Recapitulation: *Expected* Measurements

innovation statistics, expectation gates, gating

$$p(\mathbf{z}_{k} | \mathcal{Z}^{k-1}) = \int d\mathbf{x}_{k} p(\mathbf{z}_{k}, \mathbf{x}_{k} | \mathcal{Z}^{k-1}) = \int d\mathbf{x}_{k} p(\mathbf{z}_{k} | \mathbf{x}_{k}) p(\mathbf{x}_{k} | \mathcal{Z}^{k-1})$$
$$= \int d\mathbf{x}_{k} \underbrace{\mathcal{N}(\mathbf{z}_{k}; \mathbf{H}_{k} \mathbf{x}_{k}, \mathbf{R}_{k})}_{\text{likelihood: sensor model}} \underbrace{\mathcal{N}(\mathbf{x}_{k}; \mathbf{x}_{k|k-1}, \mathbf{P}_{k|k-1})}_{\text{prediction at time } t_{k}}$$
$$= \mathcal{N}(\mathbf{z}_{k}; \mathbf{H}_{k} \mathbf{x}_{k|k-1}, \mathbf{S}_{k|k-1}) \qquad \text{(product formula)}$$

innovation:	$oldsymbol{ u}_{k k-1} = \mathbf{z}_k - \mathbf{H}_k \mathbf{x}_{k k-1},$
innovation covariance:	$\mathbf{S}_{k k-1} = \mathbf{H}_k \mathbf{P}_{k k-1} \mathbf{H}_k^\top + \mathbf{R}_k$
expectation gate:	$oldsymbol{ u}_{k k-1}^ op \mathbf{S}_{k k-1}^{-1}oldsymbol{ u}_{k k-1} \leq \lambda(P_c)$
Mahalanobis	ellipsoid containing \mathbf{z}_k with certain probability P_c
	Choose $\lambda(P_c)$ ("gating parameter") properly!
	Can be looked up in a χ^2 -table!

Sensor data of uncertain origin

- prediction: $\mathbf{x}_{k|k-1}$, $\mathbf{P}_{k|k-1}$ (dynamics)
- innovation: $\overline{oldsymbol{
 u}_k = \mathbf{z}_k \mathbf{H}\mathbf{x}_{k|k-1}}$, white
- Mahalanobis norm: $||\boldsymbol{\nu}_k||^2 = \boldsymbol{\nu}_k^{ op} \mathbf{S}_k^{-1} \boldsymbol{\nu}_k$

• expected plot: $\mathbf{z}_k \sim N(\mathbf{H}\mathbf{x}_{k|k-1}, \mathbf{S}_k)$

•
$$\boldsymbol{\nu}_k \sim N(\mathbf{0}, \mathbf{S}_k), \mathbf{S}_k = \mathbf{H} \mathbf{P}_{k|k-1} \mathbf{H}^\top + \mathbf{R}$$

• gating: $||\boldsymbol{\nu}_k|| < \lambda$, $P_c(\lambda)$ correlation prob.

missing/false plots, measurement errors, scan rate, agile targets: large gates

A Generic Tracking and Sensor Data Fusion System

Tracking & Fusion System

Description of the Detection Process

Detector: receives signals and decides on object existence **Processor:** processes detected signals and produces measurements

'D': detector detects an object *D*: object actually existent

Description of the Detection Process

Detector: receives signals and decides on object existence **Processor:** processes detected signals and produces measurements

'D': detector detects an objecterror of 1. kind: $P_{\rm I} = P(\neg'D'|D)$ D: object actually existenterror of 2. kind: $P_{\rm II} = P(\neg D'|\neg D)$

measure of detection performance: $P_D = P(D'|D)$

detector properties characterized by two parameters:

- detection probability $P_D = 1 P_I$
- false alarm probability $P_F = P_{II}$

Description of the Detection Process

Detector: receives signals and decides on object existence **Processor:** processes detected signals and produces measurements

'D': detector detects an objecterror of 1. kind: $P_{\rm I} = P(\neg D'|D)$ D: object actually existenterror of 2. kind: $P_{\rm II} = P(\neg D'|\neg D)$

measure of detection performance: $P_D = P(D'|D)$

detector properties characterized by two parameters:

- detection probability $P_D = 1 P_I$
- false alarm probability $P_F = P_{II}$

example (Swerling I model): $P_D = P_D(P_F, SNR) = P_F^{1/(1+SNR)}$

detector design: Maximize detection probability P_D for a given, predefined false alarm probability P_F !

