Description of the Detection Process

Detektor: receives signals and decides on object existence **Processor:** processes detected signals and produces measurements

D: object actually existent

Description of the Detection Process

Detektor: receives signals and decides on object existence **Processor:** processes detected signals and produces measurements

'D': detector detects an objecterror of 1. kind: $P_{\rm I} = P(\neg D'|D)$ D: object actually existenterror of 2. kind: $P_{\rm II} = P(\neg D'|D)$

measure of detection performance: $P_D = P(D'|D)$

detector properties characterized by two parameters:

- detection probability $P_D = 1 P_I$
- false alarm probability $P_F = P_{II}$

Description of the Detection Process

Detektor: receives signals and decides on object existence **Processor:** processes detected signals and produces measurements

'D': detector detects an objecterror of 1. kind: $P_{\rm I} = P(\neg D'|D)$ D: object actually existenterror of 2. kind: $P_{\rm II} = P(\neg D'|D)$

measure of detection performance: $P_D = P(D'|D)$

detector properties characterized by two parameters:

- detection probability $P_D = 1 P_I$
- false alarm probability $P_F = P_{II}$

example (Swerling I model): $P_D = P_D(P_F, SNR) = P_F^{1/(1+SNR)}$

detector design: Maximize detection probability P_D for a given, predefined false alarm probability P_F !

Likelihood Functions

The likelihood function answers the question: What does the sensor tell about the state x of the object? (input: sensor data, sensor model)

• ideal conditions, one object: $P_D = 1$, $\rho_F = 0$

at each time one measurement:

$$p(\mathbf{z}_k | \mathbf{x}_k) = \mathcal{N}(\mathbf{z}_k; \mathbf{H}\mathbf{x}_k, \mathbf{R})$$

• real conditions, one object: $P_D < 1$, $\rho_F > 0$

at each time n_k measurements $Z_k = \{\mathbf{z}_k^1, \dots, \mathbf{z}_k^{n_k}\}!$

$$p(Z_k, n_k | \mathbf{x}_k) \propto (1 - P_D)
ho_F + P_D \sum_{j=1}^{n_k} \mathcal{N}(\mathbf{z}_k^j; \mathbf{H}\mathbf{x}_k, \mathbf{R})$$

Bayes Filtering for: $P_D < 1, \rho_F > 0$, well-separated objects

state \mathbf{x}_k , *current* data $Z_k = {\mathbf{z}_k^j}_{j=1}^{m_k}$, *accumulated* data $\mathcal{Z}^k = {Z_k, \mathcal{Z}^{k-1}}$

interpretation hypotheses E_k for Z_k

object not detected, $1 - P_D$ $\mathbf{z}_k \in Z_k$ from object, P_D $\left. \begin{array}{c} m_k + 1 \end{array} \right.$ interpretations

interpretation histories H_k for \mathcal{Z}^k

- tree structure: $H_k = (E_{H_k}, H_{k-1}) \in \mathcal{H}^k$
- current: E_{H_k} , *pre*histories: H_{k-i}

$$p(\mathbf{x}_{k}|\mathcal{Z}^{k}) = \sum_{H_{k}} p(\mathbf{x}_{k}, H_{k}|\mathcal{Z}^{k}) = \sum_{H_{k}} \underbrace{p(H_{k}|\mathcal{Z}^{k})}_{\text{weight!}} \underbrace{p(\mathbf{x}_{k}|H_{k}, \mathcal{Z}^{k})}_{\text{given } H_{k}: \text{ unique}}$$
 'mixture' density

