tk is mathematically precisely represented by probability
densities of their corresponding states p(Xk). If only one state quantity is of interest,
for example in xk , p(xk) is given by a marginal density:

p(xk) =
∑

ik

∫
dxkdXk p(xk, xk, Xk, ik). (2.2)

Methods to calculate the probability density functions related to object states with at
least approximate accuracy is the main goal in Bayesian sensor data fusion.
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2.2 Object Evolution Models

Object states usually change in time. Their temporal evolution, however, is imper-
fectly known in most cases. This fundamental ignorance can often be described by a
probability density function of the object state at time tk , which is conditioned on the
previous state Xk−1, called transition density p(Xk |Xk−1), i.e. . With an underlying
Markov assumption, knowledge about future object states can be predicted from
prior knowledge via the Chapman-Kolmogorov equation:

p(Xk) =
∫

dXk−1 p(Xk |Xk−1) p(Xk−1). (2.3)

The temporal evolution described by p(Xk |Xk−1) mirrors the real object evolution
insofar as it allows a Monte-Carlo-simulation of a subsequent state Xk by generating
random realizations of it according to the density p(Xk |Xk−1). It is thus reasonable to
call the conditional probability density p(Xk |Xk−1) the evolution model of an object.
In the sequel, the notion of an evolution model is illustrated by examples. A wide
variety of object evolution models for kinematic object states has been described in
the handbook [2, Chap. 1.5] and a series of survey papers [3–7], which are adapted
to the particular requirements of the underlying application.

2.2.1 Van-Keuk’s Evolution Model

An early and particularly intuitive example of state evolution models in the context
of tracking and sensor data fusion was proposed by Günther van Keuk in 1971 [8].
According to van Keuk, the motion of an object is described by a linear equation
with additive white Gaußian noise:

xk = Fk|kxk−1 +Gk|k−1vk, (2.4)

referring to kinematic object states given by xk = (r�k , ṙ�k , r̈�k )�. The Gaußian
random vector vk is described by a zero-mean, unit-covariance Gaußian probabil-
ity density p(uk) = N (uk; 0, 1). More generally, let a Gaußian be denoted by

N (x; E[x], C[x]) = |2πC[x]|− 1
2 exp{− 1

2 (x − E[x])�C[x]−1(x − E[x])} with an
expectation vector E[x] and a symmetric, positively definite covariance matrix C[x].
The matrix Fk|k−1 is called evolution matrix,

Fk|k−1 =
⎛

⎝
1 (tk − tk−1) 1 1

2 (tk − tk−1)
21

O 1 (tk − tk−1) 1
O O e−(tk−tk−1)/θt 1

⎞

⎠ (2.5)

with a modeling parameter θt , while the matrix Gk|k−1 is given by:
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Gk|k−1 = qt

√
1− e−2(tk−tk−1)/θt (O, O, 1)�, (2.6)

implying a second modeling parameter qt . According to this evolution model,
straightforward calculations show that the acceleration r̈k is described by an ergodic,
zero-mean Gauß-Markov process with an autocorrelation function given by:

E[r̈k r̈�l ] = q2
t exp[−(tk − t1)/θt ] 1, l ≤ k. (2.7)

This expression clearly defines the modeling parameters qt (acceleration bandwidth)
and θt (maneuver correlation time), which have characteristic values for different
classes of maneuvering objects. The corresponding Gauß-Markov transition density
is given by:

p(xk |xk−1) = N (
xk; Fk|k−1xk−1, Dk|k−1

)
(2.8)

where Dk|k−1 = Gk|k−1G�k|k−1 is called evolution covariance matrix.

2.2.2 Interacting Multiple Models

In practical applications, it might be uncertain which evolution model out of a set of
r possible alternatives is currently in effect. In the case of air targets, for example,
we can distinguish between different flight phases (no turn, slight maneuver, high-g,
turn etc.). According to the previous discussion, the maneuvering class 1 ≤ ik ≤ r ,
to which an object belongs at time tk , can be considered as a part of its state. In
general, Markovian evolution models for object states Xk = (xk, ik) are expressed
by:

p(xk, ik |xk−1, ik−1) = p(xk |ik, xk−1, ik−1) p(ik |xk−1, ik−1). (2.9)

A special case that implies additional assumptions is defined by:

p(xk, ik |xk−1, ik−1) = p(xk |ik, xk−1) p(ik |ik−1) (2.10)

= pik ik−1 N (
xk; Fik

k|k−1xk−1, Dik
k|k−1

)
(2.11)

and is called IMM evolution model (IMM: Interaction Multiple Models, see [7]
and the literature cited therein) and has been introduced by Henk Blom [9]. IMM
models are characterized by r purely kinematic transition densities p(xk |xk−1, ik), for
instance of the van Keuk type, and class transition probabilities pik ik−1 = p(ik |ik−1)

that must be specified and are part of the modeling assumptions. The transition
probabilities pik ik−1 define a stochastic matrix. According to

∑r
ik=1 p(ik |ik−1) = 1

the columns of such matrices must add up to one.
Note that Eq. 2.11 assumes that p(xk |xk−1, ik, ik−1) is independent of the past

maneuvering class ik−1 and p(ik |xk−1, ik−1) does not depend on the object’s kine-
matic state xk−1. While the first assumption seems to be quite natural, the second
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may be an oversimplification in certain cases. As an example, let us consider two
evolution models describing low and strong maneuvers, respectively. The probability
p(ik = 1|ik = 1, xk−1) that an object stays in the low maneuver model increases
as the object acceleration diminishes, while p(ik = 2|ik = 2, xk−1) increases as
the acceleration increases. If q is a measure of the maximum acceleration, state-
dependent transition matrices of the form

⎛

⎜⎝
p11e

− 1
2
|r̈k |2

q2 1− p22
(
1− e

− 1
2
|r̈k |2

q2
)

1− p11e
− 1

2
|r̈k |2

q2 p22
(
1− e

− 1
2
|r̈k |2

q2
)

⎞

⎟⎠ (2.12)

can model this type of object behavior [10]. For r = 1, the linear-Gauß-Markov
models result as a limiting case.

2.3 Sensor Likelihood Functions

Over time, one or several sensors produce sets of measurement data Zk that poten-
tially carry information on object states Xk characterizing one or more objects of
interest at time tk . This information is typically imprecise and corrupted by unavoid-
able measurement errors, e.g. In several applications, a sensor output Zk can refer
to individual properties of several neighboring objects of interest, but it is usually
unknown to which particular object. In addition, some or all sensor data can be false,
i.e. be originated by unwanted objects or unrelated to really existing objects. It is fur-
thermore not necessarily true that sensors always produce measurements of objects
of interest when an attempt is made. Moreover, several closely-spaced objects may
produce irresolved measurements originated by two or more objects.

At discrete instants of time tk , we consider the set Zk = {Z j
k }mk

j=1 of mk sensor
data. The accumulation of the sensor data Zl , 1 ≤ l ≤ k, up to and including the
time tk , typically the present, is an example of a time series recursively defined by
Zk = {Zk , mk , Zk−1}. The time series produced by the measurements of individual
sensors s involved are denoted by Zk

s = {Zs
l , ms

l }kl=1, 1 ≤ s ≤ S.
Within the framework of Bayesian reasoning, imperfect knowledge about what

measured sensor data Zk can actually say about the states of the objects involved
is modeled by interpreting Zk as a set of random variables. The statistical proper-
ties of Zk are characterized by a probability density function p(Zk |Xk), which is
conditioned on the corresponding object state Xk referring to the same time tk . The
probability densities p(Zk |Xk) are also called likelihood functions when considered
as functions of the random variable Xk for a given sensor output Zk . Typically,
likelihood functions need to be known only up to a factor independent of Xk ,

�(Xk; Zk) ∝ p(Zk |Xk), (2.13)
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as will become clear below. The sensor data Zk explicitly enter into the likelihood
function, while all sensor properties describing the sensors’ physical and technical
characteristics and their measurement performance are implicitly part of it and shape
its concrete functional form. In particular, all relevant sensor parameters, such as
measurement accuracy, detection probability, false alarm density, sensor resolution,
minimum detectable velocity, radar beam width, pulse repetition frequency etc.,
must be present in the likelihood function. A likelihood function thus describes what
information on an object state Xk is provided by the sensor data Zk at a given instant
of time tk . For physical reasons, often p(Zk |Xl , Y ) = p(Zk |Xk) holds for any other
random variable Y that is not part of the object state.

Likelihood functions p(Zk |Xk) model the real sensor output (and thus the physics
of the underlying measurement process and its interaction with the object environ-
ment). For this reason, they provide the basis for Monte-Carlo-simulations of the sen-
sor measurements by generating random realizations of Zk according to p(Zk |Xk).
For this reason, likelihood functions are simply called “sensor models” in direct anal-
ogy to “evolution models” given by p(Xk |Xk−1). Obviously, a sensor model is more
correct, the more it provides simulated measurements that correspond on average to
the real sensor output.

In the sequel, the notion of a likelihood function is illustrated by selected examples.

2.3.1 Gaußian Likelihood Functions

For well-separated objects, perfect detection, and in absence of false sensor data, let
us consider measurements zk related to the kinematic state vector xk = (r�k , ṙ�k , r̈�k )�
of an object at time tk . In constructing a sensor model p(zk |xk), two questions must
be answered:

1. The first question aims at what aspect of the state vector is currently in the focus
of the sensor, i.e. at the identification of a measurement function,

hk : xk �→ hk(xk), (2.14)

describing what is actually measured. Sensors characterized by the same mea-
surement function hk are called homogeneous sensors, in contrast to heteroge-
neous sensors, where this is not the case.

2. The second question asks for the quality of such a measurement. In many appli-
cations, additive measurement errors uk can be considered, given by bias-free
and Gaußian distributed random variables characterized by a measurement error
covariance matrix Rk . The measurement errors produced at different times or
by different sensors can usually be considered as independent of each other.

In this case, the measurement process can be described by a measurement equation
zk = hk(xk)+ vk , which is equivalent to a Gaußian likelihood function:
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�(xk; zk) = N (zk; hk(xk), Rk). (2.15)

Range-Azimuth Measurements

In a two-dimensional plane, we may, for example, consider measurements of an
object’s range rk and azimuth angle ϕk with respect to the sensor position in a given
Cartesian coordinate system. Let the range and azimuth measurements be indepen-
dent of each other with Gaußian measurement errors described by the standard devi-
ations σr , σϕ . Hence, in polar coordinates, the measurement error covariance matrix
is diagonal: diag[σ 2

r , σ 2
ϕ ]. A transformation of the original measurements into the

Cartesian coordinate system, where the state vectors xk are formulated, is provided
by the transform t(rk, ϕk) = rk(cos ϕk, sin ϕk)

�. A well-known result on affine
transforms of Gaußian random variables (see Appendix A.3) is applicable, if the
non-linear function t(rk, ϕk) is expanded in a Taylor series up to the first order. The
corresponding Jacobian can be written as the product of a rotation matrix Dϕk by ϕk

and a dilation matrix Srk defined by rk :

Tk = ∂t(rk, ϕk)

∂(rk, ϕk)
(2.16)

=
(

cos ϕk − sin ϕk

sin ϕk cos ϕk

)

︸ ︷︷ ︸
rotation Dϕk

(
1 0
0 rk

)

︸ ︷︷ ︸
dilation Srk

. (2.17)

The transformed measurements zk = t(rk, ϕk) can thus be approximately character-
ized as Gaußian random variables with measurement error covariance matrices Rk

given by:

Rk = Dϕk

(
σ 2

r 0
0 r2

k σ 2
ϕ

)
D�ϕk

. (2.18)

according to Eq. A.20. Obviously, the measurement error covariance matrix Rk

depends on the underlying sensor-to-object geometry, i.e. differently located sensors
with the same parameters σr , σϕ produce measurements of the same object that
are characterized by differently oriented measurement error ellipses as illustrated in
Fig. 2.1. The cross-range semi-axis of the measurement error ellipses increases with
increasing range, while the other semi-axis remains constant. The orientation of the
measurement ellipse depends on the object’s azimuth angle ϕk . With a matrix Hk =
(1, O, O) that projects the position vector from the object state vector, Hkxk = rk ,
the resulting likelihood function is thus given by:

�(xk; zk) ∝ N (
zk; Hkxk, Rk

)
. (2.19)

For a discussion of problems and improvements, e.g. “Unbiased Converted Measure-
ments”, see [2, Chap. 1.7]. In many other applications, we are analogously looking for
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Fig. 2.1 Schematic repre-
sentation of the approximate
measurement error ellipses
of three sensors located at
s1, s2, s3 measuring range
and azimuth of an object at *
and the impact of the sensor-
to-object geometry on their
mutual orientation, basic for
the geometric fusion gain

s1 s2

s3

formulations where a non-linear measurement function hk is linearly approximated
by a measurement matrix Hk , possibly depending on time.

