Recapitulation: Expected Measurements

innovation statistics, expectation gates, gating

p(z] 25°1) = /dxkp(zk,xuzk—l) - /dxkp(zuxk) p(xi] 21

= /ka \./\/’(Zk; Hka, Rk) N<Xk; Xk:|k:—17 Pk;|k:—1)/

7 \\

likelihood: sensor model prediction at time ¢,

= N (z; HipXgp—1, Skje-1) (product formula)

innovation: Vigk—1 = 2k — HpXpp—1,

innovation covariance: Sj;_; = HkPMk_ng + R

expectation gate: .S

Vk]k:—l Vilk—1 < A(Pc)

-1

k|k—1

MAHALANOBIS ellipsoid containing z; with certain probability P.
Choose A(P.) (“gating parameter”) properly!

Can be looked up in a x2-table!

\
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Sensor data of uncertain origin

@ true plots & unresolved
O false plots O false plots

correlation gates correlation gates

e prediction: x 1, Pgp—1 (dynamics) o expected plot: z; ~ N (Hxy,_1,Si)
e innovation: | v, =z — HXk;|k—1 , White ® UV~ N(O, Sk), S = HPk‘k_lHT—FR
e Mahalanobis norm: | ||v||? = v]'S; vk e gating: |[|vk|| < A, P.()\) correlation prob.

missing/false plots, measurement errors, scan rate, agile targets: large gates

\

~ Fraunhofer
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A Generic Tracking and Sensor Data Fusion System

Tracking & Fusion System

Sensor System

Sensing Hardware:

Received Waveforms

Track Initiation:

Multiple Frame
Track Extraction

Track Processing:

- Track Cancellation
- Object Classification / 1D

- Track-to-Track Fusion
‘ [S)Z:‘asor A Priori Knowledge: T T
Detection Process: - Sensor Performance Sensor Data to Track File
Data Rate Reduction - Object Characteristics Track Association Storage
‘ 222?% - Object Environment l ¢
Man-Machine Interface:

Signal Processing:

Parameter Estimation

Track Maintenance:

Prediction, Filtering
Retrodiction

- Object Representation
- Displaying Functions
- Interaction Facilities

Sensor System

Sensor Data Fusion - Methods and Applications, 8th Lecture on December 19, 2018 —

slide 3

Sensor System

\
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Description of the Detection Process

Detector: receives signals and decides on object existence
Processor: processes detected signals and produces measurements

‘D’: detector detects an object
D: object actually existent

\

~ Fraunhofer
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Description of the Detection Process

Detector: receives signals and decides on object existence
Processor: processes detected signals and produces measurements

‘D’ detector detects an object error of 1. kind: P = P(—'D’|D)
D: object actually existent error of 2. kind: P = P(‘'D’|-D)

measure of detection performance: Pp = P(‘D’|D)

detector properties characterized by two parameters:
— detection probability Pp =1 — A
— false alarm probability Pr = Pj;

\
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Description of the Detection Process

Detector: receives signals and decides on object existence
Processor: processes detected signals and produces measurements

‘D’ detector detects an object error of 1. kind: P = P(—'D’|D)
D: object actually existent error of 2. kind: P = P(‘'D’|-D)

measure of detection performance: Pp = P(‘D’|D)

detector properties characterized by two parameters:
— detection probability Pp =1 — A
— false alarm probability Pr = Pj;

example (Swerling | model): Pp = Pp(Pr,SNR) = p}/““‘SNR)

detector design: Maximize detection probability Pp
for a given, predefined false alarm probability P!

= Fraunhofer
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ambiguous sensor data (Pp < 1, pr > 0)

ny. + 1 possible interpretations of the sensor data 7Z;, = {z{%}?ﬁll

e Fj: the object was not detected; ny false data in the Field of View (FoV)

e £;,7=1,...,n;: Object detected, Z}i is object measurement; n; — 1 false plots

Consider the interpretations in the likelihood function p( 7., ny|x;)!