Closer look: $P_D < 1, \rho_F > 0$, well-separated targets

filtering (at time
$$t_{k-1}$$
): $p(\mathbf{x}_{k-1}|\mathcal{Z}^{k-1}) = \sum_{H_{k-1}} p_{H_{k-1}} \mathcal{N}(\mathbf{x}_{k-1}; \mathbf{x}_{H_{k-1}}, \mathbf{P}_{H_{k-1}})$

prediction (for time t_k):

$$p(\mathbf{x}_{k}|\mathcal{Z}^{k-1}) = \int d\mathbf{x}_{k-1} p(\mathbf{x}_{k}|\mathbf{x}_{k-1}) p(\mathbf{x}_{k-1}|\mathcal{Z}^{k-1}) \quad (\mathsf{MARKOV model})$$

=
$$\sum_{H_{k-1}} p_{H_{k-1}} \mathcal{N}(\mathbf{x}_{k}; \mathbf{F}\mathbf{x}_{H_{k-1}}, \mathbf{F}\mathbf{P}_{H_{k-1}}\mathbf{F}^{\top} + \mathbf{D}) \quad (\mathsf{IMM also possible})$$

measurement likelihood:

$$p(Z_k, m_k | \mathbf{x}_k) = \sum_{j=0}^{m_k} p(\mathcal{Z}_k | E_k^j, \mathbf{x}_k, m_k) P(E_k^j | \mathbf{x}_k, m_k) \quad (E_k^j: \text{ interpretations})$$

$$\propto (1 - P_D) \rho_F + P_D \sum_{j=1}^{m_k} \mathcal{N}(\mathbf{z}_k^j; \mathbf{H}\mathbf{x}_k, \mathbf{R}) \quad (\mathbf{H}, \mathbf{R}, P_D, \rho_F)$$

filtering (at time t_k):

$$p(\mathbf{x}_{k}|\mathcal{Z}^{k}) \propto p(Z_{k}, m_{k}|\mathbf{x}_{k}) p(\mathbf{x}_{k}|\mathcal{Z}^{k-1}) \quad (\mathsf{BAYES' rule})$$
$$= \sum_{H_{k}} p_{H_{k}} \mathcal{N}(\mathbf{x}_{k}; \mathbf{x}_{H_{k}}, \mathbf{P}_{H_{k}}) \quad (\mathsf{Exploit product formula})$$

m data, N hypotheses $\rightarrow N^{m+1}$ continuations

radical solution: mono-hypothesis approximation

m data, N hypotheses $\rightarrow N^{m+1}$ continuations

radical solution: mono-hypothesis approximation

• gating: Exclude competing data with $||\nu_{k|k-1}^i|| > \lambda!$

+ very simple, – λ too small: loss of target measurement

m data, N hypotheses $\rightarrow N^{m+1}$ continuations

radical solution: mono-hypothesis approximation

• gating: Exclude competing data with $||\nu_{k|k-1}^i|| > \lambda!$

+ very simple, – λ too small: loss of target measurement

• Force a unique interpretation in case of a conflict!

look for *smallest statistical distance:* $\min_i || \boldsymbol{\nu}_{k|k-1}^i ||$

Nearest-Neighbor filter (NN)

m data, N hypotheses $\rightarrow N^{m+1}$ continuations

radical solution: mono-hypothesis approximation

• gating: Exclude competing data with $||\nu_{k|k-1}^i|| > \lambda!$

KALMAN filter (KF)

+ very simple, – λ too small: loss of target measurement

• Force a unique interpretation in case of a conflict!

look for smallest statistical distance: $\min_i || \boldsymbol{\nu}_{k|k-1}^i ||$

Nearest-Neighbor filter (NN)

+ one hypothesis, - hard decision, - not adaptive

• global combining: Merge all hypotheses!