Doppler Measurements

By exploiting the Doppler effect, sensors that receive electromagnetic or acoustic
wave forms reflected or emitted by objects of interest, such as radar, sonar, or ultra-
sonic devices, can measure the radial component ṙk of an object’s relative velocity
ṙk − ṗk with respect to the sensor, where ṗk denotes the velocity vector of the sen-
sor platform (see Fig. 2.2). Such frequency-based measurements are often highly
precise and important in certain applications such as threat evaluation. The measure-
ment triple (rk, ϕk, ṙk), however, cannot be transformed into Cartesian coordinates
in analogy to the previous considerations. With (rk − pk)/|rk − pk |, the unit vector
pointing from the sensor platform at the position pk to the object located at rk , the
measurement function for range-rate measurements rk is non-linear and given by:

h : xk �→ h(xk;pk, ṗk) =
(ṙk − ṗk)

�(rk − pk)

|(ṙk − ṗk)
�(rk − pk)|

. (2.20)

Note that in a practical realization sufficiently accurate navigation systems are
required to estimate the platform state vector. As mentioned before, an expression
following Eq. 2.19 can be obtained by a first-order Taylor expansion of the measure-
ment function.
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Fig. 2.2 Transformation of
underlying Cartesian coor-
dinates into a measurement-
adapted system by a transla-
tion and rotation defined by
the object’s azimuth. Note that
the x̃-axis points towards the
object: rk is thus a measure-
ment of x̃
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This type of non-linear measurement functions, however, can be handled alter-
natively. Consider a transformation of the underlying coordinates into a Cartesian
system, where the origin is at the sensor location, while one of the axes points in a
direction defined by the angular measurements (Fig. 2.2). Obviously, this transfor-
mation is simply a translation followed by a rotation. In the new coordinate system,
the range-rate measurement can be interpreted as a measurement of one of the Carte-
sian components of the relative velocity vector of the object [11]. This means that
the likelihood has a form as in Eq. 2.19 with a linear measurement equation. If a
processing scheme is to be applied that requires likelihood functions of this form, a
coordinate transform is therefore necessary at each processing step. In this context,
Eq. A.20 is relevant, stating that a Gaußian density remains a Gaußian after this
transformation. Similar considerations apply if measurements of the radial or lateral
object extension is considered [12].

Evaluations with real data show that this type of dealing with range-rate mea-
surements is significantly more robust than approaches based on Taylor expansions.
The example leads to the more general observation that the appropriate formulation
of sensor models requires a careful study of the individual physical quantity to be
measured, quantitative performance evaluations, and comparisons with alternatives
in order to achieve efficient and robust sensor models, the basic elements of sensor
data fusion systems.

TDoA and FDoA Measurements

In a plane, let the kinematic state of an object emitting electromagnetic signals at
time tk be given by xk = (r�k , ṙ�k )�. The emitter is observed by S = 2 sensors
on possibly moving platforms with known state vectors (ps�

k , ṗs�
k )�, s = 1, 2 that

passively receive the emitted radiation. The Time of Arrival (ToA), the time interval
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from transmitting a signal at the emitter position rk and receiving it at a sensor
position ps

k , is equal to the time the signal needs to travel from the emitter to the
sensor. Since we know the propagation speed of the signal (speed of light c), ToA
is given by |rk − ps

k |/c. A sensor model for Time Difference of Arrival (TDoA)
measurements zt

k directly follows:

�t (xk; zt
k) = N (

zt
kc; ht (xk), σt/c

)
(2.21)

with a measurement function ht given by:

ht (xk;p1
k, p2

k) = |rk − p1
k | − |rk − p2

k |, (2.22)

where σt denotes the standard deviation of the corresponding TDoA measurement
errors. The locations of the sensor platforms enter as parameters. The sign of an indi-
vidual measurement indicates which of the sensors is closer to the emitter. Without
loss of generality, we can thus limit the discussion to one of these cases. The solid
line in Fig. 2.3, a hyperbola, shows all potential emitter positions producing the same
TDoA measurements, i.e. having the same distance difference from the sensors.

The Doppler shift in frequency is proportional to the radial velocity component
of an emitter moving with respect to a Cartesian sensor coordinate system. The
inverse wave length λ of the emitted radiation is the proportionality constant. Let
(rk − ps

k)/|rk − ps
k | denote the unit vector pointing from the sensor position ps

k
at time tk to the emitter located at rk , moving with the velocity ṙk . As before, the
radial component of the relative velocity of the emitter with respect to the sensor s is
given by (ṙk − ṗs

k)
�(rk − ps

k)/|rk − ps
k |. The measurement function for Frequency

Difference of Arrival (FDoA) measurements is thus given by:

Fig. 2.3 Localization of an
emitter using TDoA and
FDoA measurements by two
moving sensors: constant
TDoA/FDoA emitter location
curve
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h f (xk) = (ṙk − ṗ1
k)
�(rk − p1

k)

|rk − p1
k |

− (ṙk − ṗ2
k)
�(rk − p2

k)

|rk − p2
k |

. (2.23)

A constant FDoA curve for a non-moving emitter is shown by the dashed curve in
Fig. 2.3, where the arrows indicate the direction of the platform velocities. In this
example, TDoA and FDoA are complementary in that TDoA takes the (approxi-
mate) role of bearings measurement, and FDoA, the (approximate) role of distance
measurement. TDoA and FDoA measurements may be obtained simultaneously by
calculating the Complex Ambiguity Function (CAF, [13]), which cross-correlates
the signals received by the sensors. The likelihood functions that result from the
measurement functions ht and h f are shown in Fig. 2.4. Techniques discussed in
[14] and applied to emitter localization and tracking, make it possible to approximate
the likelihood functions by sums of appropriately chosen individual Gaußians with
a linear approximation of the measurement function according to Eq. 2.19.

2.3.2 Multiple Sensor Likelihood

Assume S homogeneous sensors are located at different positions that measure, at
the same instant of time tk , the same linear function Hkxk of an individual kinematic
object state xk . Under conditions as considered before, let the individual likelihood
functions of the sensors be given by:

�s(xk; zs
k) ∝ N (

zs
k; Hkxk, Rs

k

)
, s = 1, . . . , S. (2.24)

Since independently working sensors were assumed, the over-all likelihood func-
tion describing the information on an object state, which is provided by all sensors
at time tk , can be written as a product of the individual likelihood functions:

�(xk; z1
k, . . . , zS

k ) ∝
S∏

s=1

N (
zs

k; Hkxk, Rs
k

)
. (2.25)

In Appendix A.5, a product formula for Gaußians is proven, which is well-suited
for simplification of the product representation of the over-all likelihood function.
An induction argument directly yields that �(xk; z1

k, . . . , zS
k ) can be represented by

a single Gaußian,
�(xk; z1

k, . . . , zS
k ) ∝ N (

zk; Hkxk, Rk
)

(2.26)

with an effective measurement zk and a corresponding effective measurement error
covariance Rk defined by:



42 2 Characterizing Objects and Sensors

Fig. 2.4 Likelihood func-
tions for TDoA and FDoA
measurements. Idea: approxi-
mate the likelihood functions
by a sum of appropriately
chosen Gaußians with a linear
approximation of the measure-
ment function. a Likelihood
of TDoA and FDoA measure-
ments. b Likelihood of FDoA
measurements.
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Rk =
( S∑

s=1

Rs −1
k

)−1
(2.27)

zk = Rk

S∑

s=1

Rs −1
k zs

k . (2.28)

The effective measurement is thus represented by a weighted arithmetic mean of the
measurements zs

k provided by the individual sensors involved, where the correspond-
ing matrix-valued weighting factors are given by the inverses of the corresponding
measurement error covariance matrices Rs −1

k . Obviously, “poor” measurements,
characterized by large measurement errors, provide smaller contributions to the effec-
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tive measurement zk than “good” ones. Dealing with data from multiple sensors in
this way is an example of centralized or distributed measurement fusion as opposed
to track-to-track fusion (see the discussion in Sect. 3.1.1). Figure 2.1 illustrates the
geometric fusion gain Rk according to Eq. 2.27.

Geometric Fusion Gain

From these considerations several conclusions can be drawn:

1. If all individual measurement covariance matrices are identical, Rs
k = R′k ,

s = 1, . . . , S, the effective measurement is the simple arithmetic mean of the
individual measurements: zk = 1

S

∑
s zs

k . For the effective measurement error
covariance, we obtain the ‘square-root’ law: Rk = 1

S R′k .
2. If all measurement error ellipses involved differ significantly in their geomet-

rical orientation relative to each other, a much greater effect can be observed
(geometrical fusion gain).

3. The ‘intersection’ of error ellipses is obtained by calculating the harmonic mean
of the related error covariance matrices. The harmonic mean of error covariances
quantitatively describes the gain by fusing sensor data from several sources and
has been referred to as the Fusion Equation.

4. In the limiting case of very narrow measurement error ellipses, such as those char-
acterized by σr 	 rkσϕ , the triangulation of an object’s position from bearings
only is obtained. Analogously, range-only measurements can be used (trilatera-
tion).

These considerations are also valid in three spatial dimensions as well as in more
sophisticated sensor data, such as bistatic range or range-rate measurements (see for
example [15, 16]).

If there is more than one object in the common field of view of bearing-only
sensors, not every intersection of two bearings actually corresponds to a real object
position. Figure 2.5 illustrates this situation as well as the appearance of ghosts that do
not correspond to real objects. Of course, in the case of inaccurate, false, missing, or
even irresolved bearings, the de-ghosting is by no means trivial. For more details and
possible solutions of de-ghosting problems in certain applications, see for example
[17] (bearing-only tracking) or [18] (passive radar).

Cumulative Detection

In applications with relatively large data innovation intervals between successive
data collections, such as in air-to-ground wide-area surveillance, sensor data fusion
is particularly important for enhancing the data rate. Assuming measurement fusion
as before, we consider the mean cumulative data innovation intervals 	Tc [19]
resulting from the individual innovation intervals 	Ts , s = 1, . . . , S of S sensors,
which is defined by:

1

	Tc
=

S∑

s=1

1

	Ts
. (2.29)

http://dx.doi.org/10.1007/978-3-642-39271-9_3
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Fig. 2.5 Two objects
observed by two bearings-only
sensors s1, s2. Not all intersec-
tions of bearing correspond
to real objects. Typically, the
number of “ghosts” is much
higher than the number of
objects involved

The cumulative detection probability is given by P S
D = 1 −∏S

s=1(1 − Ps
D), where

Ps
D denotes the individual detection probability of sensor s, possibly depending on

the corresponding sensor-to-object geometry (see the discussion in Sect. 3.1.2). It is
appropriate to introduce the notion of the mean cumulative detection probability Pc

D ,
referring to 	Tc and defined by:

Pc
D = 1−

S∏

s=1

(1− Ps
D)

	Tc
	Ts . (2.30)

The data innovation intervals 	Ts also enter into this formula, which describes the
mean improvement of the overall detection performance to be expected by sensor
data fusion. The larger 	Ts , the smaller is the effect of sensor s on the overall
performance, even if the corresponding individual detection probability Ps

D is large.

2.3.3 Likelihood for Ambiguous Data

A sensor output at time tk , consisting of mk measurements collected in the set Zk ,
can be ambiguous, i.e. the origin of the sensor data has to be explained by a set of
data interpretations, which are assumed to be exhaustive and mutually exclusive.
As an example, let us consider measurements Zk = {z j

k }mk
j=1 possibly related to

the kinematic state xk of well-separated objects. ‘Well-separated’ here means that
measurements potentially originated by one object could not have been originated
by another. Even in this simplified situation, ambiguity can arise from imperfect

http://dx.doi.org/10.1007/978-3-642-39271-9_3
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detection, false measurements, often referred to as clutter, or measurements from
unwanted objects.

Illustration

As a schematic illustration of a more general case, let us consider six measurements
produced by two closely-spaced objects (see Fig. 2.6). Among other data interpreta-
tions, the black dots indicate two measurements assumed as real, while all other data
are assumed to be false (Fig. 2.6a). The asterisks denote predicted measurements pro-
vided by the tracking system. Under assumptions discussed in (Sect. 3.2.2), object
measurements are Gaußian distributed about the predicted measurements with a
covariance matrix Sk|k−1 determined by the ignorance on the object state as well as
by the sensor and the evolution model. The difference vector νk|k−1 between an actual
and a predicted measurement is called innovation. As will become clear below, the
statistical properties of the innovation related to a particular interpretation hypothesis
are essential to evaluating its statistical weight. Gating means that only those sensor
data are considered whose innovations are smaller than a certain predefined thresh-
old in the sense of a Mahalanobis norm: ν�k|k−1S−1

k|k−1νk|k−1 < χ2(Pc). Expectation
gates thus contain the measurements with a given (high) correlation probability Pc.
Obviously, the ambiguities involved with the situation in Fig. 2.6 are not completely
resolved by gating.

More feasible hypotheses, however, compete with the data interpretation previ-
ously discussed. For instance, the targets could have produced a single irresolved
measurement as indicated in Fig. 2.6b, all other data being false. Alternatively, one
of the objects may not have been detected or no detection may have occurred at all.
The expectation gates and therefore the ambiguity of the received sensor data grow
larger according to an increasing number of false measurements and missed detec-
tions as well as to large measurement errors, data innovation intervals, or expected
object maneuvers.

Well-separated Objects

Let jk = 0 denote the data interpretation hypothesis that the object has not been
detected at all by the sensor at time tk , i.e. all sensor data have to be considered as
false measurements, while 1 ≤ jk ≤ mk represents the hypothesis that the object
has been detected, z jk

k ∈ Zk being the corresponding measurement of the object
properties, the remaining sensor data being false. Obviously, {0, . . . , mk} denotes a
set of mutually exclusive and exhaustive data interpretations.