\
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Sensor Data Fusion - Methods and Applications, 8th Lecture on December 19, 2018 —  slide 7 FKIE



ambiguous sensor data (Pp < 1, pr > 0)

ny. + 1 possible interpretations of the sensor data 7Z;, = {z{%}?ﬁll

e Fj: the object was not detected; ny false data in the Field of View (FoV)

e £;,7=1,...,n;: Object detected, Z}i is object measurement; n; — 1 false plots

Consider the interpretations in the likelihood function p( 7., ny|x;)!

p(Zg, nik|xk) = p(Zg, nk, " D|x;) + p(Zk, ng, D|Xx) D = “object was detected”

\

~ Fraunhofer
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ambiguous sensor data (Pp < 1, pr > 0)

ny. + 1 possible interpretations of the sensor data 7Z;, = {z{%}?ﬁll

e Fj: the object was not detected; ny false data in the Field of View (FoV)

e £;,7=1,...,n;: Object detected, Z}i is object measurement; n; — 1 false plots

Consider the interpretations in the likelihood function p( 7., ny|x;)!

p(Zg, nik|xk) = p(Zg, nk, " D|x;) + p(Zk, ng, D|Xx) D = “object was detected”

= p(Zg,ni|mD,x) P(—~D|X) +p(Zr,ng|D, X)) P(D|x
P(Z, ni| k) \_(1 *]g|( k))J p(Zk, ni| D, Xy,) _(P(| l;:)

sensor parameter: detection probability Pp(x;)

\
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Tracking Application: Ground Picture Production

GMTI Radar: Ground Moving Target Indicator

wide area, all-weather, day/night, real-time surveillance of
a dynamically evolving ground or near-to-ground situation

GMTI Tracking: Some Characteristic Aspects

backbone of a ground picture: moving target tracks

e airborne, dislocated, mobile sensor platforms
e vehicles, ships, ‘low-flyers’, radars, convoys
e occlusions: Doppler-blindness, topography

e road maps, terrain information, tactical rules
e dense target / dense clutter situations: MHT

~Z Fraunhofer
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Examples of GMTI Tracks (live exercise)
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GMTI: Fusion of ‘Negative’ Information

low-DOPPLER targets can be masked by the GMTI clutter notch I

e fading: series of missing plots (target/sensor geometry)
e Stopping targets: indistinguishable from ground clutter
e mdv: minimum detectable velocity (sensor parameter)

a simple GMTI detection model: qualitative discussion

e detection depends on target kinematics & target/sensor geometry
e detection probability Pp(x;.) is small if ne = rp, — 7c(x) < mdv

e there exists a narrow transition region between these domains

~Z Fraunhofer
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sensor performance: quantitative model

e basis: snir = snir(ry, vi, 71 ), Signal-to-Noise+Interference Ratio

- 2
- - _ —4 —lo 2(”007{;7@]{/’74;))
snir = snirg (g—’g) (%) D(y.) [1 e ? vm
" T~ "~ ——" M g
rcs propagation directivity clutter notch (<% fAZ'r |nc|<vm)

e quadrature detector with given P-x, rcs fluctuations: SWERLING |

1

} 1+snir(ry.,p7.,77.)
Py(rg, ¢, 7k) = Ppy o FTRE

e as usual: residual clutter; bias free, GAUSSian errors (monopulse)

O-r,go,f“(rka Pk ’T‘k) — ZT,QO,T/\/Snir(le Pk ’I“k)

\

~ Fraunhofer
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Clutter Notch: A Priori Information!

— current position (Sensor-to-target-geometry)
— sensor specific width (STAP — MDV)
— detection process: generic model

GMTI model = mixture densities:

— well-understood formalism directly applicable

— class of GAUSS/an mixtures remains invariant
— pdfs characterized by a set of parameters

— growing memory: standard-type approximations

model inherent: reason for missing detections
— An adequate treatment becomes possible!

~Z Fraunhofer
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PDFs with / without exploiting the GMTI sensor model

0.06

o
o
o

Missing detection occurred Several missing detections Detection occurred near
near the clutter notch in the clutter notch the clutter notch

\

~ Fraunhofer
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A ‘negative’ sensor output can also provide infor-

mation on the kinematical state vector of a target.

e fictitious plot: function of position / radial speed

e mdv: appears as a fictitious measurement error

e fusion: exploit differing target/sensor geometries

~Z Fraunhofer
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ambiguous sensor data (Pp < 1, pr > 0)

ny. + 1 possible interpretations of the sensor data 7Z;, = {z{%}?ﬁll

e Fj: the object was not detected; ny false data in the Field of View (FoV)

e £;,7=1,...,n;: Object detected, Z}i is object measurement; n; — 1 false plots

Consider the interpretations in the likelihood function p( 7., ny|x;)!