PDAF, JPDAF filter

+ all data, + adaptive, - reduced applicability

PDAF Filter: formally analog to Kalman Filter

Filtering (scan k-1): $p(\mathbf{x}_{k-1}|\mathcal{Z}^{k-1}) = \mathcal{N}(\mathbf{x}_{k-1}; \mathbf{x}_{k-1|k-1}, \mathbf{P}_{k-1|k-1}) (\rightarrow \text{ initiation})$ prediction (scan k): $p(\mathbf{x}_k|\mathcal{Z}^{k-1}) \approx \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k-1}, \mathbf{P}_{k|k-1})$ (like Kalman) Filtering (scan k): $p(\mathbf{x}_k|\mathcal{Z}^k) \approx \sum_{j=0}^{m_k} p_k^j \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k}^j, \mathbf{P}_{k|k}^j) \approx \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{k|k}, \mathbf{P}_{k|k})$ $\boldsymbol{\nu}_k = \underbrace{\sum_{j=0}^{m_k} p_k^j \boldsymbol{\nu}_k^j}_{k-1}, \quad \boldsymbol{\nu}_k^j = \mathbf{z}_k^j - \mathbf{H}\mathbf{x}_{k|k-1}$ combined innovation

$$\begin{split} \mathbf{W}_{k} &= \mathbf{P}_{k|k-1}\mathbf{H}^{\top}\mathbf{S}_{k}^{-1}, \quad \mathbf{S}_{k} &= \mathbf{H}\mathbf{P}_{k|k-1}\mathbf{H}^{\top} + \mathbf{R}_{k} \\ p_{k}^{j} &= p_{k}^{i*} / \sum_{j} p_{k}^{j*}, \quad p_{k}^{j*} &= \begin{cases} (1 - P_{D}) \, \rho_{F} \\ \frac{P_{D}}{\sqrt{|2\pi \mathbf{S}_{H_{k}}|}} \, \mathbf{e}^{-\frac{1}{2}\boldsymbol{\nu}_{H_{k}}^{\top}} \mathbf{S}_{H_{k}} \boldsymbol{\nu}_{H_{k}} \end{cases} & \text{weighting factors} \end{split}$$

$$\begin{aligned} \mathbf{x}_{k} &= \mathbf{x}_{k|k-1} + \mathbf{W}_{k} \boldsymbol{\nu}_{k} \\ \mathbf{P}_{k} &= \mathbf{P}_{k|k-1} - (1 - p_{k}^{0}) \mathbf{W}_{k} \mathbf{S} \mathbf{W}_{k}^{\top} \\ &+ \mathbf{W}_{k} \Big\{ \sum_{j=0}^{m_{k}} p_{k}^{j} \boldsymbol{\nu}_{k}^{j} \boldsymbol{\nu}_{k}^{j\top} - \boldsymbol{\nu}_{k} \boldsymbol{\nu}_{k}^{\top} \Big\} \mathbf{W}_{k}^{\top} \end{aligned}$$
(Kalman part)
(Spread of Innovations)

adaptive solution: nearly optimal approximation

adaptive solution: nearly optimal approximation

• individual gating: Exclude irrelevant data!

before continuing existing track hypotheses H_{k-1}

 \rightarrow *limiting case:* KALMAN filter (KF)

adaptive solution: nearly optimal approximation

• individual gating: Exclude *irrelevant data*!

before continuing existing track hypotheses H_{k-1} \rightarrow *limiting case:* KALMAN filter (KF)

pruning: Kill hypotheses of very small weight!
 after calculating the weights p_{H_k}, before filtering
 → limiting case: Nearest Neighbor filter (NN)

adaptive solution: nearly optimal approximation

- individual gating: Exclude *irrelevant data*!
 before continuing existing track hypotheses H_{k-1}
 → *limiting case:* KALMAN filter (KF)
- pruning: Kill hypotheses of very small weight!
 after calculating the weights p_{H_k}, before filtering
 → limiting case: Nearest Neighbor filter (NN)
- Iocal combining: Merge similar hypotheses!
 after the complete calculation of the pdfs
 → limiting case: PDAF (global combining)

Retrodiction of Hypotheses' Weights

Consider approximation: neglect RTS step!