Fraunhoter

 $n_k + 1$ possible interpretations of the sensor data $Z_k = \{\mathbf{z}_k^j\}_{j=1}^{n_k}$!

- E_0 : the object was not detected; n_k false data in the Field of View (FoV)
- $E_j, j = 1, ..., n_k$: Object detected; \mathbf{z}_k^j is object measurement; $n_k 1$ false plots

Consider the interpretations in the likelihood function $p(Z_k, n_k | \mathbf{x}_k)$!

 $n_k + 1$ possible interpretations of the sensor data $Z_k = \{\mathbf{z}_k^j\}_{j=1}^{n_k}$!

- E_0 : the object was not detected; n_k false data in the Field of View (FoV)
- $E_j, j = 1, ..., n_k$: Object detected; \mathbf{z}_k^j is object measurement; $n_k 1$ false plots

Consider the interpretations in the likelihood function $p(Z_k, n_k | \mathbf{x}_k)$!

 $p(Z_k, n_k | \mathbf{x}_k) = p(Z_k, n_k, \neg D | \mathbf{x}_k) + p(Z_k, n_k, D | \mathbf{x}_k)$ D = "object was detected"

 $n_k + 1$ possible interpretations of the sensor data $Z_k = \{z_k^j\}_{j=1}^{n_k}$!

- E_0 : the object was not detected; n_k false data in the Field of View (FoV)
- $E_j, j = 1, ..., n_k$: Object detected; \mathbf{z}_k^j is object measurement; $n_k 1$ false plots

Consider the interpretations in the likelihood function $p(Z_k, n_k | \mathbf{x}_k)$!

$$p(Z_k, n_k | \mathbf{x}_k) = p(Z_k, n_k, \neg D | \mathbf{x}_k) + p(Z_k, n_k, D | \mathbf{x}_k)$$
 $D = \text{``object was detected''}$

$$= p(Z_k, n_k | \neg D, \mathbf{x}_k) \underbrace{P(\neg D | \mathbf{x}_k)}_{= 1 - P_D(\mathbf{x}_k)} + p(Z_k, n_k | D, \mathbf{x}_k) \underbrace{P(D | \mathbf{x}_k)}_{= P_D(\mathbf{x}_k)}$$

sensor parameter: detection probability $P_D(\mathbf{x}_k)$

Tracking Application: Ground Picture Production

GMTI Radar: Ground Moving Target Indicator

wide area, all-weather, day/night, real-time surveillance of a dynamically evolving ground or near-to-ground situation

GMTI Tracking: Some Characteristic Aspects

backbone of a ground picture: moving target tracks

- airborne, dislocated, mobile sensor platforms
- vehicles, ships, 'low-flyers', radars, convoys
- occlusions: Doppler-blindness, topography
- road maps, terrain information, tactical rules
- dense target / dense clutter situations: MHT

Examples of GMTI Tracks (live exercise)

GMTI: Fusion of 'Negative' Information

Iow-DOPPLER targets can be masked by the GMTI clutter notch

- *fading:* series of missing plots (target/sensor geometry)
- *stopping targets:* indistinguishable from ground clutter
- *mdv:* minimum detectable velocity (sensor parameter)

a simple GMTI detection model: qualitative discussion

- detection depends on target kinematics & target/sensor geometry
- detection probability $P_D(\mathbf{x}_k)$ is small if $n_c = \dot{r}_k \dot{r}_C(\mathbf{x}_k) < mdv$
- there exists a narrow transition region between these domains

sensor performance: quantitative model

• basis: snir = snir($r_k, \varphi_k, \dot{r}_k$), Signal-to-Noise+Interference Ratio

$$\operatorname{snir} = \operatorname{snir}_{0} \underbrace{\left(\frac{\bar{\sigma}_{k}}{\sigma_{0}}\right)}_{\operatorname{rcs}} \underbrace{\left(\frac{r_{k}}{r_{0}}\right)^{-4}}_{\operatorname{propagation}} \underbrace{D(\varphi_{k})}_{\operatorname{directivity}} \underbrace{\left[1 - e^{-\log 2\left(\frac{n_{c}(r_{k},\varphi_{k},\dot{r}_{k})}{v_{m}}\right)^{2}\right]}_{\operatorname{clutter notch}\left(<\frac{1}{2}\check{\operatorname{fd}}\check{z}\tilde{r}\,|n_{c}|< v_{m}\right)}\right]}$$

• quadrature detector with given P_{FA} , rcs fluctuations: SWERLING I

$$P_d(r_k, \varphi_k, \dot{r}_k) = P_{\mathsf{FA}}^{\frac{1}{1 + \operatorname{snir}(r_k, \varphi_k, \dot{r}_k)}}$$

• as usual: residual clutter; bias free, GAUSSian errors (monopulse)

$$\sigma_{r,\varphi,\dot{r}}(r_k,\varphi_k,\dot{r}_k) = \Sigma_{r,\varphi,\dot{r}}/\sqrt{\operatorname{snir}(r_k,\varphi_k,\dot{r}_k)}$$

Clutter Notch: A Priori Information!