Due to the total probability theorem and with D or ¬D denoting that the object
has or has not been detected, the conditional probability density p(Zk, mk |xk) can
be written as a weighted sum of conditional likelihood functions:

p(Zk,mk |xk) = p(Zk, mk,¬D|xk)+ p(Zk, mk, D|xk) (2.31)

= p(Zk, mk |¬D, xk) p(¬D|xk)+ p(Zk, mk |D, xk) p(D|xk). (2.32)

The sensor model p(Zk, mk |xk) can be traced back to intuitively understandable
physical/technical phenomena and related sensor parameters. As a first consequence,

http://dx.doi.org/10.1007/978-3-642-39271-9_3
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νk
1

νk
2

expectation gates

true measurement
false measurement

(a)

expectation gates

unresolved measurement
false measurement(b)

Fig. 2.6 Sensor measurements produced by two closely-spaced objects: competing data inter-
pretations due to uncertain origin of the the sensor data including hypotheses assuming possibly
irresolved measurements. a Two resolved targets. b Two irresolved targets

the probability of detection, p(D|xk) =: PD , and non-detection, p(¬D|xk) = 1−PD

enter into the likelihood as a characteristic parameter related to the detection process
performed within a sensor system. For the sake of simplicity, we do not express by
our notation here that detection probabilities may depend on the object state vectors
xk . State-dependent detection probabilities, however, become relevant in several real-
world applications (see the discussion in Sect. 3.1.2).

http://dx.doi.org/10.1007/978-3-642-39271-9_3
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1. The conditional likelihood p(Zk, mk |¬D, xk) in Eq. 2.32 can be rewritten as:

p(Zk, mk |¬D, xk) = p(Zk |mk,¬D, xk) p(mk |¬Dk, xk) (2.33)

= pF (mk) |FoV|−mk . (2.34)

Here, the probability of having received mk false measurements given the object
was not detected, p(mk |¬Dk, xk), is provided by a further modeling assumption,
which relates the fluctuating number of false measurements to a mean spatial
clutter density ρF characteristic of the sensor’s detection process and the sens-
ing environment. According to modeling assumptions, which are well-proven
in many practical applications, let the probability of the number of false data
involved p(mk |¬Dk, xk) be given by a Poisson distribution

pF (mk) = (m̄mk
F /mk !) e−m̄ F (2.35)

with a mean number of false measurements m̄ F , which is related to the volume
of the sensor’s field of view |FoV| and ρF via m̄ F = ρF |FoV|. ρF may vary
on a larger scale than the direct object neighborhood. Values for ρF can either
be taken from so-called ‘clutter maps’, i.e. from related context information, or
adaptively be estimated on-line [20–22]. Since false measurements are assumed
to be independent from each other and equally distributed in the sensor’s field of
view (FoV), we have p(Zk |mk,¬D, xk) =∏mk

j=1 p(z j
k |¬D, xk) = |FoV|−mk .

2. For the conditional likelihood p(Zk, mk |D, xk) in Eq. 2.32, we obtain analo-
gously:

p(Zk |mk, D, xk) =
mk∑

jk=1

p(Zk, mk, jk |D, xk) (2.36)

=
mk∑

jk=1

p(Zk |mk, jk, D, xk) p(mk | jk, D, xk) p( jk |D, xk) (2.37)

= pF (mk−1)

mk |FoV|mk−1

mk∑

jk=1

N (
z jk

k ; Hkxk, R jk
k

)
. (2.38)

Under the assumption jk , we assume a Gaußian likelihood function for describing
z j

k according to Eq. 2.19, the other mk−1 measurements being treated as equally
distributed in the sensor field of view:

p(Zk |mk, jk, D, xk) = |FoV|−(mk−1) N (
z j

k ; Hkxk, R j
k

)
. (2.39)

p(mk | jk, D, xk) is given by pF (mk − 1), while a priori the mk data association
hypotheses jk are assumed to equally distributed, p( jk |D, xk) = m−1

k .
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By exploiting the definition of the Poisson distribution and re-arranging the terms, a
likelihood function for ambiguous data is proportional to a weighted sum of Gaußians
and a constant (ρF > 0):

�(xk; Zk, mk) ∝ (1− PD)ρF + PD

mk∑

jk=0

N (
z jk ; Hkxk, Rk

)
. (2.40)

In the special case of ρF = 0 (no false measurements to be expected), Kronecker
symbols can are be used to find an expression for the likelihood (δi j = 1 for i = j ,
δi j = 0 otherwise):

�(xk; Zk, mk) ∝ (1− PD) δ0mk + PD N (
zk; Hkxk, Rk

)
δ1mk . (2.41)

Possibly Irresolved Measurements

Similar considerations can be applied to formulate appropriate likelihood functions
in multiple object situations described by joint object states xk = (x1�

k , x2�
k , . . .)�,

where possibly irresolved measurements are to be taken into account (see Fig. 2.6b).
Among other sensor properties, in such situations the limited capability of physical

sensors to resolve closely-spaced objects must be part of the sensor model. The link
from from physical resolution phenomena to the likelihood functions is provided by
considering the probability Pu of two objects being irresolved. Pu certainly depends
on the relative distance vector dk in proper coordinates between the objects at a certain
time tk : Pu = Pu(dk). We qualitatively expect that Pu will be close to One for small
values of |dk |, while Pu = 0 for distances significantly larger than certain resolution
parameters, such as the beam-width, band-width, or coherence length of a radar. We
expect a narrow transient region. In a generic model of the sensor resolution, we may
describe Pu by a Gaußian-type function of dk with a ‘covariance matrix’ serving as a
quantitative measure of the sensor resolution capability, which in particular reflects
the extension and spatial orientation of ellipsoidal resolution cells depending on the
underlying sensor-to-object geometry.

According to these considerations, the notion of a resolution probability is cru-
cial if suitable sensor models for object groups are to be designed. The underlying
Gaußian structure significantly simplifies the mathematical reasoning involved and
finally leads to a representation of the likelihood function by a weighted sum of
Gaußians and a constant, i.e. we have to deal with the same mathematical struc-
ture as before in the case of well-separated objects. For details see the discussion in
Sect. 3.1.1.

2.3.4 Incorporating Signal Strength

The strength zk of an received object signal at time tk carries information on the
corresponding object strength xk , which is in a radar application, for example, directly

http://dx.doi.org/10.1007/978-3-642-39271-9_3
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related to the object’s characteristic mean radar cross section via the radar equation
[23]. An individual sensor measurement related to an object state Xk = (xk, xk) is
thus given by Z j

k = (z j
k , z j

k ). With this notation, the previous discussion can directly
be generalized:

p(Zk, mk |Xk) =p(Zk, mk |¬D, Xk) p(¬D|Xk)

+
mk∑

jk=1

p(Zk |mk, jk, D, Xk) p(mk | jk, D, Xk) p( jk |D, Xk).

(2.42)

We only have to consider the following conditional likelihood functions:

p(Zk, mk |¬D, Xk) = |FoV|−mk

mk∏

j=1

p(z j
k |¬D, Xk) =:  (2.43)

p(Zk |mk, jk, D, Xk) = N (
z jk

k ; Hkxk,
1
zk

R jk
k

)  p(z jk
k |D, Xk)

|FoV|−1 p(z jk
k |¬D, xk)

. (2.44)

We here additionally assumed a measurement error covariance matrix 1
zk

Rk depend-
ing on the received signal strength zk . This can be justified by radar signal process-
ing theory [23] and reflects the empirical phenomenon that the weaker the signals
received are the less accurate the resulting measurements.

For the sake of simplicity, we furthermore assume that p(zk |¬D, Xk) and
p(zk |D, Xk) do not depend on the kinematic state vector, although the received signal
strength may in principle depend on the sensor-to-object geometry. The often highly
complex dependency on the aspect angle is instead described by so-called Swer-
ling models of radar cross section fluctuations [24]. According to the practically
important Swerling-I-model, the received signal strengths zk are random variables,
characterized by p(zk |xk) = e−zk/(1+xk )/(1+ xk), i.e. simple exponential densities.
Let us furthermore assume that a detector decides on “detection”, denoted by ‘D’, if
zk exceeds a certain threshold: zk >λ. If there is actually an object present that has
been detected, PD = p(‘D’|D) is thus given by:

PD = 1

1+ xk

∫ ∞

λ

dzk e−zk/(1+xk ) = e−λ/(1+xk ). (2.45)

The corresponding false alarm probability PF = p(‘D’| ¬D) is given by PF =∫∞
λ

dzke−zk = e−λ. Here xk = 0 is assumed for a noise-type target. This result
directly leads to the famous Swerling formula, which relates the detection probability
PD to the object strength xk and the false alarm probability PF characterizing the
detector:

PD(xk, PF ) = P
1

1+xk
F . (2.46)



50 2 Characterizing Objects and Sensors

A detected signal not belonging to a real object of interest is a clutter signal with
a clutter strength ck , a parameter characterizing context information on the sensing
environment. After detection and according to Bayes Theorem, a received signal
strength zk is either distributed according to:

p(zk |xk, D) =
{

e(λ−zk )/(1+xk )

1+xk
for zk > λ

0 else
(2.47)

or to:

p(zk |xk,¬D) =
{

e(λ−zk )/(1+ck )

1+ck
for zk > λ

0 else.
(2.48)

By inserting these densities in Eqs. 2.43 and 2.44, we directly obtain the modified
likelihood function for ambiguous sensor data that include signal strength informa-
tion:

�(xk, xk; Zk, mk) ∝ (1− e
− λ

1+xk )ρF

+
mk∑

j=1

(
e(λ−z

j
k )/(1+ck )

1+ck

)−1
e−z

j
k /(1+xk )

1+xk
N (

z j
k ; Hkxk,

1
z j

k

R j
k

)
. (2.49)

Note that this likelihood function depends on the sensor parameters Rk and λ, char-
acterizing the measurement and the detection process, as well as the environmental
parameters ρF and ck . These parameters represent context information, which is a
necessary input for the likelihood function besides the sensor data themselves.

2.3.5 Extended Object Likelihood

According to the discussion in Sect. 2.1, spatially extended objects or collectively
moving object clusters, are characterized by an object state Xk = (xk, Xk), which
consists of an kinematic state vector xk and a symmetric, positively definite matrix Xk .
For the sake of simplicity, let us exclude false or unwanted measurements at present.
In a first approximation, the number mk of measurements in Zk is assumed to be
independent of the object state Xk ,; i.e. p(mk |xk, Xk) is assumed to be a constant.

In the case of extended or group targets, the significance of a single measure-
ment is evidently dominated by the underlying object extension. The sensor-specific
measurement error describing the precision by which a given scattering center is
currently measured is the more unimportant, the larger the actual extension of the
object is compared to the measurement error. The individual measurements must
therefore rather be interpreted as measurements of the centroid of the extended or
collective object, since it is unimportant, which of the varying scattering centers was
actually responsible for the measurement.
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We thus interpret each individual measurement produced by an extended object
as a measurement of the object centroid with a corresponding ‘measurement error’
being proportional to the object extension Xk to be estimated. By means of this
‘measurement error’, however, the object extension Xk becomes explicitly part of the
likelihood function p(Zk, mk |xk, Xk), which describes what the measured quantities
Zk , mk can say about the state variables xk and Xk . Elementary calculations, similar
to those used in Sect. 2.3.2, yield the following factorization (see Appendix A.10 for
details):

p(Zk, mk |xk, Xk) ∝
mk∏

j=1

N (
z j

k ; Hkxk, Xk
)

(2.50)

∝ N (
zk; Hkxk,

1

mk
Xk

) LW(
Zk; mk−1, Xk

)
(2.51)

up to a multiplicative constant independent of the state variables. In Eq. 2.51, the
centroid measurement zk and the corresponding scattering matrix Zk are given by:

zk = 1

mk

mk∑

j=1

z j
k (2.52)

Zk =
mk∑

j=1

(z j
k − zk)(z

j
k − zk)

�, (2.53)

while LW(
Zk; mk−1, Xk

)
is proportional to a Wishart density with mk−1 degrees

of freedom, a matrix-variate probability density function describing the properties
of the random variable Zk (see Appendix A.11 for details):

LW(
Zk; mk − 1, Xk

) = |Xk |−
mk−1

2 etr
(− 1

2 (ZkX−1
k )

)
. (2.54)

References

1. R.R. Yager, L. Liu (eds.). Classic works of the Dempster-Shafer theory of belief functions
(Springer, Berlin, 2008)

2. Y. Bar-Shalom, P.K. Willett, X. Tian, Tracking and Data Fusion. in A Handbook of Algorithms
(YBS Publishing, Storrs, 2011)

3. X. Rong, Survey of maneuvering target tracking. Part I. dynamic models. IEEE Trans. Aerosp.
Electron. Syst. 39(4), 1333–1364 (2003)

4. X.R. Li, V.P. Jilkov, A survey of maneuvering target tracking-part II: ballistic target models.
in Proceedings of the 2001 SPIE Conference on Signal and Data Processing of Small Targets,
vol. 4473, 559–581 (2001)

5. X.R. Li, V.P. Jilkov, A survey of maneuvering target tracking-part III: measurement models,
in Proceedings of the 2001 SPIE Conference on Signal and Data Processing of Small Targets,
vol. 4473, pp. 423–446, 2001



52 2 Characterizing Objects and Sensors

6. X.R. Li and V.P. Jilkov, A survey of maneuvering target tracking-Part IV: decision-based
methods. in Proceedings of the 2002 SPIE Conference on Signal and Data Processing of Small
Targets, vol. 4728, p. 60, 2002

7. X. Rong, Li, V.P. Jilkov, Survey of maneuvering target tracking. Part V. Multiple model
methods”. in IEEE Transactions on Aerospace and Electronic Systems vol. 41(4) (2005),
pp.1255–1321

8. G.V. Keuk, Zielvervolgung nach Kalman-anwendung auf elektronisches radar. FFM-Bericht,
173 (1971)

9. H.A.P. Blom. An efficient filter for abruptly changing systems. In Proceedings of the 23rd
IEEE Conference on Decision and Control, Las Vegas, 1984

10. M. Michaelis, F. Govaers, W. Koch, State dependent mode transition probabilities, in IEEE
ISIF Workshop Sensor Data Fusion-Trends, Solutions, Applications, Bonn, Germany (IEEE
Xplore), October 2013

11. D. Robinson, W. Seels, Kalman-Filter, European Patent No. EP0452797B1, April 1992
12. R. Klemm, M. Mertens, Tracking of convoys by airborne STAP radar. In IEEE international

conference on information fusion, Cologne, 2008
13. D.J. Torrieri, Statistical theory of passive location systems. IEEE Trans. Aerosp. Electron. Syst.