 $p(\mathbf{x}_l|H_k, \mathcal{Z}^k) = \mathcal{N}ig(\mathbf{x}_l; \, \mathbf{x}_{H_k}(l|\boldsymbol{k}), \, \mathbf{P}_{H_k}(l|\boldsymbol{k})ig) pprox \, \mathcal{N}ig(\mathbf{x}_l; \, \mathbf{x}_{H_k}(l|\boldsymbol{l}), \, \mathbf{P}_{H_k}(l|\boldsymbol{l})ig)$

$$p(\mathbf{x}_l|H_k, \mathcal{Z}^k) pprox \sum_{H_l} \; p^*_{H_l} \; \mathcal{N}ig(\mathbf{x}_l; \, \mathbf{x}_{H_k}(l|l), \, \mathbf{P}_{H_k}(l|l)ig)$$

with recursively defined weights:

$$p_{H_k}^* = p_{H_k}, \quad p_{H_l}^* = \sum p_{H_{l+1}}^*$$

summation over all histories H_{l+1} with equal pre-histories!

- Strong sons strengthen weak fathers.
- Weak sons weaken even strong fathers.
- If all sons die, also the father must die.

Track Extraction: Initiation of the PDF Iteration

extraction of target tracks:detection on a higher level of abstractionstart:data sets $Z_k = \{\mathbf{z}_k^j\}_{j=1}^{m_k}$ (sensor performance: P_D , ρ_F , R)goal:Detect a target trajectory in a time series: $\mathcal{Z}^k = \{Z_i\}_{i=1}^k$!

at first simplifying assumptions:

- The targets in the sensors' field of view (FoV) are well-separated.
- The sensor data in the FoV in scan *i* are produced simultaneously.

Track Extraction: Initiation of the PDF Iteration

extraction of target tracks: detection on a higher level of abstraction *start:* data sets $Z_k = \{\mathbf{z}_k^j\}_{j=1}^{m_k}$ (sensor performance: P_D , ρ_F , **R**) Detect a target trajectory in a time series: $\mathcal{Z}^k = \{Z_i\}_{i=1}^k$ goal:

at first simplifying assumptions:

- The targets in the sensors' field of view (FoV) are well-separated.
- The sensor data in the FoV in scan i are produced simultaneously.

decision between two competing hypotheses:

 h_1 : Besides false returns \mathcal{Z}^k contains also target measurements. h_0 : There is no target existing in the FoV; all data in \mathcal{Z}^k are false.

statistical decision errors:

 $P_0 = \operatorname{Prob}(\operatorname{accept} h_1 | h_0)$ analogous to the sensors' P_F

 $P_1 = \operatorname{Prob}(\operatorname{accept} h_1 | h_1)$ analogous to the sensors' P_D

Practical Approach: Sequential Likelihood Ratio Test

Goal: Decide as fast as possible for given decision errors P_0 , P_1 !

Consider the ratio of the conditional probabilities $p(h_1|\mathcal{Z}^k)$, $p(h_0|\mathcal{Z}^k)$ and the likelihood ratio $LR(k) = p(\mathcal{Z}^k|h_1)/p(\mathcal{Z}^k|h_0)$ as an intuitive decision function:

Practical Approach: Sequential Likelihood Ratio Test

Goal: Decide as fast as possible for given decision errors P_0 , P_1 !

Consider the ratio of the conditional probabilities $p(h_1|\mathcal{Z}^k)$, $p(h_0|\mathcal{Z}^k)$ and the likelihood ratio $LR(k) = p(\mathcal{Z}^k|h_1)/p(\mathcal{Z}^k|h_0)$ as an intuitive decision function:

Starting from a time window with length k = 1, calculate the test function LR(k) successively and compare it with *two* thresholds A, B:

If LR(k) < A, accept hypothesis h_0 (i.e. no target is existing)! If LR(k) > B, accept hypothesis h_1 (i.e. target exists in FoV)! If A < LR(k) < B, wait for new data Z_{k+1} , repeat with LR(k+1)!