p(Zg, nik|xi) = p(Zg, ni, " D|x) + p(Zk, ng, D|Xx) D = “object was detected”
= p(Z, nk| =D, xx) P(=D|x¢) + p(Zk, ng| D, %) p(D|xt)

Ny
= p(Zx|ng, =D, xx) p(ng|=D,xx) (1 — Pp) + Pp Z p(Zk, g, J1 D, Xx)
=|FoV|- =pr(n) j=1

false measurements: Poisson distributed in #, uniformly distributed in the FoV

\

~ Fraunhofer
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Modeling of False Measurements (FM)

e Probability of having n FM: pp(n)

— mean number of FM in the ‘Field of View’ (FoV) of a sensor:

n = pp|FoV|, false measurement density pg (perhaps not constant)

~Z Fraunhofer
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Modeling of False Measurements (FM)

e Probability of having n FM: pp(n)

— mean number of FM in the ‘Field of View’ (FoV) of a sensor:

n = pp|FoV|, false measurement density pg (perhaps not constant)

n

— assumption: n is a Poisson distributed RV with  [pr(n) = % o7

~Z Fraunhofer
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Modeling of False Measurements (FM)

e Probability of having n FM: pp(n)

— mean number of FM in the ‘Field of View’ (FoV) of a sensor:

n = pp|FoV|, false measurement density pg (perhaps not constant)

n

— assumption: n is a Poisson distributed RV with  [pr(n) = % o7

expectation: E[n] = n, variance: V[n] =n

~Z Fraunhofer
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o _ o ,’TL’n, _ _
normalization: > pp(n) =e " = e =1
n=0 n=0 n!
_ 0 &Zn _ 0o gn e nn—1
expectation: E[n] =e™" n—=e "> n—=ne ")
—o N =1 n! =1 (n—1)!
n
variance: V[n] = E[(n —7n)?] = E[n?] — 7% = ...exercise!... =7

22
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Modeling of False Measurements (FM)

e Probability of having n FM: pp(n)

— mean number of FM in the ‘Field of View’ (FoV) of a sensor:

n = pp|FoV|, false measurement density pg (perhaps not constant)

n

— assumption: n is a Poisson distributed RV with  [pr(n) = % o7

expectation: E[n] = n, variance: V[n] =n

e Distribution of FM in the Field of View: p(z/,...,z}|FoV)

n
— FM mutually independent: p(z]{, e ,z£|FoV) = H p(z{|FoV)
i=1

~Z Fraunhofer
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Modeling of False Measurements (FM)

e Probability of having n FM: pp(n)

— mean number of FM in the ‘Field of View’ (FoV) of a sensor:

n = pp|FoV|, false measurement density pg (perhaps not constant)

n

— assumption: n is a Poisson distributed RV with  [pr(n) = % o7

expectation: E[n] = n, variance: V[n] =n

e Distribution of FM in the Field of View: p(z/,...,z}|FoV)

n
— FM mutually independent: p(z]{, e ,z£|FoV) = H p(z{|FoV)
i=1

— uniformly distributed in the FoV:  p(z! |FoV) = |[FoVv|~1 (often)

~Z Fraunhofer
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ambiguous sensor data (Pp < 1, pr > 0)

ny. + 1 possible interpretations of the sensor data 7Z;, = {Z]é}?ill

e Fj: the object was not detected; ny false data in the Field of View (FoV)

e £;,7=1,...,n;: Object detected, z{: is object measurement; n; — 1 false plots

Consider the interpretations in the likelihood function p( 7., ny|x;)!

p(Z, ni|xr) = p(Zg, ni, " D|x;) + p(Zk, ng, D|xXx) D = “object was detected”
= p(Zy, nk| =D, xi) P(=D|x) + p(Zk, ng| D, %) p(D|xx)

ny
= p(Z|nk, =D, x1.) p(nk| =D, xz) (1 = Pp) + Pp Y p(Zy, ks, §|1D, X1
=1

Uz

j=1 ]FOV|*(”k*1)N(Z'£;ka,R) =I7nk =pF€7;k—1)

Insert Poisson distribution:  py(n;,) = LAFOVD™ o—prlFoVi

Mg+

\

~ Fraunhofer
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ambiguous sensor data (Pp < 1, pr > 0)

ny. + 1 possible interpretations of the sensor data 7Z;, = {Z]é}?ill

e Fj: the object was not detected; ny false data in the Field of View (FoV)

e £;,7=1,...,n;: Object detected, z{: is object measurement; n; — 1 false plots

Consider the interpretations in the likelihood function p( 7., ny|x;)!

