
Recapitulation: Expected Measurements

innovation statistics, expectation gates, gating

p
(
zk| Zk−1

)
=

∫
dxk p

(
zk,xk| Zk−1

)
=

∫
dxk p

(
zk|xk

)
p
(
xk| Zk−1

)
=

∫
dxk N

(
zk; Hkxk, Rk

)︸ ︷︷ ︸
likelihood: sensor model

N
(
xk; xk|k−1, Pk|k−1

)︸ ︷︷ ︸
prediction at time tk

= N
(
zk; Hkxk|k−1, Sk|k−1

)
(product formula)

innovation: νk|k−1 = zk −Hkxk|k−1,

innovation covariance: Sk|k−1 = HkPk|k−1H
>
k + Rk

expectation gate: ν>k|k−1S
−1
k|k−1νk|k−1 ≤ λ(Pc)

MAHALANOBIS ellipsoid containing zk with certain probability Pc

Choose λ(Pc) (“gating parameter”) properly!

Can be looked up in a χ2-table!
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Sensor data of uncertain origin

• prediction: xk|k−1, Pk|k−1 (dynamics)

• innovation: νk = zk −Hxk|k−1 , white

• Mahalanobis norm: ||νk||2 = ν>k S
−1
k νk

• expected plot: zk ∼ N(Hxk|k−1,Sk)

• νk ∼ N(0,Sk), Sk = HPk|k−1H
>+R

• gating: ||νk|| < λ, Pc(λ) correlation prob.

missing/false plots, measurement errors, scan rate, agile targets: large gates
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A Generic Tracking and Sensor Data Fusion System

Track Association
Sensor Data to Track File

Storage

Track Maintenance:

Retrodiction
 Prediction, Filtering

Sensing Hardware:

Signal Processing:

Parameter Estimation

Received Waveforms

Detection Process:

Data Rate Reduction

Track Initiation:

Multiple Frame

- Object Environment
- Object Characteristics

A Priori Knowledge: 

- Sensor Performance

- Track Cancellation
- Object Classification / ID
- Track-to-Track Fusion

Track Processing:

- Interaction Facilities

Man-Machine Interface:

- Displaying Functions
- Object Representation

Tracking & Fusion System

Sensor System Sensor System

Sensor
Data

Sensor
Control

Sensor System

Track Extraction
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Description of the Detection Process

Detector: receives signals and decides on object existence

Processor: processes detected signals and produces measurements

‘D’: detector detects an object
D: object actually existent
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Description of the Detection Process

Detector: receives signals and decides on object existence

Processor: processes detected signals and produces measurements

‘D’: detector detects an object
D: object actually existent

error of 1. kind: PI = P (¬‘D’|D)

error of 2. kind: PII = P (‘D’|¬D)

measure of detection performance: PD = P (‘D’|D)

detector properties characterized by two parameters:

− detection probability PD = 1− PI

− false alarm probability PF = PII
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Description of the Detection Process

Detector: receives signals and decides on object existence

Processor: processes detected signals and produces measurements

‘D’: detector detects an object
D: object actually existent

error of 1. kind: PI = P (¬‘D’|D)

error of 2. kind: PII = P (‘D’|¬D)

measure of detection performance: PD = P (‘D’|D)

detector properties characterized by two parameters:

− detection probability PD = 1− PI

− false alarm probability PF = PII

example (Swerling I model): PD = PD(PF ,SNR) = P
1/(1+SNR)
F

detector design: Maximize detection probability PD
for a given, predefined false alarm probability PF !
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ambiguous sensor data (PD < 1, ρF > 0)

nk + 1 possible interpretations of the sensor data Zk = {zjk}
nk
j=1!

• E0: the object was not detected; nk false data in the Field of View (FoV)

• Ej, j = 1, . . . , nk: Object detected; zjk is object measurement; nk − 1 false plots

Consider the interpretations in the likelihood function p(Zk, nk|xk)!
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ambiguous sensor data (PD < 1, ρF > 0)

nk + 1 possible interpretations of the sensor data Zk = {zjk}
nk
j=1!