AES-20(2), 183–198 (1984)
14. D. Musicki, R. Kaune, W. Koch, Mobile Emitter Geolocation and Tracking Using TDOA and

FDOA Measurements. In IEEE Transactions on Signal Processing vol. 58(3) pp.1863–1874
(2010)

15. K. Becker, Three-dimensional target motion analysis using angle and frequency measurements.
IEEE Trans. Aerosp. Electron. Syst. 41(1), 284–301 (2005)

16. C.R. Berger, M. Daun, W. Koch. Low complexity track initialization from a small set of non-
invertible measurements. EURASIP J. Adv. Sig. Process. special issue on track-before-detect
techniques, 15, (756414) 2008 doi:10.1155/2008/756414

17. R. Baltes, A triangulation system for tracking multiple targets with passive sensors. in Pro-
ceedings of the DGON/ITG International Radar Symposium IRS’98, Muenchen, 1998

18. M. Daun, U. Nickel, W. Koch, Tracking in multistatic passive radar systems using DAB/DVB-T
illumination. In Proceedings of Signal Processing pp 1365–1386 (2012)

19. W. Koch, Ground target tracking with STAP radar: selected tracking aspects. Chapter 15 in:
R. Klemm (ed.), The Applications of Space-Time Adaptive Processing, (IEE Publishers, Lon-
don, 2004)

20. W. Koch, M. Blanchette, Tracking in densely cluttered environment—concepts and experimen-
tal results. In Proceedings of ISATA Robotics, Motion, and Machine Vision, p.215 ff, Aachen,
1994

21. W. Koch, Experimental results on Bayesian MHT for maneuvering closely-spaced objects in a
densely cluttered environment. In IEE International Radar Conference RADAR’97, Edinburgh,
729 (1999)

22. W. Koch, Generalized smoothing for multiple model/multiple hypothesis filtering: experimen-
tal results, in Proceedings of European Control Conference ECC’99, Karlsruhe, CD ROM
1999

23. W.-D. Wirth, Radar Techniques Using Array Antennas. (IEE Press, London, 2001)
24. P.L. Bogler, Radar Principles with Applications to Tracking Systems (Wiley, New York, 1990)

http://dx.doi.org/10.1155/2008/756414


Chapter 3
Bayesian Knowledge Propagation

Within the general framework of Bayesian reasoning and based on object
evolution models and sensor likelihood functions, such as those previously discussed,
we proceed along the following lines.

1. Basis. In the course of time, one or several sensors produce measurements of
one or more objects of interest. The accumulated sensor data are an example of
a time series. Each object is characterized by its current state.

2. Objective. Learn as much as possible about the object states Xl at each time of
interest tl by exploiting the sensor data collected in the times series Zk , i.e. for
past (l < k), present (l = k), or future (l > k) states.

3. Problem. The sensor information is usually imperfect, i.e. imprecise, of uncertain
origin, false or corrupted, possibly unresolved, ambiguous etc. Moreover, the
objects’ temporal evolution is usually not well-known.

4. Approach. Interpret sensor measurements and object states as random variables
and describe what is known about them by using conditional probability densities
functions. In particular, information on an object state at time tl obtained from
the sensor data Zk is represented by p(Xl |Zk).

5. Solution. Based on Bayes’ Theorem, derive iteration formulae for calculating the
probability density functions p(Xl |Zk) and develop a mechanism for initiating
the iteration process. Derive state estimates from the probability densities along
with appropriate quality measures for the estimates.

3.1 Bayesian Tracking Paradigm

A Bayesian tracking algorithm is an iterative updating scheme for calculating
conditional probability density functions p(Xl |Zk) that represent all available knowl-
edge on the object states Xl at discrete instants of time tl . The densities are explicitly
conditioned on the sensor data Zk accumulated up to some time tk , typically the
present time. Implicitly, however, they are also determined by all available context
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knowledge on the sensor characteristics, the dynamical object properties, the envi-
ronment of the objects, topographical maps, or tactical rules governing the objects’
overall behavior.

With respect to the instant of time tl at which estimates of the object states Xl are
required, the related density iteration process is referred to as prediction (tl > tk),
filtering (tl = tk), or retrodiction (tl < tk). The propagation of the probability
densities involved is given by three basic update equations, which will be derived
and discussed and illustrated by examples.

Prediction

The prediction density p(Xk |Zk−1) is obtained by combining the evolution model
p(Xk |Xk−1) with the previous filtering density p(Xk−1|Zk−1):

p(Xk−1|Zk−1)
evolution model−−−−−−−−−→

constraints
p(Xk |Zk−1) (3.1)

p(Xk |Zk−1) =
∫

dXk−1 p(Xk |Xk−1)︸ ︷︷ ︸
evolution model

p(Xk−1|Zk−1)︸ ︷︷ ︸
previous filtering

. (3.2)

Filtering

The filtering density p(Xk |Zk) is obtained by combining the sensor model p(Zk , mk |
Xk) with the prediction density p(Xk |Zk−1) according to:

p(Xk |Zk−1)
current sensor data−−−−−−−−−−→

sensor model
p(Xk |Zk) (3.3)

p(Xk |Zk) = p(Zk, mk |Xk) p(Xk |Zk−1)
∫

dXk p(Zk, mk |Xk)︸ ︷︷ ︸
sensor model

p(Xk |Zk−1)︸ ︷︷ ︸
prediction

. (3.4)

Retrodiction

The retrodiction density p(Xl |Zk) is obtained by combining the previous retrodiction
density p(Xl+1|Zk) with the object evolution model p(Xl+1|Xl) and the previous
prediction and filtering densities p(Xl+1|Zl), p(Xl |Zl) according to:

p(Xl−1|Zk)
filtering, prediction←−−−−−−−−−−

evolution model
p(Xl |Zk) (3.5)

p(Xl |Zk) =
∫

dXl+1

evolution︷ ︸︸ ︷
p(Xl+1|Xl)

prev. filtering︷ ︸︸ ︷
p(Xl |Zl)

p(Xl+1|Zl)︸ ︷︷ ︸
prev. prediction

p(Xl+1|Zk)︸ ︷︷ ︸
prev. retrodiction

. (3.6)
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The natural antonym of “prediction”, the technical term “retrodiction” was introduced
by Oliver Drummond in a series of papers [1–3]. According to his definition,
“The process of computing estimates of states, probability densities, or discrete
probabilities for a prior time (or over a period of time) based on data up to and
including some subsequent time, typically, the current time.” [1, p. 255], this term
comprises not only standard smoothing, but also the concept of a retrodicted discrete
probability that is analogous to a smoothed estimate in usual Kalman filtering. For
this reason, the notion of “retrodiction” is general enough as well as adequate for
the type of algorithms proposed above. Adopting the classical standard terminology
[4], we could speak of fixed-interval retrodiction.

The Notion of a Track

According to this paradigm, an object track represents all relevant knowledge on a
time-varying object state of interest, including its history and measures that describe
the quality of this knowledge. As a technical term, ‘track’ is therefore either a syn-
onym for the collection of densities p(Xl |Zk), l = 1, . . . , k, . . ., or of suitably
chosen parameters characterizing them, such as estimates related to appropriate risk
functions and the corresponding estimation error covariance matrices.

If possible, a one-to-one association between the objects in the sensors’ field of
view and the produced tracks is to be established and has to be preserved as long
as possible (track continuity). In many applications, track continuity is even more
important than track accuracy. Obviously, the achievable track quality does not only
depend on the performance of the underlying sensors, but also on the object properties
and the operational conditions within the scenario to be observed.

In this context, the notion of track consistency is important. It describes the degree
of compliance between the inherent measures of track quality provided by the fusion
process itself and the “real” tracking errors involved. Track consistency can be veri-
fied in experiments with an established ground truth or in Monte-Carlo-simulations
(see the discussion on fusion performance measures in Sect. 1.3.3).

Graphical Illustration

In Fig. 3.1a the conditional probability densities p(xk−1|Zk−1), p(xk |Zk), and
p(xk+1|Zk+1) resulting from filtering at time instants tk−1, tk , and tk+1 are displayed
along with the predicted density p(xk+2|Zk+1). While at time tk−1 one sensor mea-
surement has been processed, no measurement could be associated to it at time tk .
Hence, a missing detection is assumed. Due to the missing sensor information, the
density p(xk |Zk) is broadened, since object maneuvers may have occurred. This in
particular implies an increased region, where data at the subsequent time tk+1 are
expected (gates). According to this effect, at time tk+1 three correlating sensor mea-
surements are to be processed, leading to a multi-modal probability density function.
The multiple modes reflect the ambiguity of the origin of the sensor data and also
characterize the predicted density p(xk+2|Zk+1). By this, the data-driven adaptivity
of the Bayesian updating scheme is indicated.

In Fig. 3.1b, the density p(xk+2|Zk+2), resulting from processing a single cor-
relating sensor measurement at time tk+2, along with the retrodicted densities

http://dx.doi.org/10.1007/978-3-642-39271-9_1
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Fig. 3.1 Scheme of Bayesian
density iteration: conditional
probability density functions
resulting from the prediction,
filtering, and retrodiction
steps at different instants of
times. a Forward iteration.
b Backward iteration

1 processed plot

missing plots

3 processed plots

filtering: tk-1

filtering: tk

filtering: tk+1

prediction: tk+2

(a) Forward Iteration.

tk-1retrodiction:

retrodiction: tk

1 processed plot
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(b) Backward Iteration.

p(xk+1|Zk+2), p(xk |Zk+2), and p(xk−1|Zk+2) are shown. Obviously, available
sensor data at the present time can significantly improve the estimates of the object
states in the past.

3.1.1 Characteristic Aspects

The sensor data fusion process, i.e. the iterative calculation of conditional probability
densities p(Xl |Zk) from multiple sensor data and context information on sensors,
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objects, and the environment, can be characterized by several aspects. The emphasis,
which is given to a particular aspect in a concrete application, has a strong impact on
the design and architecture of a sensor data fusion system and on the requirements
related to the underlying infrastructure, such as the bandwidth and reliability of
communication links or navigation systems for sensor registration and alignment.

• In optimal data fusion, the conditional probability density functions involved are
correctly calculated.
• In centralized fusion, only one fusion center exists, where the sensor data or object

tracks are fused.
• In distributed fusion, the sensor data or object tracks are distributed and fused at

several fusion centers.
• In measurement fusion, the sensor data and all relevant likelihood parameters are

communicated to the fusion center(s).
• In track-to-track fusion, the local state estimates and covariances are communi-

cated to the fusion center(s).
• In full communication rate fusion, all local sensor data or tracks are communicated

to the fusion centers.
• In reduced-rate communication fusion, only selected sensor measurements or local

tracks are communicated.

The likelihood function discussed in Sect. 2.3.2 is a typical example of centralized
or distributed measurement fusion, while the fusion algorithms discussed in Sect. 6
can be characterized as distributed, full or reduced-rate track-to-track fusion. In
general, measurement fusion architectures provide better approximations of optimal
fusion. The choice of a fusion strategy depends on the particular requirements of a
given application. See [5] for more a detailed discussion on benefits and problems
of alternative fusion system architectures.

3.1.2 Remarks on Approximations

Under more realistic conditions, the probability densities involved typically have
the structure of finite mixtures, i.e. they can be represented by weighted sums of
individual probability densities that assume particular data interpretations or model
hypotheses to be true. This general structure is a direct consequence of the uncertain
origin of the sensor data and/or of the uncertainty related to the underlying object
evolution. In concrete implementations, however, it is always necessary to apply
certain approximations to handle such mixtures efficiently. Provided the densities
p(Xl |Zk) are calculated at least approximately correctly, “good” estimators can be
derived related to various risk functions adapted to the applications. What “good”
means depends on the application considered and must often be verified by extensive
Monte-Carlo-simulations and experiments.

http://dx.doi.org/10.1007/978-3-642-39271-9_2
http://dx.doi.org/10.1007/978-3-642-39271-9_6
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Gaußian Mixtures

At least approximately correct closed-formula solutions for the Bayesian tracking
paradigm can be derived if the prediction, filtering, and retrodiction densities as well
as the sensor and evolution models belong to certain families of probability densities,
so-called mutually conjugate densities. A wide and mathematically comfortable fam-
ily of conjugate densities for random vectors x is provided by Gaußian mixtures [6],
i.e. by weighted sums of Gaußian probability densities, p(x) =∑

i pi N (
x; xi , Pi

)

with mixture coefficients pi ∈ R that sum up to One,
∑

i pi = 1, but need not nec-
essarily be positive. A Gaußian mixture density is thus completely represented by
a relatively small number of parameters {pi , xi , Pi }i . As an early example see [7].
Other examples of families, which lead to at least approximately correct update for-
mulae and are relevant to the work considered here, are Wishart and inverted Wishart
mixtures or Gamma and inverted Gamma mixtures (see Appendix A.11).

For many real-world applications, it has been shown that even more sophisticated
functional relationships describing the physics of the measurement process within a
sensor system can be modeled by likelihood functions of the Gaußian mixture type.
Of course, the accuracy of the sensor model, i.e. the number of mixture components
that are actually to be taken into account to approximately describe the underlying
phenomena, depends on the requirements of the underlying application. The same
arguments are valid if the incorporation of context information, such as road-maps, is
to be considered. They are also valid in the case of more complex dynamics models,
such as those with a state dependent model transition matrix given by Eq. 2.12. Many
examples of this type are discussed in Chap. 3.