- current position (Sensor-to-target-geometry)
- sensor specific *width* (STAP \rightarrow MDV)
- detection process: *generic* model

GMTI model \Rightarrow mixture densities:

- well-understood formalism directly applicable
- class of GAUSSian mixtures remains invariant
- pdfs characterized by a set of parameters
- growing memory: standard-type approximations

model inherent: reason for missing detections \Rightarrow An adequate treatment becomes possible!

PDFs with / without exploiting the GMTI sensor model

Missing detection occurred near the clutter notch

Several missing detections in the clutter notch

Detection occurred near the clutter notch

early detection of stopping targets

A *'negative' sensor output* can also provide information on the kinematical state vector of a target.

- fictitious plot: function of position / radial speed
- *mdv*: appears as a fictitious measurement error
- *fusion*: exploit differing target/sensor geometries

 $n_k + 1$ possible interpretations of the sensor data $Z_k = \{z_k^j\}_{j=1}^{n_k}$!

- E_0 : the object was not detected; n_k false data in the Field of View (FoV)
- $E_j, j = 1, ..., n_k$: Object detected; \mathbf{z}_k^j is object measurement; $n_k 1$ false plots

Consider the interpretations in the likelihood function $p(Z_k, n_k | \mathbf{x}_k)$!

$$p(Z_k, n_k | \mathbf{x}_k) = p(Z_k, n_k, \neg D | \mathbf{x}_k) + p(Z_k, n_k, D | \mathbf{x}_k) \qquad D = \text{``object was detected''}$$
$$= p(Z_k, n_k | \neg D, \mathbf{x}_k) P(\neg D | \mathbf{x}_k) + p(Z_k, n_k | D, \mathbf{x}_k) p(D | \mathbf{x}_k)$$
$$= \underbrace{p(Z_k | n_k, \neg D, \mathbf{x}_k)}_{=|\mathsf{FoV}|^{-n_k}} \underbrace{p(n_k | \neg D, \mathbf{x}_k)}_{=p_F(n_k)} (1 - P_D) + P_D \sum_{j=1}^{n_k} p(Z_k, n_k, j | D, \mathbf{x}_k)$$

false measurements: Poisson distributed in #, uniformly distributed in the FoV

• Probability of having n FM: $p_F(n)$

- mean number of FM in the 'Field of View' (FoV) of a sensor:

 $\bar{n} = \rho_F |FoV|$, false measurement density ρ_F (perhaps not constant)

- Probability of having n FM: $p_F(n)$
 - mean number of FM in the 'Field of View' (FoV) of a sensor:

 $\bar{n} = \rho_F |FoV|$, false measurement density ρ_F (perhaps not constant)

- assumption: n is a Poisson distributed RV with

 $p_F(n) = rac{ar{n}^n}{n!} \,\mathrm{e}^{-ar{n}}$

- Probability of having n FM: $p_F(n)$
 - mean number of FM in the 'Field of View' (FoV) of a sensor:

 $\bar{n} = \rho_F |FoV|$, false measurement density ρ_F (perhaps not constant)

- assumption: n is a Poisson distributed RV with

$$p_F(n) = rac{ar n^n}{n!} \, \mathrm{e}^{-ar n}$$

expectation: $\mathbb{E}[n] = \overline{n}$, variance: $\mathbb{V}[n] = \overline{n}$

normalization:
$$\sum_{n=0}^{\infty} p_F(n) = e^{-\bar{n}} \sum_{n=0}^{\infty} \frac{\bar{n}^n}{n!} = e^{-\bar{n}} e^{\bar{n}} = 1$$

expectation:
$$\mathbb{E}[n] = e^{-\bar{n}} \sum_{n=0}^{\infty} n \frac{\bar{n}^n}{n!} = e^{-\bar{n}} \sum_{n=1}^{\infty} n \frac{\bar{n}^n}{n!} = \bar{n} e^{-\bar{n}} \sum_{n=1}^{\infty} \frac{\bar{n}^{n-1}}{(n-1)!} = \bar{n}$$

variance: $\mathbb{V}[n] = \mathbb{E}[(n-\bar{n})^2] = \mathbb{E}[n^2] - \bar{n}^2 = \dots$ exercise!... = \bar{n}