• E0: the object was not detected; nk false data in the Field of View (FoV)

• Ej, j = 1, . . . , nk: Object detected; zjk is object measurement; nk − 1 false plots

Consider the interpretations in the likelihood function p(Zk, nk|xk)!

p(Zk, nk|xk) = p(Zk, nk,¬D|xk) + p(Zk, nk, D|xk) D = “object was detected”
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ambiguous sensor data (PD < 1, ρF > 0)

nk + 1 possible interpretations of the sensor data Zk = {zjk}
nk
j=1!

• E0: the object was not detected; nk false data in the Field of View (FoV)

• Ej, j = 1, . . . , nk: Object detected; zjk is object measurement; nk − 1 false plots

Consider the interpretations in the likelihood function p(Zk, nk|xk)!

p(Zk, nk|xk) = p(Zk, nk,¬D|xk) + p(Zk, nk, D|xk) D = “object was detected”

= p(Zk, nk|¬D,xk) P (¬D|xk)︸ ︷︷ ︸
=1−PD(xk)

+p(Zk, nk|D,xk) P (D|xk)︸ ︷︷ ︸
=PD(xk)

sensor parameter: detection probability PD(xk)
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Tracking Application: Ground Picture Production

GMTI Radar: Ground Moving Target Indicator

wide area, all-weather, day/night, real-time surveillance of
a dynamically evolving ground or near-to-ground situation

GMTI Tracking: Some Characteristic Aspects

backbone of a ground picture: moving target tracks

• airborne, dislocated, mobile sensor platforms
• vehicles, ships, ‘low-flyers’, radars, convoys
• occlusions: Doppler-blindness, topography
• road maps, terrain information, tactical rules
• dense target / dense clutter situations: MHT

Sensor Data Fusion - Methods and Applications, 8th Lecture on December 19, 2018 — slide 10



Examples of GMTI Tracks (live exercise)
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GMTI: Fusion of ‘Negative’ Information

low-DOPPLER targets can be masked by the GMTI clutter notch

• fading: series of missing plots (target/sensor geometry)
• stopping targets: indistinguishable from ground clutter
• mdv: minimum detectable velocity (sensor parameter)

a simple GMTI detection model: qualitative discussion

• detection depends on target kinematics & target/sensor geometry

• detection probability PD(xk) is small if nc = ṙk − ṙc(xk) < mdv

• there exists a narrow transition region between these domains
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sensor performance: quantitative model

• basis: snir = snir(rk, ϕk, ṙk), Signal-to-Noise+Interference Ratio

snir = snir0

(
σ̄k
σ0

)
︸ ︷︷ ︸

rcs

(
rk
r0

)−4

︸ ︷︷ ︸
propagation

D(ϕk)︸ ︷︷ ︸
directivity

[
1− e

−log 2
(
nc(rk,ϕk,ṙk)

vm

)2]
︸ ︷︷ ︸

clutter notch (<1
2

fďż˝r |nc|<vm)

• quadrature detector with given PFA, rcs fluctuations: SWERLING I

Pd(rk, ϕk, ṙk) = P

1
1+snir(rk,ϕk,ṙk)

FA

• as usual: residual clutter; bias free, GAUSSian errors (monopulse)

σr,ϕ,ṙ(rk, ϕk, ṙk) = Σr,ϕ,ṙ/
√

snir(rk, ϕk, ṙk)
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Clutter Notch: A Priori Information!
− current position (Sensor-to-target-geometry)

− sensor specific width (STAP→ MDV)

− detection process: generic model

GMTI model⇒ mixture densities:
− well-understood formalism directly applicable

− class of GAUSSian mixtures remains invariant

− pdfs characterized by a set of parameters

− growing memory: standard-type approximations

model inherent: reason for missing detections
⇒ An adequate treatment becomes possible!
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PDFs with / without exploiting the GMTI sensor model

Missing detection occurred
near the clutter notch

Several missing detections
in the clutter notch

Detection occurred near
the clutter notch
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early detection of stopping targets

neg. output sensor 1 neg. output sensor 2 fusion: sensor 1+2
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A ‘negative’ sensor output can also provide infor-

mation on the kinematical state vector of a target.