It is the author’s conviction that a large variety of relevant problems still exists
in real-world applications of sensor data fusion and sensor management, which can
efficiently be solved by using appropriately defined Gaußian mixtures. A particu-
larly interesting indication of this general tendency seems to be the very fact that
even in recent approaches, such as in Probability Hypothesis Density filtering (PHD,
[8]), Gaußian mixture realizations provide the state-of-the-art solutions (GM-CPHD:
Gaußian Mixture Cardinalized PHD). In view of practicality, these realizations are
preferable compared to alternative approximation schemes, such as particle filtering.
Moreover, explicit calculations in exploiting realistic sensor and evolution models
are possible when using Gaußian mixture techniques, which provide a better under-
standing of the underlying physical and technical phenomena.

Particle Filtering

For implementing the Bayesian tracking paradigm, alternative approximation
schemes are applicable that deal with the probability densities involved numerically.
The most prominent method among these, particle filtering, was first introduced for
tracking applications by Neil Gordon [9], who initiated and inspired a stormy devel-
opment in this field (see [10] and the literature cited therein). Another early example
of using particle filtering in a position estimation application for mobile robots is the
work of D. Fox, W. Burgard, F. Dellaert, and S. Thrun [11].

Particle filtering techniques numerically represent probability density functions
by random samples (called “particles”) drawn from them by using random number

http://dx.doi.org/10.1007/978-3-642-39271-9_2
http://dx.doi.org/10.1007/978-3-642-39271-9_3
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generators. The method is thus closely related to the random Monte-Carlo techniques,
developed for problems in quantum field theory, for instance (see the discussion in
[12]). For this reason, particle filtering techniques are computationally intensive.
Their main advantage is the fact that they, in principle, provide “numerically exact”
solutions at the cost of long computation times. These solutions can serve as bench-
marks to test alternatives, such as Gaußian mixture realizations, which are often
much less computation time consuming. In the context of the work presented here,
performance comparisons using particle filters were done for “road-map assisted
tracking” [13].

Particle filtering is a valuable approximation scheme for probability densities
especially in applications, where the likelihood function �(Xk; Zk) can only be cal-
culated pointwisely by an algorithm and no functional closed-formula expression is
available. In the context of the work presented here, emitter localization and tracking
in an urban environment is discussed (see [14] and the discussion in Sect. 3.2.3).
Since this scenario is dominated by propagation phenomena, the key to the solution
of this tracking problem lies in dealing with multipath phenomena appropriately.
This can be done by using ray tracing algorithms for evaluating the most likely prop-
agation channels for randomly chosen candidate emitter positions. Similar exam-
ples can be found wherever sophisticated propagation models can be exploited for
localization and tracking (ionospheric propagation such as in communications or
over-the-horizon radar, shallow-water sonar, indoor navigation) [15].

For advanced approximation techniques beyond classical particle filtering, which
combines elements of Gaußian mixture reasoning with intelligent non-random sam-
pling techniques, see the work of Uwe Hanebeck and his group (see [16], for example,
and the literature cited herein).

3.1.3 On Track-to-Track Fusion

In certain applications, track-to-track fusion (see e.g. [17–20]) has considerable
advantages:

• The communication channels are less overloaded with false tracks, provided these
can be suppressed by local data processing.
• We may profit from reduced sensibility to sensor registration errors as local track-

ing is inherently robust regarding these effects. In this case, the problem is trans-
fered to track-to-track fusion, but on this level its solution profits from efficient
track-to-track correlation algorithms in situations that are not too dense.
• Disturbances of individual sensor sites and their corresponding local processors

do not lead to the loss of the total system function.

Disadvantages result from suboptimal performance with respect to reaction time,
track quality, lacking profit from redundancy, and the lower data rate for sensor
individual tracking, which particularly affects track initiation, e.g. Moreover, track-
to-track fusion is problematic if data collected by active and passive sensors have
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to be fused (e.g. position data and bearings), since the production of local, sensor
individual tracks may be difficult in non-trivial situations.

We speak of optimal track-to-track fusion in a Bayesian sense if the conditional
probability density functions p(Xk |Zk) = p(Xk |{Zk

s }Ss=1), conditioned on all mea-
surements of all sensors, can be correctly reconstructed from the locally produced
tracks p(Xk |Zk

s ), obtained by processing the data of the sensors s = 1, . . . , S indi-
vidually:

{p(xl |Zl
s)}S,k

s,l=1
track-to-track−−−−−−−→

fusion
p(xk |{Zk

s }Ss=1). (3.7)

In Sect. 6 selected aspects of track-to-track fusion are discussed and exact update
formulae for certain special cases are derived.

3.1.4 A First Look at Initiation

At time t0, the probability density p(X0|Z0) describes the initial knowledge of the
object state. As an example let us consider state vectors xk = (r�k , ṙ�k )�, consisting
of the object position and velocity, and a first position measurement z0 with a mea-
surement error covariance matrices R0. Based on z0 and the context information on
the maximum object speed vmax to be expected, a reasonable initiation is given by
p(x0|z0) = N (

x0; x0|0, P0|0
)

with:

x0|0 = (z�0 , 0�)�, P0|0 = diag[R0, v
2
max1]. (3.8)

In the case of an IMM evolution model, we consider the probability density
p(x0, i0|Z0) = pi0

0|0 N (
x0; xi0

0|0, Pi0
0|0

)
with pi0

0|0 = 1
r . For a numerically robust

and quick initiation scheme even from incomplete measurements see [21, 22] and
the literature cited therein.

3.2 Object State Prediction

The probability density function p(Xk |Zk−1) describes the predicted knowledge of
the object state Xk referring to the instant of time tk based on all the measurements
received in the past up to and including the time tk−1. According to the Chapman-
Kolmogorov Equation, the prediction density can be calculated by combining the
available knowledge on the object state at the past time tk−1, given by p(Xk−1|Zk−1)

with the available knowledge on the object evolution, given by the evolution model
p(Xk |Xk−1). Marginalization and the Markov assumption directly yield:

http://dx.doi.org/10.1007/978-3-642-39271-9_6
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p(Xk |Zk−1) =
∫

dXk−1 p(Xk, Xk−1|Zk−1) (3.9)

=
∫

dXk−1 p(Xk |Xk−1) p(Xk−1|Zk−1). (3.10)

3.2.1 Kalman Prediction

Let us consider a Gauß-Markov evolution model, such as provided by van Keuk’s
model (Eq. 2.8), where its deterministic part is characterized by the evolution matrix
Fk|k−1 and the stochastic part by the evolution covariance matrix Dk|k−1, and a
Gaußian previous filtering density, given by p(xk−1|Zk−1) = N (xk−1; xk−1|k−1,

Pk−1|k−1). Then the prediction density is also provided by a Gaußian:

p(xk |Zk−1) =
∫

dxk−1 N (
xk; Fk|k−1xk−1, Dk|k−1

)

× N (
xk−1; xk−1|k−1, Pk−1|k−1

)
(3.11)

=N (
xk; xk|k−1, Pk|k−1

)
(3.12)

with an expectation vector xk|k−1 and a covariance matrix Pk|k−1 given by the Kalman
prediction update equations:

xk|k−1 = Fk|k−1xk−1|k−1 (3.13)

Pk|k−1 = Fk|k−1Pk−1|k−1F�k|k−1 + Dk|k−1. (3.14)

This directly results from a product formula for Gaußians stated and proven in
Appendix A.5, Eq. A.28. Note that after applying this formula, the integration vari-
able xk−1 in Eq. 3.11 is no longer contained in the first Gaußian of the product and
can be drawn in front of the integral. The integration thus becomes trivial since
probability densities are normalized by definition.

3.2.2 Expectation Gates

As a by-product of the prediction process, the statistical properties of object mea-
surements Zk that are expected at time tk can be calculated on the basis of previously
obtained measurements Zk−1:

p(Zk |Zk−1) =
∫

dXk p(Zk, Xk |Zk−1) (3.15)

=
∫

dXk p(Zk |Xk) p(Xk |Zk−1). (3.16)

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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In the special case of Kalman prediction and with a Gaußian likelihood function, we
obtain:

p(zk |Zk−1) =
∫

dxk N (
zk; Hkxk, Rk

) N (
xk; xk|k−1, Pk|k−1

)
(3.17)

= N (
zk; Hkxk|k−1, Sk|k−1

)
. (3.18)

Via the product formula (Eq. A.28), the matrix Sk|k−1 results from the previous
filtering covariance matrix Pk−1|k−1 exploiting both the evolution and the sensor
model:

Sk|k−1 = HkPk|k−1H�k + Rk . (3.19)

This means in particular that the innovation vector νk|k−1 = zk − Hkxk|k−1 is a
normally distributed zero mean random variable characterized by the covariance
matrix Sk|k−1, which is thus called innovation covariance matrix. For this reason,
the quadratic form

|νk|k−1|2Sk|k−1
= (zk −Hkxk|k−1)

�S−1
k|k−1(zk −Hkxk|k−1), (3.20)

called innovation square or Mahalanobis distance between predicted and actually
produced measurements, is a χ2

n -distributed random variable with n degrees of free-
dom where n is the dimension of the measurement vector zk . The ellipsoid defined
by:

|νk|k−1|2Sk|k−1
≤ χ2

n (1− Pc) (3.21)

thus contains the expected measurement with a correlation probability Pc. The con-
crete value of χ2

n (1 − Pc) can be looked up in a χ2-table. Such expectation gates
are useful to exclude measurements from the fusion process that are very unlikely to
belong to a given object. Figure 3.2 schematically illustrates the use of expectation
gates in an object tracking example.

Fig. 3.2 Schematic illustra-
tion of expectation gates as a
means of excluding measure-
ments belonging to an object
with a low probability 1− Pc

tt t

t
t

k

k−3
k−2

k−1 k+1
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3.2.3 IMM Prediction

According to the discussion in the Sects. 2.1 and 2.2.2, let the filtering density
p(Xk−1|Zk−1) at time tk−1 be given by

p(Xk−1|Zk−1) = p(xk−1, ik−1|Zk−1) (3.22)

= p(xk−1|ik−1, Zk−1) p(ik−1|Zk−1) (3.23)

= pik−1
k−1|k−1 N (

xk−1; xik−1
k−1|k−1, Pik−1

k−1|k−1

)
, (3.24)

i.e. by a weighted Gaußian. In this case, the prediction update according to Eq. 3.10
and the product formula for Gaußians (Eq. A.28) yield:

p(xk, ik |Zk−1) =
∑

ik−1

∫
dxk−1 p(xk, ik, xk−1, ik−1|Zk−1) (3.25)

=
∑

ik−1

∫
dxk−1 p(xk, ik |xk−1, ik−1) p(xk−1, ik−1|Zk−1) (3.26)

=
∑

ik−1

pik ik−1
k|k−1 N (

xk; xik ik−1
k|k−1, Pik ik−1

k|k−1

)
, (3.27)

where the parameters pik ik−1
k|k−1 , xik ik−1

k|k−1, Pik ik−1
k|k−1 of the density are given by:

pik ik−1
k|k−1 = pik ik−1 pik−1

k−1|k−1 (3.28)

xik ik−1
k|k−1 = Fik

k|k−1xik−1
k−1|k−1 (3.29)

Pik ik−1
k|k−1 = Fik

k|k−1Pik−1
k−1|k−1Fik�

k|k−1 + Dik
k|k−1. (3.30)

In standard IMM applications, p(xk, ik |Zk−1) is approximated via moment matching
(see [23, p. 56 ff] and the discussion in Appendix A.6) yielding

p(xk, ik |Zk−1) ≈ pik
k|k−1 N (

xk; xik
k|k−1, Pik

k|k−1

)
(3.31)

with parameters pik
k|k−1, xik

k|k−1 and Pik
k|k−1 given by:

pik
k|k−1 =

r∑

ik−1=1

pik ik−1
k|k−1 (3.32)

xik
k|k−1 =

1

pik
k|k−1

r∑

ik−1=1

pik ik−1
k|k−1 xik ik−1

k|k−1 (3.33)

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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Pik
k|k−1 =

1

pik
k|k−1

r∑

ik−1=1

pik ik−1
k|k−1

(
Pik ik−1

k|k−1 (3.34)

+ (xik ik−1
k|k−1 − xik

k|k−1)(x
ik ik−1
k|k−1 − xik

k|k−1)
�)

. (3.35)

If the predictions of the kinematic state variables xk are the only objects of interest,
p(xk |Zk−1) is a direct result from marginalization and is given by a Gaußian sum
with r mixture components:

p(xk |Zk−1) =
r∑

ik=1

pik
k|k−1 N (

xk; xik
k|k−1, Pik

k|k−1

)
. (3.36)

3.3 Data Update: Filtering

The filtering update equation for the conditional probability density function
p(Xk |Zk) that represents our knowledge of the present object state given all available
information can be represented according to Bayes’ Theorem by:

p(Xk |Zk) = p(Xk |Zk, mk, Zk−1) (3.37)

= p(Zk, mk |Xk) p(Xk |Zk−1)∫
dXk p(Zk, mk |Xk) p(Xk |Zk−1)

. (3.38)

This equation states how p(Xk |Zk) is obtained by combining the prediction density
p(Xk |Zk−1) with the sensor model p(Zk, mk |Xk). As the sensor model appears both
in the denominator and the numerator, the conditional densities p(Zk, mk |Xk) need
to be known up to a factor independent of the object state Xk only. Each function
�(Xk; Zk, mk) ∝ p(Zk, mk |Xk) provides the same result. This observation is the
reason for introducing the term “likelihood function” for denoting functions that are
proportional to the conditional probability density p(Zk, mk |Xk).