• Probability of having n FM: $p_F(n)$

- mean number of FM in the 'Field of View' (FoV) of a sensor:

 $\bar{n} = \rho_F |FoV|$, false measurement density ρ_F (perhaps not constant)

- assumption: n is a Poisson distributed RV with

$$p_F(n) = rac{ar{n}^n}{n!} \,\mathrm{e}^{-ar{n}}$$

expectation: $\mathbb{E}[n] = \overline{n}$, variance: $\mathbb{V}[n] = \overline{n}$

- Distribution of FM in the Field of View: $p(\mathbf{z}_1^f, \dots, \mathbf{z}_n^f | FoV)$
 - FM mutually independent: $p(\mathbf{z}_1^f, \dots, \mathbf{z}_n^f | FoV) = \prod_{i=1}^n p(\mathbf{z}_i^f | FoV)$

• Probability of having n FM: $p_F(n)$

- mean number of FM in the 'Field of View' (FoV) of a sensor:

 $\bar{n} = \rho_F |FoV|$, false measurement density ρ_F (perhaps not constant)

- assumption: n is a Poisson distributed RV with

$$p_F(n) = rac{ar{n}^n}{n!} \,\mathrm{e}^{-ar{n}}$$

expectation: $\mathbb{E}[n] = \overline{n}$, variance: $\mathbb{V}[n] = \overline{n}$

- Distribution of FM in the Field of View: $p(\mathbf{z}_1^f, \dots, \mathbf{z}_n^f | FoV)$
 - FM mutually independent: $p(\mathbf{z}_1^f, \dots, \mathbf{z}_n^f | FoV) = \prod_{i=1}^n p(\mathbf{z}_i^f | FoV)$

- uniformly distributed in the FoV: $p(\mathbf{z}_i^f | FoV) = |FoV|^{-1}$ (often!)

 $n_k + 1$ possible interpretations of the sensor data $Z_k = \{z_k^j\}_{j=1}^{n_k}$!

- E_0 : the object was not detected; n_k false data in the Field of View (FoV)
- $E_j, j = 1, ..., n_k$: Object detected; \mathbf{z}_k^j is object measurement; $n_k 1$ false plots

Consider the interpretations in the likelihood function $p(Z_k, n_k | \mathbf{x}_k)$!

$$p(Z_k, n_k | \mathbf{x}_k) = p(Z_k, n_k, \neg D | \mathbf{x}_k) + p(Z_k, n_k, D | \mathbf{x}_k)$$
 $D =$ "object was detected"

$$= p(Z_k, n_k | \neg D, \mathbf{x}_k) P(\neg D | \mathbf{x}_k) + p(Z_k, n_k | D, \mathbf{x}_k) p(D | \mathbf{x}_k)$$

$$= p(Z_k | n_k, \neg D, \mathbf{x}_k) p(n_k | \neg D, \mathbf{x}_k) (1 - P_D) + P_D \sum_{j=1}^{n_k} p(Z_k, n_k, j | D, \mathbf{x}_k)$$

$$= |\mathsf{FoV}|^{-n_k} p_F(n_k) (1 - P_D) + P_D \sum_{j=1}^{n_k} \underbrace{p(Z_k | n_k, j, D, \mathbf{x}_k)}_{|\mathsf{FoV}|^{-(n_k-1)} N(\mathbf{z}_k^j; \mathbf{Hx}_k, \mathbf{R})} \underbrace{p(j | n_k, D)}_{=1/n_k} \underbrace{p(n_k | D)}_{=p_F(n_k-1)}$$

Insert Poisson distribution:
$$p_F(n_k) = \frac{(\rho_F |FoV|)^{-n_k}}{n_k!} e^{-\rho_F |FoV|}$$

 $n_k + 1$ possible interpretations of the sensor data $Z_k = \{z_k^j\}_{j=1}^{n_k}$!