• fictitious plot: function of position / radial speed

• mdv : appears as a fictitious measurement error

• fusion: exploit differing target/sensor geometries
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ambiguous sensor data (PD < 1, ρF > 0)

nk + 1 possible interpretations of the sensor data Zk = {zjk}
nk
j=1!

• E0: the object was not detected; nk false data in the Field of View (FoV)

• Ej, j = 1, . . . , nk: Object detected; zjk is object measurement; nk − 1 false plots

Consider the interpretations in the likelihood function p(Zk, nk|xk)!

p(Zk, nk|xk) = p(Zk, nk,¬D|xk) + p(Zk, nk, D|xk) D = “object was detected”

= p(Zk, nk|¬D,xk) P (¬D|xk) + p(Zk, nk|D,xk) p(D|xk)

= p(Zk|nk,¬D,xk)︸ ︷︷ ︸
=|FoV|−nk

p(nk|¬D,xk)︸ ︷︷ ︸
=pF(nk)

(1− PD) + PD

nk∑
j=1

p(Zk, nk, j|D,xk)

false measurements: Poisson distributed in #, uniformly distributed in the FoV
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Modeling of False Measurements (FM)

• Probability of having n FM: pF (n)

− mean number of FM in the ‘Field of View’ (FoV) of a sensor:

n̄ = ρF |FoV|, false measurement density ρF (perhaps not constant)
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Modeling of False Measurements (FM)

• Probability of having n FM: pF (n)

− mean number of FM in the ‘Field of View’ (FoV) of a sensor:

n̄ = ρF |FoV|, false measurement density ρF (perhaps not constant)

− assumption: n is a Poisson distributed RV with pF (n) = n̄n

n! e−n̄
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Modeling of False Measurements (FM)

• Probability of having n FM: pF (n)

− mean number of FM in the ‘Field of View’ (FoV) of a sensor:

n̄ = ρF |FoV|, false measurement density ρF (perhaps not constant)

− assumption: n is a Poisson distributed RV with pF (n) = n̄n

n! e−n̄

expectation: E[n] = n̄, variance: V[n] = n̄
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normalization:
∞∑
n=0

pF (n) = e−n̄
∞∑
n=0

n̄n

n!
= e−n̄ en̄ = 1

expectation: E[n] = e−n̄
∞∑
n=0

n
n̄n

n!
= e−n̄

∞∑
n=1

n
n̄n

n!
= n̄e−n̄

∞∑
n=1

n̄n−1

(n− 1)!
=

n̄

variance: V[n] = E[(n− n̄)2] = E[n2]− n̄2 = . . . exercise! . . . = n̄
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Modeling of False Measurements (FM)

• Probability of having n FM: pF (n)

− mean number of FM in the ‘Field of View’ (FoV) of a sensor:

n̄ = ρF |FoV|, false measurement density ρF (perhaps not constant)

− assumption: n is a Poisson distributed RV with pF (n) = n̄n

n! e−n̄

expectation: E[n] = n̄, variance: V[n] = n̄

• Distribution of FM in the Field of View: p(zf1, . . . , z
f
n|FoV)

− FM mutually independent: p(zf1, . . . , z
f
n|FoV) =

n∏
i=1

p(zfi |FoV)
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Modeling of False Measurements (FM)

• Probability of having n FM: pF (n)

− mean number of FM in the ‘Field of View’ (FoV) of a sensor:

n̄ = ρF |FoV|, false measurement density ρF (perhaps not constant)