3.3.1 Kalman Filtering

Let us consider kinematic object states only, Xk = xk , and sensors that produce mea-
surements related to them. Under conditions where the data-to-object associations
are unambiguous, e.g. for well-separated objects without false sensor data (ρF = 0),
and in the case of a Gauß-Markov evolution model, such as given by Eq. 2.8, and
a Gaußian sensor model (Eq. 2.19), the Bayesian approach leads to the well-known
Kalman filter update equations. Kalman filtering can thus be considered as a sim-
ple straight-forward realization of the more general Bayesian filtering paradigm.

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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Equation 3.38 yields according to the product formula for Gaußians (Eq. A.28):

p(xk |Zk) = N (
zk; Hkxk, Rk

) N (
xk; xk|k−1, Pk|k−1

)
∫

dxk N (
zk; Hkxk, Rk

) N (
xk; xk|k−1, Pk|k−1

) (3.39)

= N (
zk; Hkxk|k−1, Sk|k−1

) N (
xk; xk|k, Pk|k

)
∫

dxk N (
zk; Hkxk|k−1, Sk|k−1

) N (
xk; xk|k, Pk|k

) (3.40)

= N (
xk; xk|k, Pk|k

)
, (3.41)

where the parameters xk|k , Pk|k of the resulting Gaußian are alternatively given by:

xk|k =
{

xk|k−1 +Wk|k−1(zk −Hkxk|k−1)

Pk|k(P−1
k|k−1xk|k−1 +H�k R−1

k zk)
(3.42)

Pk|k =
{

Pk|k−1 −Wk|k−1Sk|k−1W�k|k−1

(P−1
k|k−1 +H�k R−1

k Hk)
−1 . (3.43)

Note that there are equivalent formulations of the Kalman update formulae according
to various versions of the product formula (Eq. A.28). The innovation covariance
matrix Sk|k−1 has already appeared earlier in our considerations (see Eq. 3.19), while
the Kalman Gain matrix is given by:

Wk|k−1 = Pk|k−1H�k|k−1S−1
k|k−1. (3.44)

In Eq. 3.41, the factor N (
zk; Hkxk|k−1, Sk

)
does not depend on the integration

variable xk and can be drawn in front of the integral, thus canceling the corresponding
quantity in the numerator. Note that the matrix Sk|k−1 to be inverted when calculating
the Kalman gain matrix has the same dimension as the measurement vector zk , i.e.
Sk|k−1 is a low-dimensional matrix in general.

3.3.2 IMM Filtering

This update philosophy can easily be generalized to apply to situations where IMM
evolution models are used, i.e. if the object state is given by Xk = (xk, ik). We
immediately obtain:

p(xk, ik |Zk)

= pik
k|k−1 N (

zk; Hkxk, Rk
) N (

xk; xik
k|k−1, Pik

k|k−1

)

∑
ik

pik
k|k−1

∫
dxk N (

zk; Hkxk, Rk
) N (

xk; xik
k|k−1, Pik

k|k−1

) (3.45)
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= pik
k|k−1 N (

zk; Hkxik
k|k−1, Sik

k|k−1

) N (
xk; xik

k|k, Pik
k|k

)

∑
ik

pik
k|k−1 N (

zk; Hkxik
k|k−1, Sik

k|k−1

) ∫
dxk N (

xk; xik
k|k, Pik

k|k
) (3.46)

= pik
k|k N (

xk; xik
k|k, Pik

k|k
)
, (3.47)

where the parameters xik
k|k , Pik

k|k are given by a Kalman filtering update based on

xik
k|k−1, Pik

k|k−1 and Sik
k|k−1 = HkPik

k|k−1H�k + Rk , while the weighting factors pik
k|k

depend on the sensor data zk and are given by:

pik
k|k =

pik
k|k−1 N (

zk; Hkxik
k|k−1, Sik

k|k−1

)

∑
ik

pik
k|k−1 N (

zk; Hkxik
k|k−1, Sik

k|k−1

) . (3.48)

If only the kinematic state variables xk are of interest, p(xk |Zk) is given by a
Gaußian sum with r mixture components via marginalization:

p(xk |Zk) =
∑

ik

pik
k|k N (

xk; xik
k|k, Pik

k|k
)
. (3.49)

An Alternative

So-called ‘Generalized Pseudo-Bayesian’ realizations of the IMM filtering problem
(GPB, [24, 25]) fit well into this framework. The difference between GPB and stan-
dard IMM filtering is simply characterized by the instant of time when the moment-
matching step is performed. While in standard IMM this is done after the prediction
step and before the new sensor data are processed, GPB filtering approximates the
probability density

p(xk, ik |Zk) ∝ N (
zk; Hkxk, Rk

) ∑

ik−1

pik ik−1
k|k−1 N (

xk; xik ik−1
k|k−1, Pik ik−1

k|k−1

)

=
∑

ik−1

pik ik−1
k|k−1 N (

zk; Hkxik ik−1
k|k−1, Sik ik−1

k|k−1

) N (
xk; xik ik−1

k|k , Pik ik−1
k|k

)

≈ p′ik
k|k N (

xk; x′ik
k|k, P′ik

k|k
)

with appropriately defined mixture parameters that are directly given by the product
formula A.28. Since the moment matching is done with the updated weighting factors,
GPB methods show a better reaction to abrupt maneuvers. For a more rigorous
discussion of these topics see [26].

3.3.3 MHT Filtering

In the case of ambiguous sensor data, likelihood functions such as in Eq. 2.40
are essentially characterized by taking different data interpretation hypotheses into

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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account. They are the basis for Multiple Hypothesis Tracking techniques (MHT,
[27, 28]). In such situations, the origin of a time series Zk = {Zk, mk, Zk−1} of sen-
sor data accumulated up to the time tk can be interpreted by interpretation histories
jk = ( jk, . . . , j1), 0 ≤ jk ≤ mk that assume a certain data interpretation jl to be true
at each data collection time tl , 1 ≤ l ≤ k.

Via marginalization, for kinematic object states Xk−1 = xk−1, the previous filter-
ing density p(xk−1|Zk−1) can be written as a mixture over the interpretation histories
jk−1. Let us furthermore assume that its components are given by Gaußians:

p(xk−1|Zk−1) =
∑

jk−1

p(xk−1|jk−1, Zk−1) p(jk−1|Zk−1) (3.50)

=
∑

jk−1

pjk−1 N (
xk−1; x

jk−1
k−1|k−1, P

jk−1
k−1|k−1

)
. (3.51)

With a Gauß-Markov evolution model such as in Eq. 2.8, the prediction densities
obey a similar representation:

p(xk |Zk−1) =
∑

jk−1

pjk−1 N (
xk; x

jk−1
k|k−1, P

jk−1
k|k−1

)
, (3.52)

where x
jk−1
k|k−1, P

jk−1
k|k−1 result from the Eqs. 3.13 and 3.14. By making use of the likeli-

hood function for uncertain data discussed earlier (Eq. 2.40) and according to Bayes’
Theorem, we obtain:

p(xk |Zk) =
∑

jk ,jk−1
� jk (xk) pjk−1 N (

xk; x
jk−1
k|k−1, P

jk−1
k|k−1

)

∑
jk ,jk−1

∫
dxk � jk (xk) pjk−1 N (

xk; x
jk−1
k|k−1, P

jk−1
k|k−1

) (3.53)

=
∑

jk

pjk
N (

xk; xjk
k|k, Pjk

k|k
)

(3.54)

by using the product formula for Gaußians. The weighting factors pjk
are given by:

pjk
=

p∗jk∑
jk

p∗jk

(3.55)

with the unnormalized weighting update:

p∗jk
= pjk−1

{
(1− PD)ρF for jk = 0

PD N (
z jk

k ; Hkx
jk−1
k|k−1, S

jk−1
k|k−1

)
for jk �= 0

, (3.56)

while xjk
k|k and Pjk

k|k result from:

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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xjk
k|k =

{
x

jk−1
k|k−1 for jk = 0

x
jk−1
k|k−1 +Wjk

k|k−1(z
jk
k −Hkx

jk−1
k|k−1) for jk �= 0

(3.57)

Pjk
k|k =

{
P

jk−1
k|k−1 for jk = 0

P
jk−1
k|k−1 −Wjk

k|k−1Sjk
k|k−1Wjk�

k|k−1 for jk �= 0
(3.58)

with the corresponding innovation covariance and Kalman gain matrices

Sjk
k|k−1 = HkP

jk−1
k|k−1H�k + R jk

k (3.59)

Wjk
k|k−1 = P

jk−1
k|k−1H�k|k−1

(
Sjk

k|k−1

)−1
, (3.60)

which are defined in analogy to the expressions in Eqs. 3.19 and 3.44. This filtering
update philosophy can directly be generalized to IMM-MHT-type techniques [29].

According to the previous discussion, each mixture component

p
jk
k|k p(xk |jk, Zk)

of the resulting densities p(xk |Zk) represents a track hypothesis. The structure of a
Gaußian mixture for p(xk |Zk) also occurs if an IMM prediction p(xk |Zk−1) (see
previous subsection) is updated by using a Gaußian likelihood according to Eq. 3.49,
where p(ik |Zk) p(xk |ik, Zk) can be considered as a model hypothesis. IMM filtering
may thus be considered as a multiple hypothesis tracking method as well. See [30, 31]
for an alternative treatment of the multiple hypothesis tracking problem by exploiting
expectation maximization techniques.

Figure 3.3 provides a schematic illustration of MHT filtering. A mixture compo-
nent pi of the filtering density at time tk is predicted to time tk+1. Due to uncertainty
in the object evolution, the predicted component is broadened (dashed line). Let us
assume that three measurements are in the expectation gate, which can be inter-
preted by four data interpretation hypotheses. The likelihood function is thus a sum
of three Gaußians and a constant. The subsequent filtering thus spawns the predicted
component into four filtering components with different weights depending on the
innovation square of the sensor measurement belonging to each component.

Approximations

In case of a more severe clutter background or in a multiple object tracking task with
expectation gates overlapping for a longer time, Bayesian tracking filters inevitably
lead to mixture densities p(xk |Zk) with an exponentially growing number of mixture
components involved. In contrast to the rigorous Bayesian reasoning, the choice of a
prudent approximation scheme is in some sense an “art” depending on the particular
application considered.

Practical experience in many real-world applications (see [32–34], for example)
shows, however, that the densities are usually characterized by several distinct modes.
By using
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Fig. 3.3 Simplified schematic illustration of the MHT filtering process with 4 measurements to be
processed at time tk+1

• individual gating for each track hypothesis,
• local combining of similar components via moment matching, and
• pruning of irrelevant mixture components,

memory explosions can be avoided without destroying the multi-modal structure of
the densities p(xk |Zk). Provided this is carefully done with data-driven adaptivity,
all statistically relevant information can be preserved, while keeping the number of
mixture components under control, i.e. the number of mixture components involved
may be fluctuating and even large in critical situations, but does not grow explosively
[35–38]. This strategy was first applied by van Keuk et al. [39] and is illustrated in
Fig. 3.4.

PDA-type filtering according to Bar Shalom, where all mixture components are
combined via moment matching, is a limiting case of such techniques [23]. As the
phenomenon of distinct modes is inherent in the uncertain origin of the received
data, however, relevant statistical information would get lost if global combining
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Fig. 3.4 Schematic illustra-
tion: local combining of sim-
ilar components via moment
matching and pruning of irrel-
evant mixture components.
a Local combining. b Pruning
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were applied to such cases. The use of PDA-type filtering is thus confined to a
relatively restricted area in parameter space (defined by ρF , PD , for instance).

3.4 Object State Retrodiction

For making statements about past object states Xl at time instants tl with l < k, given
that sensor information Zk is available up to the present time tk , the probability
density functions p(Xl |Zk), i.e. the retrodiction densities, must be calculated. As
before in filtering, Bayes Theorem is the key to an iterative calculation scheme,
which starts with the knowledge on the object p(Xk |Zk) available at the present
time tk and is directed towards the past. In deriving a retrodiction update formula,
which relates p(Xl |Zk) to the previously obtained retrodiction density p(Xl+1|Zk)

calculated for time tl+1, the object state Xl+1 at this very time is brought into play
via marginalization,
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p(Xl |Zk) =
∫

dXl+1 p(Xl , Xl+1|Zk) (3.61)

=
∫

dXl+1 p(Xl |Xl+1, Zk) p(Xl+1|Zk). (3.62)

Since in this equation p(Xl+1|Zk) is assumed to be available, it remains to understand
the meaning of the density p(Xl |Xl+1, Zk) in the integrand of the previous equation.
It seems to be intuitively clear that the knowledge on the object state Xl at time tl
does not depend on the sensor data produced at tl+1, . . . , tk , i.e. p(Xl |Xl+1, Zk) =
p(Xl |Xl+1). In Appendix A.7, a more formal argumentation is given. A subsequent
use of Bayes’ Theorem yields:

p(Xl |Xl+1, Zk) = p(Xl |Xl+1, Zl) (3.63)

= p(Xl+1|Xl) p(Xl |Zl)∫
dXl p(Xl+1|Xl) p(Xl |Zl)

. (3.64)

The retrodiction update equation for p(Xl |Zk) is thus given by:

p(Xl |Zk) =
∫

dXl+1
p(Xl+1|Xl) p(Xl |Zl)

p(Xl+1|Zl)
p(Xl+1|Zk) (3.65)

and combines the previously obtained retrodiction, filtering, and prediction densities
as well as the object evolution model.

We assemble several characteristic features of retrodiction techniques:

1. In the given formulation, retrodiction applies to single as well as multiple objects,
to well-separated objects, object formations, and objects characterized by a more
general state.