- E_0 : the object was not detected; n_k false data in the Field of View (FoV)
- $E_j, j = 1, ..., n_k$: Object detected; \mathbf{z}_k^j is object measurement; $n_k 1$ false plots

Consider the interpretations in the likelihood function $p(Z_k, n_k | \mathbf{x}_k)$!

$$p(Z_k, n_k | \mathbf{x}_k) = p(Z_k, n_k, \neg D | \mathbf{x}_k) + p(Z_k, n_k, D | \mathbf{x}_k) \qquad D = \text{``object was detected''}$$
$$= p(Z_k, n_k | \neg D, \mathbf{x}_k) P(\neg D | \mathbf{x}_k) + p(Z_k, n_k | D, \mathbf{x}_k) p(D | \mathbf{x}_k)$$

$$= p(Z_k|n_k, \neg D, \mathbf{x}_k) p(n_k|\neg D, \mathbf{x}_k) (1 - P_D) + P_D \sum_{j=1}^{n_k} p(Z_k, n_k, j|D, \mathbf{x}_k)$$

$$= |\mathsf{FoV}|^{-n_k} p_F(n_k) (1 - P_D) + P_D \sum_{j=1}^{n_k} p(Z_k | n_k, j, D, \mathbf{x}_k) p(j | n_k, D) p(n_k | D)$$

$$= \frac{\mathrm{e}^{-\rho_{F}|\mathrm{FoV}|}}{n_{k}!} \rho_{F}^{n_{k}-1} \Big((1-P_{D})\rho_{F} + P_{D} \sum_{j=1}^{n_{k}} \mathcal{N}(\mathbf{z}_{k}^{j}; \mathbf{H}\mathbf{x}_{k}, \mathbf{R}) \Big)$$

Likelihood Functions

The likelihood function answers the question: What does the sensor tell about the state x of the object? (input: sensor data, sensor model)

• ideal conditions, one object: $P_D = 1$, $\rho_F = 0$

at each time one measurement:

$$p(\mathbf{z}_k | \mathbf{x}_k) = \mathcal{N}(\mathbf{z}_k; \mathbf{H}\mathbf{x}_k, \mathbf{R})$$

• real conditions, one object: $P_D < 1$, $\rho_F > 0$

at each time n_k measurements $Z_k = \{\mathbf{z}_k^1, \dots, \mathbf{z}_k^{n_k}\}!$

$$p(Z_k, n_k | \mathbf{x}_k) \propto (1 - P_D)
ho_F + P_D \sum_{j=1}^{n_k} \mathcal{N}(\mathbf{z}_k^j; \mathbf{H}\mathbf{x}_k, \mathbf{R})$$

PDAF Filter: formally analogous to Kalman Filter

Filtering (scan k-1): $p(\mathbf{x}_{k-1}|\mathcal{Z}^{k-1}) \approx \mathcal{N}(\mathbf{x}_{k-1}; \mathbf{x}_{k-1|k-1}, \mathbf{P}_{k-1|k-1}) (\rightarrow \text{initiation})$ prediction (scan k): $p(\mathbf{x}_k|\mathcal{Z}^{k-1}) \approx \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k-1}, \mathbf{P}_{k|k-1})$ (like Kalman)Filtering (scan k): $p(\mathbf{x}_k|\mathcal{Z}^k) \approx \sum_{j=0}^{m_k} p_k^j \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k}^j, \mathbf{P}_{k|k}^j)$

BLACKBOARD!

PDAF Filter: formally analogous to Kalman Filter

Filtering (scan k-1): $p(\mathbf{x}_{k-1}|\mathcal{Z}^{k-1}) \approx \mathcal{N}(\mathbf{x}_{k-1}; \mathbf{x}_{k-1|k-1}, \mathbf{P}_{k-1|k-1}) (\rightarrow \text{ initiation})$ prediction (scan k): $p(\mathbf{x}_k|\mathcal{Z}^{k-1}) \approx \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k-1}, \mathbf{P}_{k|k-1})$ (like Kalman) Filtering (scan k): $p(\mathbf{x}_k|\mathcal{Z}^k) \approx \sum_{j=0}^{m_k} p_k^j \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k}^j, \mathbf{P}_{k|k}^j)$ $\approx \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k}^j, \mathbf{P}_{k|k}^j)$