− assumption: n is a Poisson distributed RV with pF (n) = n̄n

n! e−n̄

expectation: E[n] = n̄, variance: V[n] = n̄

• Distribution of FM in the Field of View: p(zf1, . . . , z
f
n|FoV)

− FM mutually independent: p(zf1, . . . , z
f
n|FoV) =

n∏
i=1

p(zfi |FoV)

− uniformly distributed in the FoV: p(zfi |FoV) = |FoV|−1 (often!)
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ambiguous sensor data (PD < 1, ρF > 0)

nk + 1 possible interpretations of the sensor data Zk = {zjk}
nk
j=1!

• E0: the object was not detected; nk false data in the Field of View (FoV)

• Ej, j = 1, . . . , nk: Object detected; zjk is object measurement; nk − 1 false plots

Consider the interpretations in the likelihood function p(Zk, nk|xk)!

p(Zk, nk|xk) = p(Zk, nk,¬D|xk) + p(Zk, nk, D|xk) D = “object was detected”

= p(Zk, nk|¬D,xk) P (¬D|xk) + p(Zk, nk|D,xk) p(D|xk)

= p(Zk|nk,¬D,xk) p(nk|¬D,xk) (1− PD) + PD

nk∑
j=1

p(Zk, nk, j|D,xk)

= |FoV|−nk pF(nk) (1− PD) + PD

nk∑
j=1

p(Zk|nk, j,D,xk)︸ ︷︷ ︸
|FoV|−(nk−1)N(zjk;Hxk,R)

p(j|nk, D)︸ ︷︷ ︸
=1/nk

p(nk|D)︸ ︷︷ ︸
=pF(nk−1)

Insert Poisson distribution: pF(nk) = (ρF |FoV|)−nk
nk!

e−ρF |FoV|
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ambiguous sensor data (PD < 1, ρF > 0)

nk + 1 possible interpretations of the sensor data Zk = {zjk}
nk
j=1!

• E0: the object was not detected; nk false data in the Field of View (FoV)

• Ej, j = 1, . . . , nk: Object detected; zjk is object measurement; nk − 1 false plots

Consider the interpretations in the likelihood function p(Zk, nk|xk)!

p(Zk, nk|xk) = p(Zk, nk,¬D|xk) + p(Zk, nk, D|xk) D = “object was detected”

= p(Zk, nk|¬D,xk) P (¬D|xk) + p(Zk, nk|D,xk) p(D|xk)

= p(Zk|nk,¬D,xk) p(nk|¬D,xk) (1− PD) + PD

nk∑
j=1

p(Zk, nk, j|D,xk)

= |FoV|−nk pF(nk) (1− PD) + PD

nk∑
j=1

p(Zk|nk, j,D,xk) p(j|nk, D) p(nk|D)

= e−ρF |FoV|

nk!
ρnk−1
F

(
(1− PD)ρF + PD

nk∑
j=1

N
(
zjk; Hxk, R

))
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Likelihood Functions

The likelihood function answers the question:

What does the sensor tell about the state x of the object?

(input: sensor data, sensor model)

• ideal conditions, one object: PD = 1, ρF = 0

at each time one measurement:
p(zk|xk) = N (zk;Hxk,R)

• real conditions, one object: PD < 1, ρF > 0

at each time nk measurements Zk = {z1
k, . . . , z

nk
k }!

p(Zk, nk|xk) ∝ (1− PD)ρF + PD

nk∑
j=1

N
(
zjk; Hxk, R

)
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PDAF Filter: formally analogous to Kalman Filter

Filtering (scan k−1): p(xk−1|Zk−1) ≈ N (xk−1; xk−1|k−1,Pk−1|k−1) (→ initiation)

prediction (scan k): p(xk|Zk−1) ≈ N (xk; xk|k−1,Pk|k−1) (like Kalman)

Filtering (scan k): p(xk|Zk) ≈
mk∑
j=0

pjkN (xk; x
j
k|k,P

j
k|k)