Sequential LR Test: Some Useful Properties

1. Thresholds and decision errors are approximately related to each other by:

$$A \approx \frac{1 - P_1}{1 - P_0}$$
 and $B \approx \frac{P_1}{P_0}$

- 2. The actual decision length (number of scans required) is a random variable.
- 3. On average, the test has a *minimal* decision length for given errors P_0 , P_1 .
- 4. The quantity $P_0(P_1)$ affects the *mean* decision length given $h_1(h_0)$ holds.
- 5. Choose the probability P_1 close to 1 for actually detecting real target tracks.
- 6. Po should be small for not overloading the tracking system with false tracks.

$$\mathsf{LR}(k) = \frac{p(\mathcal{Z}^k|h_1)}{p(\mathcal{Z}^k|h_0)} = \frac{\int d\mathbf{x}_k \, p(Z_k, m_k, \mathbf{x}_k, \mathcal{Z}^{k-1}|h_1)}{p(Z_k, m_k, \mathcal{Z}^{k-1}, h_0)}$$

$$\mathsf{LR}(k) = \frac{p(\mathcal{Z}^{k}|h_{1})}{p(\mathcal{Z}^{k}|h_{0})} = \frac{\int d\mathbf{x}_{k} \, p(Z_{k}, m_{k}, \mathbf{x}_{k}, \mathcal{Z}^{k-1}|h_{1})}{p(Z_{k}, m_{k}, \mathcal{Z}^{k-1}, h_{0})} = \frac{\int d\mathbf{x}_{k} \, p(Z_{k}, m_{k}|\mathbf{x}_{k}) \, p(\mathbf{x}_{k}|\mathcal{Z}^{k-1}, h_{1}) \, p(\mathcal{Z}^{k-1}|h_{1})}{|\mathsf{FoV}|^{-m_{k}} \, p_{F}(m_{k}) \, p(\mathcal{Z}^{k-1}|h_{0})}$$

$$\begin{aligned} \mathsf{LR}(k) &= \frac{p(\mathcal{Z}^{k}|h_{1})}{p(\mathcal{Z}^{k}|h_{0})} = \frac{\int d\mathbf{x}_{k} \, p(Z_{k}, m_{k}, \mathbf{x}_{k}, \mathcal{Z}^{k-1}|h_{1})}{p(Z_{k}, m_{k}, \mathcal{Z}^{k-1}, h_{0})} = \frac{\int d\mathbf{x}_{k} \, p(Z_{k}, m_{k}|\mathbf{x}_{k}) \, p(\mathbf{x}_{k}|\mathcal{Z}^{k-1}, h_{1}) \, p(\mathcal{Z}^{k-1}|h_{0})}{|\mathsf{FoV}|^{-m_{k}} \, p_{F}(m_{k}) \, p(\mathcal{Z}^{k-1}|h_{0})} \\ &= \frac{\int d\mathbf{x}_{k} \, p(Z_{k}, m_{k}|\mathbf{x}_{k}, h_{1}) \, p(\mathbf{x}_{k}|\mathcal{Z}^{k-1}, h_{1})}{|\mathsf{FoV}|^{-m_{k}} \, p_{F}(m_{k})} \, \mathsf{LR}(k-1) \end{aligned}$$

basic idea: iterative calculation!

$$\begin{aligned} \mathsf{LR}(k) &= \frac{p(\mathcal{Z}^k|h_1)}{p(\mathcal{Z}^k|h_0)} = \frac{\int d\mathbf{x}_k \, p(Z_k, m_k, \mathbf{x}_k, \mathcal{Z}^{k-1}|h_1)}{p(Z_k, m_k, \mathcal{Z}^{k-1}, h_0)} = \frac{\int d\mathbf{x}_k \, p(Z_k, m_k|\mathbf{x}_k) \, p(\mathbf{x}_k|\mathcal{Z}^{k-1}, h_1) \, p(\mathcal{Z}^{k-1}|h_0)}{|\mathsf{FoV}|^{-m_k} \, p_F(m_k) \, p(\mathcal{Z}^{k-1}|h_0)} \\ &= \frac{\int d\mathbf{x}_k \, p(Z_k, m_k|\mathbf{x}_k, h_1) \, p(\mathbf{x}_k|\mathcal{Z}^{k-1}, h_1)}{|\mathsf{FoV}|^{-m_k} \, p_F(m_k)} \, \mathsf{LR}(k-1) \end{aligned}$$