$$\mathbf{x}_{k|k}^{j} = \begin{cases} \mathbf{x}_{k|k-1} & j=0\\ \mathbf{x}_{k|k-1} + \mathbf{W}_{k}\boldsymbol{\nu}_{k}^{j} & j\neq 0 \end{cases} \quad \mathbf{P}_{k|k}^{j} = \begin{cases} \mathbf{P}_{k|k-1} & j=0\\ \mathbf{P}_{k|k-1} - \mathbf{W}_{k}\mathbf{S}_{k}\mathbf{W}_{k}^{\top} & j\neq 0 \end{cases}$$
$$\boldsymbol{\nu}_{k}^{j} = \underbrace{\mathbf{z}_{k}^{j} - \mathbf{H}\mathbf{x}_{k}}_{\text{innovation}}, \qquad \mathbf{W}_{k} = \underbrace{\mathbf{P}_{k|k-1}\mathbf{H}^{\top}\mathbf{S}_{k}^{-1}}_{\text{gain matrix}}, \qquad \mathbf{S}_{k} = \underbrace{\mathbf{H}\mathbf{P}_{k|k-1}\mathbf{H}^{\top} + \mathbf{R}_{k}}_{\text{innovation covariance}}$$
$$p_{k}^{j} = \underbrace{\frac{p_{k}^{j*}}{\sum_{j} p_{k}^{j*}}}_{\text{Gewichte}}, \qquad p_{k}^{j*} = \begin{cases} (1 - P_{D})\,\rho_{F} & j=0\\ \frac{P_{D}}{\sqrt{|2\pi\mathbf{S}_{k}|}} \,\mathbf{e}^{-\frac{1}{2}\boldsymbol{\nu}_{H_{k}}^{\top}}\mathbf{S}_{k}^{-1}\boldsymbol{\nu}_{H_{k}} & j\neq 0 \end{cases}$$

Moment Matching: Approximate an arbitrary pdf p(x) with $\mathbb{E}[x] = \mathbf{x}$, $\mathbb{C}[x] = \mathbf{P}$ by $p(x) \approx \mathcal{N}(x; \mathbf{x}, \mathbf{P})!$

here especially: $p(x) = \sum_{H} p_H \mathcal{N}(x; \mathbf{x}_H, \mathbf{P}_H)$ (normal mixtures)

Second-order Approximation of the Mixture Density:

$$\left[\sum_{j=1}^{m_k} p_k^j \; \mathcal{N}ig(\mathbf{x}_k;\, \mathbf{x}_{k|k}^j,\, \mathbf{P}_{k|k}^jig) pprox \, \mathcal{N}ig(\mathbf{x}_k;\, \mathbf{x}_{k|k},\, \mathbf{P}_{k|k}ig)
ight]$$

$$\mathbf{x}_{k|k} = \sum_{j=0}^{m_k} p_k^j \, \mathbf{x}_{k|k}^j$$

$$\mathbf{P}_{k|k} = \sum_{j=0}^{m_k} p_k^j \left(\mathbf{P}_{k|k}^j + (\mathbf{x}_{k|k}^j - \mathbf{x}_{k|k}) (\mathbf{x}_{k|k}^j - \mathbf{x}_{k|k})^\top \right)$$

$$\mathbf{x}_{k|k} = \sum_{j=0}^{m_k} p_k^j \mathbf{x}_{k|k}^j, \qquad \mathbf{x}_{k|k}^0 = \mathbf{x}_{k|k-1}, \ \mathbf{x}_{k|k}^j = \mathbf{x}_{k|k-1} + \mathbf{W}_k \boldsymbol{\nu}_k^j$$

$$\mathbf{P}_{k|k} = \sum_{j=0}^{m_k} p_k^j \big(\mathbf{P}_{k|k}^j + (\mathbf{x}_{k|k}^j - \mathbf{x}_{k|k}) (\mathbf{x}_{k|k}^j - \mathbf{x}_{k|k})^\top \big)$$

$$\begin{split} \mathbf{x}_{k|k} &= \sum_{j=0}^{m_k} p_k^j \mathbf{x}_{k|k}^j \\ &= p_k^0 \mathbf{x}_{k|k-1} + \sum_{j=1}^{m_k} p_k^j (\mathbf{x}_{k|k-1} + \mathbf{W}_k \boldsymbol{\nu}_k^j) \end{split}$$

$$\mathbf{P}_{k|k} = \sum_{j=0}^{m_k} p_k^j \big(\mathbf{P}_{k|k}^j + (\mathbf{x}_{k|k}^j - \mathbf{x}_{k|k}) (\mathbf{x}_{k|k}^j - \mathbf{x}_{k|k})^\top \big)$$

$$\begin{aligned} \mathbf{x}_{k|k} &= \sum_{j=0}^{m_k} p_k^j \mathbf{x}_{k|k}^j \\ &= p_k^0 \mathbf{x}_{k|k-1} + \sum_{j=1}^{m_k} p_k^j (\mathbf{x}_{k|k-1} + \mathbf{W}_k \boldsymbol{\nu}_k^j) \\ &= \mathbf{x}_{k|k-1} \left(p_k^0 + \sum_{j=1}^{m_k} p_k^j \right) + \mathbf{W}_k \sum_{\substack{j=1\\ mean!}}^{m_k} p_k^j \boldsymbol{\nu}_k^j \end{aligned}$$