BLACKBOARD!
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PDAF Filter: formally analogous to Kalman Filter

Filtering (scan k−1): p(xk−1|Zk−1) ≈ N (xk−1; xk−1|k−1,Pk−1|k−1) (→ initiation)

prediction (scan k): p(xk|Zk−1) ≈ N (xk; xk|k−1,Pk|k−1) (like Kalman)

Filtering (scan k): p(xk|Zk) ≈
mk∑
j=0

pjkN (xk; x
j
k|k,P

j
k|k)

≈ N (xk; xk|k,Pk|k)

xj
k|k =

{
xk|k−1 j=0

xk|k−1 + Wkν
j
k j 6=0

Pj
k|k =

{
Pk|k−1 j=0

Pk|k−1 −WkSkW>
k j 6=0

νjk = zjk −Hxk︸ ︷︷ ︸
innovation

, Wk = Pk|k−1H
>S−1

k︸ ︷︷ ︸
gain matrix

, Sk = HPk|k−1H
> + Rk︸ ︷︷ ︸

innovation covariance

pjk =
pj∗k∑
j p

j∗
k︸ ︷︷ ︸

Gewichte

, pj∗k =

{
(1− PD) ρF j=0

PD√
|2πSk|

e−
1

2
ν>HkS

−1
k νHk j 6=0
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Moment Matching: Approximate an arbitrary pdf

p(x) with E[x] = x, C[x] = P by p(x) ≈ N
(
x; x, P

)
!

here especially: p(x) =
∑
H

pH N (x;xH ,PH) (normal mixtures)

x =
∑
H

pH xH

P =
∑
H

pH
{
PH +

spread term︷ ︸︸ ︷
(xH − x)(xH − x)>

}
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Second-order Approximation of the Mixture Density:

mk∑
j=1

pjk N
(
xk; x

j
k|k, P

j
k|k
)
≈ N

(
xk; xk|k, Pk|k

)

mit: xk|k =
mk∑
j=0

pjk x
j
k|k

Pk|k =
mk∑
j=0

pjk
(
Pj
k|k + (xj

k|k − xk|k)(xj
k|k − xk|k)

>)
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xk|k =
mk∑
j=0

pjkx
j
k|k, x0

k|k = xk|k−1, x
j
k|k = xk|k−1 + Wkν

j
k

Pk|k =
mk∑
j=0

pjk
(
Pj
k|k + (xj

k|k − xk|k)(xj
k|k − xk|k)

>)
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xk|k =
mk∑
j=0

pjkx
j
k|k

= p0
kxk|k−1 +

mk∑
j=1

pjk
(
xk|k−1 + Wkν

j
k

)

Pk|k =
mk∑
j=0

pjk
(
Pj
k|k + (xj

k|k − xk|k)(xj
k|k − xk|k)

>)
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xk|k =
mk∑
j=0

pjkx
j
k|k

= p0
kxk|k−1 +

mk∑
j=1

pjk
(
xk|k−1 + Wkν

j
k

)
= xk|k−1

(
p0
k +

mk∑
j=1

pjk︸ ︷︷ ︸
=1!

)
+ Wk

mk∑
j=1

pjkν
j
k︸ ︷︷ ︸

mean!

Pk|k =
mk∑
j=0

pjk
(
Pj
k|k + (xj

k|k − xk|k)(xj
k|k − xk|k)

>)
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xk|k =
mk∑
j=0

pjkx
j
k|k

= p0
kxk|k−1 +

mk∑
j=1

pjk
(
xk|k−1 + Wkν

j
k

)
= xk|k−1 + Wk νk

Pk|k =
mk∑
j=0

pjk
(
Pj
k|k + (xj

k|k − xk|k)(xj
k|k − xk|k)

>)