p(Z, ni|xr) = p(Z, ni, " D|x) + p(Zk, ng, D|Xx) D = “object was detected”
= p(Zg, nk| =D, xi) P(=D|x%) + p(Zk, ni| D, xi) p(D]xz)
Ny
= p(Zi|nk, =D, xx) p(ni|=D,xi) (1 = Pp) 4+ Pp > p(Z, n, 5| D, xi)

=1

j=1

— e—rrlFoV| pT}k_l ((1 _ PD)PF + PD Z N(Z‘]Z:' HXk., R))

J=1

\

~ Fraunhofer
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Likelihood Functions

The likelihood function answers the question:
What does the sensor tell about the state x of the object?

(input: sensor data, sensor model)

e ideal conditions, one object: PH = 1, ppr =0

' zi|xr) = N (zx; Hx;, R
at each time one measurement: 20 = N xR |

e real conditions, one object: PH < 1, pr >0

at each time n,, measurements Z;, = {z},...,z,*}!

p(Zk, ng|xx) o< (L — Pp)pr + Pp Z J\/'(Z?;; Hx;, R)

j=1

27
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PDAF Filter: formally analogous to Kalman Filter

Filtering (scan k—1): p(x;_1|2¥ 1) ~ N(xp_1; Xp—1k—1> Pr—1jk—1) (— initiation)

prediction (scan k): p(xx|ZF 1) = N(xp; Xplk—1, Prie—1) (like Kalman)
Filtering (scan k): p(xx|Z%) &~ > pl N (xu; X‘,im,Pi'k)
7=0

BLACKBOARD!

~Z Fraunhofer
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PDAF Filter: formally analogous to Kalman Filter

Filtering (scan k—1): p(x._1|Z2F 1) ~ N(xp_1; Xp—1k—1> Pr—1jk—1) (— initiation)

prediction (scan k): p(xi|ZF 1) = N(x; Xplk—1, Prie—1) (like Kalman)
UL - - ~ N (Xks X/, Prji)
j=0
o = {Xk|k1 - j=0 P — {szkl j=0
klk Xg|k—1 Wklli: j#0 klk Prir—1— WkSkW;I J7#0

v) = 7] — Hx, W, = }Dk:|l<:—1HTS];1/7 Sy = !_IPkU@—lHT + Ry

innovation gain?ﬁatrix innovation covariance
; Py i (1 — Pp) pr j=0
P — Gk P — Pp e_%’/; S v, j#£0
Zj Py \/ |27Sy]
——
Gewichte

\
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Moment Matching: Approximate an arbitrary pdf

p(x) with E[z] = x, Clx] =P by p(x) ~ N(az; X, P)!

here especially: p(z) => pgN(z;xg,Py) (normal mixtures)

BN (x)+p,N,y(x) Gauss—Dichte // ‘\ N, (x)+p,N,(x)
PiN;(x) \\\
AN

pPaNo(x) 7 \\\\\

/ ‘A ) P1

/ \\\ !

N\
// \\\ P2

_r \ RN |

PH XH
spread term

D
H

P = ZpH {PH—I—(XH—X)(XH—X)T}
H

\

~ Fraunhofer
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Second-order Approximation of the Mixture Density:

Zpi N (x; X£|k’ Pim) ~ N (Xk; Xp Py

j=1

my
L _E J <)
7=0

Py = Zpi (PZ;UC + (Xim - Xk|k:)(Xi;|k; - Xk|l<:)T)
j=0

31
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my,
— E : J<oJ 0 __ J = J
Xk|lk = pkxk|ka Xk|k — Xk|k—1> Xk:|k; — Xk|k—1 + Wkuk
7=0

Pk\k — Zpi; (Pi;ug + (Xirlk - Xk:|k:)(x}i|k — Xk:|l<:)T)
7=0

32
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my,
— J <J
Xk|k = E :kak;|k:
J=0

my
= ppXpje—1 + Zp]k (Xpjp—1 + Wiry)

=1

Pk;\k — ZP‘;@ (P‘,im + (X‘,iw - Xk:|k:)(Xi,|k - Xk|k)T)
j=0

33
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my
— J<J
Xk[k — E :pk:Xk:Uc
J=0

my
= ppXppk—1 + Zpi; (X1 + Wir7)

j=1
M . M ..
= Xg|k—1 (pg + Zp}jf) + Wi Zpi;’/i:
\ 1=1 y =1
=11 mean!