$$\mathbf{P}_{k|k} = \sum_{j=0}^{m_k} p_k^j \big(\mathbf{P}_{k|k}^j + (\mathbf{x}_{k|k}^j - \mathbf{x}_{k|k}) (\mathbf{x}_{k|k}^j - \mathbf{x}_{k|k})^\top \big)$$

$$\begin{split} \mathbf{x}_{k|k} &= \sum_{j=0}^{m_k} p_k^j \mathbf{x}_{k|k}^j \\ &= p_k^0 \mathbf{x}_{k|k-1} + \sum_{j=1}^{m_k} p_k^j (\mathbf{x}_{k|k-1} + \mathbf{W}_k \boldsymbol{\nu}_k^j) = \mathbf{x}_{k|k-1} + \mathbf{W}_k \boldsymbol{\nu}_k \end{split}$$

$$\mathbf{P}_{k|k} = \sum_{j=0}^{m_k} p_k^j \big(\mathbf{P}_{k|k}^j + (\mathbf{x}_{k|k}^j - \mathbf{x}_{k|k}) (\mathbf{x}_{k|k}^j - \mathbf{x}_{k|k})^\top \big)$$

Combined Innovation:
$$\boldsymbol{\nu}_k = \sum_{j=1}^{m_k} p_k^j \boldsymbol{\nu}_k^j$$

$$egin{aligned} \mathbf{x}_{k|k} &= \sum_{j=0}^{m_k} p_k^j \mathbf{x}_{k|k}^j \ &= p_k^0 \mathbf{x}_{k|k-1} + \sum_{j=1}^{m_k} p_k^j ig(\mathbf{x}_{k|k-1} + \mathbf{W}_k oldsymbol{
u}_k^jig) = \mathbf{x}_{k|k-1} + \mathbf{W}_k oldsymbol{
u}_k \end{aligned}$$

$$\begin{split} \mathbf{P}_{k|k} &= \sum_{j=0}^{m_k} p_k^j \big(\mathbf{P}_{k|k}^j + (\mathbf{x}_{k|k}^j - \mathbf{x}_{k|k}) (\mathbf{x}_{k|k}^j - \mathbf{x}_{k|k})^\top \big), \qquad \mathbf{P}_{k|k}^0 = \mathbf{P}_{k|k-1}, \ \mathbf{P}_{k|k}^j = \mathbf{P}_{k|k-1} - \mathbf{W}_k \mathbf{S}_k \mathbf{W}_k^\top \\ &= \mathbf{P}_{k|k-1} - \sum_{j=1}^{m_k} p_k^j \mathbf{W}_k \mathbf{S}_k \mathbf{W}_k^\top + \sum_{j=1}^{m_k} p_k^j \mathbf{W}_k (\boldsymbol{\nu}_k^j - \boldsymbol{\nu}_k) (\boldsymbol{\nu}_k^j - \boldsymbol{\nu}_k)^\top \mathbf{W}_k^\top \end{split}$$

Combined Innovation:
$$\boldsymbol{\nu}_k = \sum_{j=1}^{m_k} p_k^j \boldsymbol{\nu}_k^j$$

$$\begin{split} \mathbf{x}_{k|k} &= \sum_{j=0}^{m_k} p_k^j \mathbf{x}_{k|k}^j \\ &= p_k^0 \mathbf{x}_{k|k-1} + \sum_{j=1}^{m_k} p_k^j (\mathbf{x}_{k|k-1} + \mathbf{W}_k \boldsymbol{\nu}_k^j) = \mathbf{x}_{k|k-1} + \mathbf{W}_k \boldsymbol{\nu}_k \end{split}$$

$$\begin{split} \mathbf{P}_{k|k} &= \sum_{j=0}^{m_k} p_k^j \big(\mathbf{P}_{k|k}^j + (\mathbf{x}_{k|k}^j - \mathbf{x}_{k|k}) (\mathbf{x}_{k|k}^j - \mathbf{x}_{k|k})^\top \big) \\ &= \mathbf{P}_{k|k-1} - \sum_{j=1}^{m_k} p_k^j \mathbf{W}_k \mathbf{S}_k \mathbf{W}_k^\top + \sum_{j=1}^{m_k} p_k^j \mathbf{W}_k (\boldsymbol{\nu}_k^j - \boldsymbol{\nu}_k) (\boldsymbol{\nu}_k^j - \boldsymbol{\nu}_k)^\top \mathbf{W}_k^\top \\ &= \mathbf{P}_{k|k-1} - (1 - p_k^0) \mathbf{W}_k \mathbf{S}_k \mathbf{W}_k^\top + \mathbf{W}_k \Big[\sum_{j=1}^{m_k} p_k^j \boldsymbol{\nu}_k^j \boldsymbol{\nu}_k^{j\top} - \boldsymbol{\nu}_k \boldsymbol{\nu}_k^\top \Big] \mathbf{W}_k^\top \end{split}$$