Combined Innovation: νk =
mk∑
j=1

pjkν
j
k
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xk|k =
mk∑
j=0

pjkx
j
k|k

= p0
kxk|k−1 +

mk∑
j=1

pjk
(
xk|k−1 + Wkν

j
k

)
= xk|k−1 + Wk νk

Pk|k =
mk∑
j=0

pjk
(
Pj
k|k + (xj

k|k − xk|k)(xj
k|k − xk|k)

>), P0
k|k = Pk|k−1, P

j
k|k = Pk|k−1 −WkSkW

>
k

= Pk|k−1 −
mk∑
j=1

pjkWkSkW
>
k +

mk∑
j=1

pjkWk(ν
j
k − νk)(νjk − νk)

>W>
k

Combined Innovation: νk =
mk∑
j=1

pjkν
j
k
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xk|k =
mk∑
j=0

pjkx
j
k|k

= p0
kxk|k−1 +

mk∑
j=1

pjk
(
xk|k−1 + Wkν

j
k

)
= xk|k−1 + Wk νk

Pk|k =
mk∑
j=0

pjk
(
Pj
k|k + (xj

k|k − xk|k)(xj
k|k − xk|k)

>)
= Pk|k−1 −

mk∑
j=1

pjkWkSkW
>
k +

mk∑
j=1

pjkWk(ν
j
k − νk)(νjk − νk)

>W>
k

= Pk|k−1 − (1− p0
k)WkSkW

>
k + Wk

[ mk∑
j=1

pjkν
j
kν

j>
k − νkνk

>
]
W>

k

Combined Innovation: νk =
mk∑
j=1

pjkν
j
k
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PDAF Filter: formally analog to Kalman Filter

Filtering (scan k−1): p(xk−1|Zk−1) ≈= N (xk−1; xk−1|k−1,Pk−1|k−1) (→ initiation)

prediction (scan k): p(xk|Zk−1) ≈ N (xk; xk|k−1,Pk|k−1) (like Kalman)

Filtering (scan k): p(xk|Zk) ≈
mk∑
j=0

pjkN (xk; x
j
k|k,P

j
k|k) ≈ N (xk; xk|k,Pk|k)

νk =

∑mk

j=0 p
j
k ν

j
k
, νjk = zjk −Hxk|k−1 combined innovation

Wk = Pk|k−1H
>S−1

k , Sk = HPk|k−1H
> + Rk Kalman gain matrix

pjk = pi∗k /
∑

j p
j∗
k , pj∗k =

{
(1− PD) ρF

PD√
|2πSHk |

e−
1

2
ν>HkSHkνHk

weighting factors

xk = xk|k−1 + Wk νk (Filtering Update: Kalman)

Pk = Pk|k−1 − (1−p0
k)WkSW>

k (Kalman part)

+ Wk

{∑mk

j=0 p
j
k ν

j
kν

j>
k − νkνk>

}
W>

k (Spread of Innovations)
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PDAF: Characteristic Properties

• filtering: processing of combined innovation

• all data Zk in the gate are considered

• pi data dependent! Update not linear

• missing measurement: Pk|k−1 with weight p0

• “usual” Kalman covarianve according to (1− p0)

• Spread positively semidefinite: larger covariance

• therefore: data driven adaptivity

• non linear estimator: data dependent error

• Performance prediction only via simulations

Multimodality is lost! What about multiple sensor data?
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Cumulative Detection by N Sensors

cumulative detection probability P kum
D (N) = 1−

N∏
n=1

(1− P n
D)

example: Doppler blindness in case of GMTI radar
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Cumulative Detection by N Sensors

cumulative detection probability P kum
D (N) = 1−

N∏
n=1

(1− P n
D)

example: Doppler blindness in case of GMTI radar

mean cumulative
revisit interval:

1/∆Tc =
N∑
n=1

1/∆Tn

mean cumulative
PD relative to ∆Tc:

P c
D = 1−

N∏
n=1

(1− P n
D)∆Tc/∆Tn
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