2. The retrodicted density for time l is completely determined by the filtering density
at time l and the following instants of time up to the present (l ≤ k). Retrodiction
is thus decoupled from filtering and prediction and may be switched off without
affecting the tracking filter performance (e.g. in overload situations).

3. Accurate filtering and prediction is prerequisite to accurate retrodiction. Provided
these processing steps were performed approximately optimally, the retrodiction
loop provides an approximately optimal description of the past object states.

4. Besides making use of the underlying evolution model of the objects, retrodiction
refers to no other modeling assumption. In particular, the sensor data are not
reprocessed by retrodiction.

5. Retrodiction can provide highly precise reconstructions on object trajectory,
including their velocity and acceleration histories that may contribute to object
classification (see Sect. 1.3.5).

6. The classification of an air target as a helicopter, for example, could be based on
precisely retrodicted velocity estimates equal to Zero. Since such retrodiction-
based classifications have impact on the evolution model chosen for the future,

http://dx.doi.org/10.1007/978-3-642-39271-9_1
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the example illustrates in which way retrodiction results may improve available
knowledge even on present and future object states.

3.4.1 Fixed Interval Smoothing

Let us consider kinematic object states only, Xl = xl , and conditions where Kalman
filtering is applicable. Under these conditions and using the product formula for
Gaußians, Eq. 3.64 can be written as:

p(Xl |Xl+1, Zl) = N (
xl+1; Fl+1|lxl , Dl+1|l

) N (
xl; xl|l , Pl|l

)

N (
xl+1; xl+1|l , Pl+1|l

) (3.66)

= N (
xl; hl|l+1(xl+1), Rl|l+1

)
(3.67)

with the abbreviations:

hl|l+1(xl+1) = xl|l +Wl|l+1(xl+1 − xl+1|l) (3.68)

Rl|l+1 = Pl|l −Wl|l+1Pl+1|lW�l|l+1 (3.69)

and a “retrodiction gain” matrix

Wl|l+1 = Pl|lF�l+1|lP
−1
l+1|l . (3.70)

Note that N (
xl; hl|l+1(xl+1), Rl|l+1

)
can be interpreted in analogy to a Gaußian

likelihood function with a linear measurement function hl|l+1(xl+1). For this reason,
a second use of the product finally yields:

p(xl |Zk) =
∫

dxl+1 p(xl |xl+1, Zk) N (
xl+1; xl+1|k, Pl+1|k

)
(3.71)

= N (
xl; xl|k, Pl|k

)
, (3.72)

where the parameters of the retrodicted density p(xl |Zk) are given the Rauch-Tung-
Striebel [4] retrodiction update equations:

xl|k = xl|l +Wl|l+1
(
xl+1|k − xl+1|l

)
(3.73)

Pl|k = Pl|l +Wl|l+1
(
Pl+1|k − Pl+1|l

)
W�l|l+1. (3.74)

The retrodicted state estimates xl|k do not depend on the corresponding error covari-
ance matrices Pl|k . Their computation may thus be omitted in case of limited
resources.
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3.4.2 Continuous Time Retrodiction

In certain applications, there is a need to produce suitable interpolations between
two retrodicted densities p(Xl |Zk) and p(Xl+1|Zk) at two subsequent data collec-
tion times tl and tl+1 by taking full advantage of the available knowledge of the
objects’ evolution model [40]. For this reason, let us consider probability densi-
ties p(Xl+θ |Zk) with 0 < θ < 1, which represent the available knowledge about
the object state at an intermediate instant of time tl < tl+θ < tl+1. In analogy to the
previous reasoning, we obtain:

p(Xl+θ |Zk) =
∫

dXl+1 p(Xl+θ |Xl+1, Zk) p(Xl+1|Zk) (3.75)

with a modified version of the density in Eq. 3.64:

p(Xl+θ |Xl+1, Zk) = p(Xl+1|Xl+θ ) p(Xl+θ |Zl)

p(Xl+1|Zl)
. (3.76)

Note that the prediction densities p(Xl+θ |Zl), p(Xl+1|Zl) are available according
to Eq. 3.10.

Under conditions, where Kalman filtering is applicable, the Markov transition
density p(Xl+1|Xl+θ ) is given by the Gaußian:

p(xl+1|xl+θ ) = N (
xl+1; Fl+1|l+θxl+θ , Dl+1|l+θ

)
, (3.77)

yielding as a special case of Eq. 3.67:

p(xl+θ |xl+1, Zk) = N (
xl+θ ; hl+θ |l+1(xl+1), Rl+θ |l+1

)
, (3.78)

with the abbreviations:

hl+θ |l+1(xl+1) = xl+θ |l +Wl+θ |l+1(xl+1 − xl+1|l) (3.79)

Rl+θ |l+1 = Pl+θ |l −Wl+θ |l+1Pl+1|lW�l+θ |l+1 (3.80)

Wl+θ |l+1 = Pl+θ |lF�l+1|l+θP−1
l+1|l+θ . (3.81)

p(xl+θ |xl+1, Zk) directly provides an expression for the continuous time retrodiction
density p(xl−θ |Zk) according to the product formula:

p(xl−θ |Zk) = p(xl+1|xl+θ ) p(xl+θ |Zl)

p(xl+1|Zl)
(3.82)

= N (xl−θ ; xl−θ |k, Pl−θ |k) (3.83)

with parameters given by modified Rauch-Tung-Striebel update formulae:
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xl−θ |k = xl−θ |l−1 +Wl|l−θ (xl|k − xl|l−1) (3.84)

Pl−θ |k = Pl−θ |l−1 +Wl|l−θ (Pl|k − Pl|l−1)W�l|l−θ (3.85)

Wl|l−θ = Pl−θ |l−1F�l|l−θP−1
l|l−1. (3.86)

3.4.3 IMM Retrodiction

With an underlying IMM evolution model, we obtain the following expression for
the retrodiction density:

p(xl , il |Zk) =
∑

il+1

∫
dxl+1 p(xl , il |xl+1, il+1, Zk) p(xl+1, il+1|Zk), (3.87)

where we assume that the previous retrodiction density is in analogy to IMM filtering
given by a weighted Gaußian:

p(xl+1, il+1|Zk) = pil+1
l+1|k N (

xl+1; xil+1
l+1|k, Pil+1

l+1|k
)
, (3.88)

while the remaining factor in the integral results from:

p(xl , il |xl+1, il+1, Zk) = p(xl+1, il+1|xl , il) p(xl , il |Zl)∑
il

∫
dxl p(xl+1, il+1|xl , il) p(xl , il |Zl)

. (3.89)

With p(xl , il |Zl) approximately given by Eq. 3.48 and the IMM evolution model in
Eq. 2.11, the product formula yields in analogy to Eq. 3.67:

p(xl , il |xl+1, il+1, Zk) = cil
l|l+1(xl+1) N (

xl; hil+1,il
l|l+1 (xl+1), Ril+1,il

l|l+1

)
(3.90)

with abbreviations hil+1,il
l|l+1 (xl+1) and Ril+1,il

l|l+1 given by:

hil+1,il
l|l+1 (xl+1) = xil

l|l +Wil+1,il
l|l+1 (xl+1 − Fil+1

l+1|lx
il
l|l) (3.91)

Ril+1,il
l|l+1 = Pil

l|l −Wil+1,il
l|l+1 Sil+1,il

l|l+1 Wil+1,il�
l|l+1 , (3.92)

where we used:

Sil+1,il
l|l+1 = Fil+1

l+1|l Pil
l| jl Fil+1�

l+1|l + Dil+1
l+1|l (3.93)

Wil+1,il
l|l+1 = Pil

l| jl Fil+1�
l+1|l

(
Sil+1,il

l|l+1

)−1 (3.94)

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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and factors cil
l| jl (xl+1), which can be interpreted as normalized weighting factors

depending on the object state xl+1:

cil
l|l+1(xl+1) =

pil+1il pil
l+1|l N (

xl+1; Fil+1
l+1|l xil

l+1|l , Sil+1il
l|l+1

)

∑
il pil+1il pil

l+1|l N (
xl+1; Fil+1

l+1|l xil
l+1|l , Sil+1il

l|l+1

) . (3.95)

According to these considerations, p(xl , il |xl+1, il+1, Zk) can no longer be inter-
preted in analogy to a Gaußian likelihood and be evaluated by exploiting the product
formula. The problems are caused by the weighting factors cil

l|l+1(xl+1|k), which
explicitly depend on the kinematic object state at time tl+1 in a rather compli-
cated way. The product formula would be directly applicable only if they were
constant. The best knowledge on xl+1 available at time tk , however, is given by the
expectation xl+1|k calculated in the previous retrodiction step. We thus consider the
approximation:

cil
l|l+1(xl+1) ≈ cil

l|l+1(xl+1|k), (3.96)

which leads to an approximate expression for the retrodicted density:

p(xl , il |Zk) ≈
∑

il+1

∫
dxl+1 cil

l|l+1 pil+1
l+1|k N (

xl; hil+1,il
l|l+1 (xl+1), Ril+1,il

l|l+1

)

× N (
xl+1; xil+1

l+1|k, Pil+1
l+1|k

)
(3.97)

=
∑

il+1

pil+1il
l|k N (

xl; xil+1il
l|k , Pil+1il

l|k
)

(3.98)

with pil+1il
l|k = cil

l|l+1 pil+1
l+1|k , while the parameters xil+1il

l|k and Pil+1il
l|k are obtained

by the Rauch-Tung-Striebel formulae 3.73, 3.74. As in standard IMM prediction,
p(xk, ik |Zk−1) is approximated via moment matching ([23, p. 56 ff], Appendix A.6)
yielding

p(xl , il |Zk) ≈ pil
l|k N (

xl; xil
l|k, Pil

l|k
)

(3.99)

with parameters pil
l|k , xil

l|k , and Pil
l|k given by:

pil
l|k =

r∑

il+1=1

pil+1il
l|k

xil
l|k =

1

pil
l|k

r∑

il+1=1

pil+1ik
l|k xil+1il

l|k (3.100)

Pil
l|k =

1

pil
l|k

r∑

il+1=1

pil+1il
l|k

(
Pik ik−1

k|k−1 + (xil+1il
l|k − xil

l|k)(x
il+1il
l|k − xil

l|k)
�)

.
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If only the retrodictions of the kinematic state variables xl are of interest, p(xl |Zk)

is given by a Gaußian sum with r mixture components:

p(xl |Zk) =
r∑

il=1

p(xl , il |Zk) (3.101)

≈
r∑

il=1

pil
l|k N (

xl; xil
l|k, Pil

l|k
)
. (3.102)

3.4.4 MHT Retrodiction

As discussed before in the case of MHT filtering, data interpretation histories jk pro-
vide possible explanations of the origin of a time series Zk consisting of ambiguous
sensor data. The notion of retrodiction can also be applied to those situations. Due
to the total probability theorem and under the conditions discussed in Sect. 2.3.3, the
retrodiction p(xl |Zk) may be represented by a mixture:

p(xl |Zk) =
∑

jk

p(xl , jk |Zk) (3.103)

=
∑

jk

pjk
N (

xl; xjk
l|k, Pjk

l|k
)
. (3.104)

Since for any given data interpretation history jk the conditional probability densities

p(xl |jk, Zk) are unambiguous, the parameters xjk
l|k , Pjk

l|k of the retrodiction density

p(xl |Zk) directly result from the Rauch-Tung-Striebel formulae, while the weighting
factors pjk

are those obtained in the filtering step. In other words, the retrodiction
process proceeds along the branches of the data interpretation hypotheses tree.

In the following, we assemble several aspects of MHT retrodiction.

1. For well-separated objects and a single evolution model under ideal operational
conditions, i.e. without false measurements and assuming perfect detection, the
approach comes down to the Rauch-Tung-Striebel fixed-interval smoothing as
a limiting case. Hence, the Rauch-Tung-Striebel formulae play a role in MHT
retrodiction that is completely analogous to the Kalman update formulae in MHT
filtering.

2. MHT retrodiction can be combined with IMM evolution models. Under ideal
conditions with well-separated objects, we obtain a hierarchy of approximations
to the original retrodiction problem. Adopting the standard terminology [4], the
Fraser-Potter-type algorithms in [41, 42] are approximations to optimal retro-
diction in the two-filter form insofar as the results of backward and forward
filters are combined. In our view, however, the Rauch-Tung-Striebel-type formu-
lation of approximate IMM-smoothing offers advantages over Fraser-Potter-type

http://dx.doi.org/10.1007/978-3-642-39271-9_2
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algorithms insofar as computational effort is concerned (e.g. matrix inversions
involved). In addition, Rauch-Tung-Striebel-type algorithms are initialized by
the filtering results (no diffuse prior density).

3. In order to avoid memory explosions such as mentioned in Sect. 3.3.3, those
mixture components in the filtering process are neglected (pjk

→ 0) that are
either statistically irrelevant or can be combined with other mixture components.
This has useful consequences: If all hypotheses with the same prehistory jk−1
are canceled, jk−1 is irrelevant itself (pjk−1 → 0). This scheme may be applied
repeatedly to all subsequent prehistories jl , l < k − 1, finally leading to a unique
track. This process is called reconstruction of histories [28, 29, 32]. The work
reported in [43] also points in that direction. As observed in [28, 32], we assemble
the following facts.

(a) The history is correctly reconstructed with high probability.
(b) The number of relevant hypotheses to be stored can be drastically reduced.
(c) The number of missed detections in a reconstructed history provides on-

line estimations of the detection probability that are otherwise not easily
obtainable.