Combined Innovation:
$$\boldsymbol{\nu}_k = \sum_{j=1}^{m_k} p_k^j \boldsymbol{\nu}_k^j$$

PDAF Filter: formally analog to Kalman Filter

Filtering (scan k-1): $p(\mathbf{x}_{k-1}|\mathcal{Z}^{k-1}) \approx \mathcal{N}(\mathbf{x}_{k-1}; \mathbf{x}_{k-1|k-1}, \mathbf{P}_{k-1|k-1}) (\rightarrow \text{ initiation})$ prediction (scan k): $p(\mathbf{x}_k|\mathcal{Z}^{k-1}) \approx \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k-1}, \mathbf{P}_{k|k-1})$ (like Kalman) Filtering (scan k): $p(\mathbf{x}_k|\mathcal{Z}^k) \approx \sum_{i=0}^{m_k} p_k^j \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k}^j, \mathbf{P}_{k|k}^j) \approx \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k}, \mathbf{P}_{k|k})$

$$\mathbf{\nu}_{k} = \underbrace{\sum_{j=0}^{m_{k}} p_{k}^{j} \mathbf{\nu}_{k}^{j}}_{k}, \quad \mathbf{\nu}_{k}^{j} = \mathbf{z}_{k}^{j} - \mathbf{H}\mathbf{x}_{k|k-1}$$
 combined innovation

$$\mathbf{W}_{k} = \mathbf{P}_{k|k-1}\mathbf{H}^{\top}\mathbf{S}_{k}^{-1}, \quad \mathbf{S}_{k} = \mathbf{H}\mathbf{P}_{k|k-1}\mathbf{H}^{\top} + \mathbf{R}_{k}$$
 Kalman gain matrix

$$p_{k}^{j} = p_{k}^{i*} / \sum_{j} p_{k}^{j*}, \quad p_{k}^{j*} = \begin{cases} (1 - P_{D}) \rho_{F} \\ \frac{P_{D}}{\sqrt{|2\pi \mathbf{S}_{H_{k}}|}} \mathbf{e}^{-\frac{1}{2}\mathbf{\nu}_{H_{k}}^{\top}} \mathbf{S}_{H_{k}}\mathbf{\nu}_{H_{k}} \end{cases}$$
 weighting factors

$$\begin{aligned} \mathbf{x}_{k} &= \mathbf{x}_{k|k-1} + \mathbf{W}_{k} \boldsymbol{\nu}_{k} & (\text{Filtering Update: Kalman}) \\ \mathbf{P}_{k} &= \mathbf{P}_{k|k-1} - (1 - p_{k}^{0}) \mathbf{W}_{k} \mathbf{S} \mathbf{W}_{k}^{\top} & (\text{Kalman part}) \\ &+ \mathbf{W}_{k} \Big\{ \sum_{j=0}^{m_{k}} p_{k}^{j} \boldsymbol{\nu}_{k}^{j} \boldsymbol{\nu}_{k}^{j\top} - \boldsymbol{\nu}_{k} \boldsymbol{\nu}_{k}^{\top} \Big\} \mathbf{W}_{k}^{\top} & (\text{Spread of Innovations}) \end{aligned}$$

PDAF: Characteristic Properties

- filtering: processing of *combined innovation*
- all data Z_k in the gate are considered
- p_i data dependent! Update not linear
- missing measurement: $P_{k|k-1}$ with weight p_0
- *"usual"* Kalman covariance according to $(1 p_0)$
- Spread *positively semidefinite:* larger covariance
- therefore: *data driven adaptivity*
- non linear estimator: data dependent error
- Performance prediction only via simulations

Multimodality is lost! What about multiple sensor data?

Cumulative Detection by N Sensors

cumulative detection probability $P_D^{\text{kum}}(N) = 1 - \prod_{n=1}^N (1 - P_D^n)$

example: Doppler blindness in case of GMTI radar

Cumulative Detection by N Sensors

cumulative detection probability $P_D^{\text{kum}}(N) = 1 - \prod_{n=1}^N (1 - P_D^n)$

example: Doppler blindness in case of GMTI radar