Pk\k — Zpi; (Pirlk + (Xi,wg - Xk|k)(X‘,i|k - Xk:|k)T>
j=0

34
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my
— J <J
Xk[k = E :pkzxkz|k:
J=0

my
= ppXpp-1 + ZP‘;Z; (Xgp—1 + W) = Xpp-1 + Wi vy,

=1

35
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my
— JJ
Xklk = E :pkka
J=0

myg
_ .0 | N
= PpXgk—1 T g P (Xkp—1 + Wirl) = xpp-1 + Wy vy,

=1

Prr =Y ph (Pl + by = xum) 5 — Xkn) ) PRy = Prp1, Py = Prpo1 — WiSi W[
j=0

= Pyjp—1— ZP%WkSkW;I + Zpiwk(l/{; —vp) (W, —vi) W

Combined Innovation:
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my
— J<J
Xkl = E :pkxk|k
j=0

my
__ .0 ' A
= PpXglk—1 T Zpi; (Xgp—1 + Wirh) = Xpp-1 + Wi vy,

j=1
P = Zp‘/?e <Pi\k + (Xi:uc - ka)(X‘Z;m ~ Xklk)T)
j=0

= Prp—1 — ZPiWkSkW;I + ZP‘;QW/C(V‘;@ —vp) (], —v) W

J=1 J=1
=Pt — (1 — p)WiSiW, + W, [ S pivivl’ - W,J] W]
J=1

Combined Innovation:

37
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PDAF Filter: formally analog to Kalman Filter

Filtering (scan k—1): p(x;_1|Z2% 1) ~= N(xp_1; X)—1k—1, Pr—1j5—1) (— initiation)

prediction (scan k): p(xi| ZF 1) =~ N(xp; , ) (like Kalman)
Filtering (scan k): p(xk|Z*) =~ ka{:N(xk; Xi|k’Pi|k) ~ N Xk Xpp Prjr)
j=0
Z;nzko piu v, ; i . . .
v, = , vy = 7 — Hxppq combined innovation
W, = Py 1H'S; ', S, = HP,, ;H' + Ry Kalman gain matrix
P, =py/ o, Py = { 3 s, PDif;;ksHkka weighting factors
V1278,
X, = + W, v, (Filtering Update: Kalman)
P, = — (1-p9) W, ,SW/ (Kalman part)
+ Wk{ S m vyl — ukukT}W,;r (Spread of Innovations)

38
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PDAF: Characteristic Properties

e filtering: processing of combined innovation

e all data Z;. in the gate are considered

e p, data dependent! Update not linear

e missing measurement: P ;. with weight pg

e “usual” Kalman covarianve according to (1 — pg)
e Spread positively semidefinite: larger covariance
e therefore: data driven adaptivity

e non linear estimator: data dependent error

e Performance prediction only via simulations

Multimodality is lost! What about multiple sensor data? |

39
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Cumulative Detection by N Sensors

N
cumulative detection probability Pf'™(N) =1 - [[ (1 - Pp)
n=1

example: Doppler blindness in case of GMTI radar

\
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Cumulative Detection by N Sensors

N
cumulative detection probability Pf'™(N) =1 - [[ (1 - Pp)
n=1

example: Doppler blindness in case of GMTI radar

100 T T T T T T T T T T g

20
AT =6s (cumulative)

50 | S -
platform 1, AT;=15s

>
a
_ o
£ — a
=10 _ )
Y oL =" _ a
2 =~ c
<]
3]
4 solid: target, dashed: clutter %
-50 /7 - o
ey V4 shadow: clutter notch .
’ _ platform 2 ]
-~ platform 1 L e
—100L o« v ool . . oo e e
0 5 10 15 20 25 0 5 10 15 20 25
= trackina time [minl trackina time [minl

N
Ph=1- ] - ppaT/aT

mean cumulative mean cumulative n=1
revisit interval: Pp relative to AT,:

Z Fraunhofer

FKIE

Sensor Data Fusion - Methods and Applications, 8th Lecture on December 19, 2018 —  slide 40