4. Oliver Drummond’s Retrodiction of Probabilities [2, 3] is an approximation of
the retrodiction density p(xk |Zk) that omits the Rauch-Tung-Striebel update of
the retrodicted expectation vector and the corresponding covariance matrix. In
other words, we assume:

N (
xl; xjk

l|k, Pjl
l|k

) ≈ N (
xl; xjk

l|l , Pjl
l|l

)
. (3.105)

As a direct consequence, we yield approximations to the density functions

p(xl |Zk) ≈
∑

jl

p∗jl
N (

xl; xjl
l|l , Pjl

l|l
)

(3.106)

with mixture coefficients p∗jl
that are recursively defined by

p∗jl
=

{
pjk

for l = k∑
jl+1∈Jjl+1|jl

p∗jl+1
for l < k,

(3.107)

where the sum is taken over all histories jl+1 with the same prehistory jl . True
hypotheses that incidentally have had a small weight in at the time, when they
were originally created, may well increase in weight incrementally during this
procedure as time goes by. Retrodiction of discrete probabilities is computation-
ally cheap since only weighting factors are to be re-processed, leaving the state
estimates and their error covariance matrices unchanged.

5. In principle, retrodiction methods do not affect the description of the current
object states provided the filtering was done correctly. As previously discussed
(Sect. 3.3.3), however, in any practical realization approximations must be applied
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Fig. 3.5 Schematic overview
of retrodiction within a multi-
ple hypothesis framework tk

t k−2
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tk+2
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to avoid memory explosions. In this context, retrodiction-based pruning offers the
potential of improved approximations to optimal filtering. The scheme generalizes
the strategy in [1, 3] in that, as each set of sensor data becomes available, the
modification of earlier track hypotheses has impact on subsequent tracks (Multiple
Frame Data Association).

(a) In retrodiction-based cut-off, we first permit hypotheses with even very small
weights at present. By retrodiction of probabilities, retrospectively some past
hypotheses increase in weight, while others decrease. Then, starting at a
certain time in the past, hypotheses with insignificant weights are neglected.
This has impact up to the present scan since all descending track hypotheses
vanish themselves, while the remaining weighting factors are renormalized.
This scheme may be applied repeatedly over several data collection times.

(b) In close analogy to retrodiction-based cut-off, we might also delay the deci-
sion if two hypotheses are to be combined, thus leading to retrodiction-based
local combining.

Retrodiction-based pruning seems to be particularly useful in track initiation/
extraction [44], an issue addressed below (Sect. 4).

Figure 3.5 provides a schematic overview of retrodiction within a multiple hypothesis
framework.

3.4.5 Discussion of an Example

The following aspects are illustrated by an example with real radar data:

1. Data association conflicts arise even for well-separated objects if a high false
return background is to be taken into account, which cannot completely be sup-
pressed by clutter filtering at the signal processing level.

2. Even in the absence of unwanted sensor reports, ambiguous correlations between
newly received sensor data and existing tracks are an inherent problem for objects

http://dx.doi.org/10.1007/978-3-642-39271-9_4
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Fig. 3.6 An example taken from wide-area ground-based air surveillance: two pairs of highly
maneuvering aircraft in a training situation (high residual clutter background)
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moving closely-spaced for some time. Furthermore, resolution phenomena make
the data association task even harder.

3. Additional problems arise from poor quality sensor data, due to large measure-
ment errors, low signal-to-noise ratios, or fading phenomena (i.e. successively
missing plots). Besides that, the scan rates may be low (especially in long-range
surveillance applications).

Figure 3.6 shows a radar data set accumulated over about 240 and 290 scans,
respectively. As well as many false alarms, the data of two pairs of highly maneu-
vering aircraft in a training situation were recorded. The detection probability is
between 40 and 60 %. The data were collected from a rotating S-band long-range
radar measuring target range and azimuth (scan period: 10 s, range accuracy: 350 ft,
bearing accuracy: 0.22 ◦, range resolution: 1,600 ft, bearing resolution: 2.4 ◦). Infor-
mation on the real object position is crucial for evaluating tracking filters. Here a
secondary radar was used. The verified primary plots are indicated by and+ in the
figures right to the raw data along with the final tracking result (i.e. tracking output
according to multiple data association hypotheses and subsequent retrodiction until
no further improvement is obtained).

The 2nd and 4th row in 3.6 show for both scenarios the MMSE-estimates of
the objects’ positions are displayed for a retrodiction delay of zero, 2, 4, 6, and
12 scans. The estimates with no delay are simply obtained by MHT-type filtering.
The resulting trajectories seem to be of small value for assessing the air situation.
The related variances (very large) are not indicated. The high inaccuracy observed
reflects the complex hypothesis tree resulting from ambiguous data interpretations.
Multiple dynamics model filtering (IMM) does outperform single model filtering in
some particular situations that are characterized by fewer data association conflicts
and at least one non-maneuvering target. Aside from those situations, however, the
overall impression of the pure filtering result is similar for both cases.

By using MHT-retrodiction, even a delay of two frames significantly improves
the filtering output. We displayed the MMSE estimates derived from p(xl |Zk) for
l = 2, 4, 6, 12. A delay of 6 frames (i.e. 1 min) provides easily interpretable trajec-
tories, while the maximum gain by retrodiction is obtained after 12 frames delay.
Evidently the final retrodiction results fit the verified primary plots very well. If
IMM-retrodiction is used, we essentially obtain the same final trajectory. However,
in certain flight phases (not too many false returns, no maneuvers) it is obtained by
a shorter delay (about 1–3 frames less). i.e. Under certain circumstances, accurate
speed and heading information is available earlier than in case of a single dynamics
model.
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Chapter 4
Sequential Track Extraction

Iterative tracking algorithms must be initiated appropriately. Under simple condi-
tions, this is not a difficult task, as has been shown above (Eq. 3.8). For low observ-
able objects, i.e. objects embedded in a high clutter background [1–5] or in case of
incomplete measurements [6, 7], more than a single set of observations at particular
data collection times are usually necessary for detecting all objects of interest mov-
ing in the sensors’ fields of view. Only then, the probability density iteration can be
initiated based on ‘extracted’ object tracks, i.e. by tentative tracks, whose existence
is ‘detected’ by a detection process working on a higher level of abstraction. This
process makes use of a time series of accumulated sensor data Zk = {Zi }ki=1.

4.1 Well-Separated Objects

Assuming at first that the objects are well-separated, for the sake of simplicity, we thus
have to decide between two alternatives before a tracking process can be initiated:

• h1: Besides false data, Zk also contains real object measurements.
• h0: There is no object in the FoV; all sensor data in Zk are false.

As a special case of the more general theory of statistical decision processes, the
performance of a track extraction algorithm is characterized by two probabilities
related to the decision errors of first and second kind:

1. P1 = P(accept h1|h1), i.e. the conditional probability that h1 is accepted given
h1 is actually true (corresponding to the detection probability PD of a sensor
discussed in Sect. 2.3.4).

2. P0 = P(accept h1|h0): the conditional probability that h1 is accepted given it is
actually false (corresponding to the false alarm probability PF of a sensor).
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4.1.1 Sequential Likelihood Ratio Test

In typical tracking applications, the decisions between the alternatives must be made
as quickly as possible on average for given decision probabilities P0, P1. The decision
algorithm discussed below fulfills this requirement and is of enormous practical
importance. It is called Sequential Likelihood Ratio Test and was first proposed by
Abraham Wald [2–4, 8, 9].

The starting point for sequential decision-making in the context of track extraction
is the ratio of the conditional probabilities p(h1|Zk) of h1 being true given all data
have been processed appropriately and p(h0|Zk) of h0 being true given the sensor
data. If p(h1|Zk) is close to One and p(h0|Zk) close to Zero, the ratio is large, while
it is small if p(h1|Zk) is close to Zero and p(h0|Zk) close to One. If both hypotheses
are more or less equally probable, the ratio is of an intermediate size. According to
Bayes’ Theorem, we obtain:

p(h1|Zk)

p(h0|Zk)
= p(Zk |h1)

p(Zk |h0)

p(h1)

p(h0)
. (4.1)

Since the a priori probabilities p(h1) and p(h0) are in most applications assumed to
be equal, this defines a test function, which is called likelihood ratio:

LR(k) = p(Zk |h1)

p(Zk |h0)
(4.2)

and can be calculated iteratively by exploiting the underlying object evolution and
sensor models p(Xk |Xk−1) and p(Zk |Xk).

An intuitively plausible sequential test procedure starts with a time window of
length k = 1 and iteratively calculates the test function LR(k) until a decision can
be made. At each step of this iteration the likelihood ratio is compared with two
thresholds A and B:

LR(k) < A, accept the hypothesis h0 (i.e. no object existent)
for LR(k) > B, accept the hypothesis h1 (i.e. an object exists)
A < LR(k) < B, expect new data Zk+1, repeat the test with LR(k + 1).

4.1.2 Properties Relevant to Tracking

Note that the iterative calculation of likelihood ratios has a meaning, which is
completely different from the iterative calculation of probability density functions,
although similar formulae and calculations are implied, as will become clear below.
By iteratively calculated likelihood ratios we wish to decide, whether an iterative
tacking process should be initiated or not.

1. The most important theoretical result on sequential likelihood ratio tests is the fact
that the test has a minimum decision length on average given predefined statistical
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decision errors of first and second kind, which have to be specified according the
the requirements in a given application.

2. Furthermore, the thresholds A, B can be expressed as functions of the decision
probabilities P0, P1, i.e. they can be expressed as functions of the statistical deci-
sion errors of first and second kind and are thus not independent test parameters
to be chosen appropriately. A useful approximation in many applications is given
by:

A ≈ 1− P1

1− P0
, B ≈ P1

P0
. (4.3)

4.1.3 Relation to MHT Tracking

Likelihood ratios LR(k) can be calculated iteratively as a by-product of the standard
Bayesian tracking methodology previously discussed, provided we look upon it from
a different perspective. This can be seen directly:

LR(k) = p(Zk |h1)

p(Zk |h0)
(4.4)

=
∫

dxk p(Zk, mk, xk, Zk−1|h1)

p(Zk, mk, Zk−1, h0)
(4.5)

=
∫

dxk

likelihood︷ ︸︸ ︷
p(Zk, mk |xk, h1)

prediction︷ ︸︸ ︷
p(xk |Zk−1, h1)

|FoV|−mk pF (mk)︸ ︷︷ ︸
clutter model

LR(k − 1). (4.6)

According to these considerations, the likelihood ratio is in general a sum of a
temporally increasing number of individual likelihood ratios,

LR(k) =
∑

i

λi
k . (4.7)

In order to avoid memory explosion in calculating the likelihood ratio, the same
type of mixture approximation techniques as discussed in Sect. 3.3.3 can be applied
(merging of similar, pruning of summandsλi

k that are too small). Figure 4.1 provides a
schematic illustration of the hypothesis tree structure, which is created by sequentially
calculating the likelihood ratio test function. As soon as a decision in favor of object
existence is made, e.g. at time tk , the normalized individual likelihood ratios can be
used for initializing the tracking process:

p(xk |Zk) =
∑

i

λi
k∑

j λ
j
k

N (xk; xi
k|k, Pi

k|k), (4.8)
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Fig. 4.1 Schematic
illustration of the hypothe-
sis tree structure created by
sequentially calculating the
likelihood ratio test function
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where xi
k|k and Pi

k|k are by-products of the calculation of λi
k . As soon as the track

has been initiated, the calculation of the likelihood ratio can be restarted as it is a
by-product of track maintenance. The output of these subsequent sequential ratio
tests can serve to re-confirm track existence or track deletion, depending on the test
output. See [1, 2] for details. So far, the problem of multiple well-separated object
track extraction, track maintenance, and track deletion, i.e. the full life cycle of a
track, is solved in principle. See [5] for an alternative calculation of LR(k) by using
PMHT techniques and [10] for a proof that for well-separated objects, this scheme
is identical with Gaußian Mixture Cardinalized PHD filtering (GM-CPHD). Careful
quantitative performance evaluations can be found in [11].

4.2 Object Clusters

Sequential likelihood testing can be extended to the problem of extracting object
clusters with an unknown number of objects involved. To this end let us assume
that the number n of objects involved is limited by N (not too large). The discussed
method is confined to N being less than around 10. This means that it can be applied
to aircraft formations and convoys of ground moving objects, which are practically
relevant examples of object clusters. It is not applicable to larger object clouds or
swarms.

4.2.1 Generalized Likelihood Ratio

The ratio of the probability p(h1 ∨ h2 ∨ . . .∨ hN |Zk) that a cluster consisting of at
least one and at most N objects exists versus the probability of having false returns
only can be written as:
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p(h1 ∨ . . . ∨ hN |Zk)

p(h0|Zk)
=

∑N
n=1 p(hn|Zk)

p(h0|Zk)
(4.9)

=
N∑

n=1

p(Zk |hn)

p(Zk |h0)

p(hn)

p(h0)
. (4.10)

We thus very naturally obtain a generalized test function

LR(k) = 1

N

N∑

n=1

LRn(k) with LRn(k) = p(Zk |hn)

p(Zk |h0)
(4.11)

to be calculated in analogy to the case n = 1. In practical applications the finite
resolution capabilities of the sensors involved have to be taken into account (see
section IV.A). For the sake of simplicity this has been omitted here.

4.2.2 On Cluster Cardinality

It seems to be reasonable to interpret the normalized individual likelihood ratios as
a ‘cardinality’, i.e. as a measure of the probability of having n objects in the cluster.

ck(n) = LRn(k)
∑N

n=1 LRn(k)
. (4.12)

An estimator for the number of objects within the cluster is thus given by

n̄ =
N∑

i=1

n ck(n). (4.13)

See [2, 3] for a more detailed description of the iterative calculation of the likelihood
ratios, practical implementation issues and quantitative results.
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