basic idea: iterative calculation!

Let $H_k = \{E_k, H_{k-1}\}$ be an interpretation history of the time series $\mathcal{Z}^k = \{Z_k, \mathcal{Z}^{k-1}\}$. $E_k = E_k^0$: target was not detected, $E_k = E_k^j$: $\mathbf{z}_k^j \in Z_k$ is a target measurement.

$$p(\mathbf{x}_{k}|\mathcal{Z}^{k-1},h_{1}) = \sum_{H_{k-1}} p(\mathbf{x}_{k}|H_{k-1}\mathcal{Z}^{k-1},h_{1}) \ p(H_{k-1}|\mathcal{Z}^{k-1},h_{1})$$
 The standard MHT prediction!
$$p(Z_{k},m_{k}|\mathbf{x}_{k},h_{1},h_{1}) = \sum_{E_{k}} p(Z_{k},E_{k}|\mathbf{x}_{k},h_{1})$$
 The standard MHT likelihood function!

The calculation of the likelihood ratio is just a by-product of Bayesian MHT tracking.

Iteration Formula for
$$LR(k) = p(\mathcal{Z}^k|h_1)/p(\mathcal{Z}^k|h_0)$$

$$\begin{array}{ll} \text{initiation:} & k = 0, \quad \mathbf{j}_0 = 0, \quad \lambda_{\mathbf{j}_0} = 1 \\ \text{recursion:} & \mathsf{LR}(k+1) = \sum_{\mathbf{j}_{k+1}} \lambda_{\mathbf{j}_{k+1}} = \sum_{j_{k+1}=0}^{m_{k+1}} \sum_{\mathbf{j}_k} \lambda_{j_{k+1}\mathbf{j}_k} \lambda_{\mathbf{j}_k} \\ \text{with:} & \lambda_{j_{k+1}\mathbf{j}_k} = \begin{cases} 1 - P_D & \text{for } j_{k+1} = 0 \\ \frac{P_D}{\rho_F} \mathcal{N}(\boldsymbol{\nu}_{j_{k+1}\mathbf{j}_k}, \mathbf{S}_{j_{k+1}\mathbf{j}_k}) & \text{for } j_{k+1} \neq 0 \end{cases}$$

convenient notation: with
$$\mathbf{j}_k = (j_k, \dots, j_1)$$
 let $\sum_{\mathbf{j}_k} \lambda_{\mathbf{j}_k} = \sum_{j_k=0}^{m_k} \cdots \sum_{j_1=0}^{m_1} \lambda_{j_k\dots j_1}$

Iteration Formula for
$$LR(k) = p(\mathcal{Z}^k|h_1)/p(\mathcal{Z}^k|h_0)$$

$$\begin{array}{ll} \text{initiation:} & k = 0, \quad \mathbf{j}_0 = 0, \quad \lambda_{\mathbf{j}_0} = 1 \\ \text{recursion:} & \mathsf{LR}(k+1) = \sum_{\mathbf{j}_{k+1}} \lambda_{\mathbf{j}_{k+1}} = \sum_{j_{k+1}=0}^{m_{k+1}} \sum_{\mathbf{j}_k} \lambda_{j_{k+1}\mathbf{j}_k} \lambda_{\mathbf{j}_k} \\ \text{with:} & \lambda_{j_{k+1}\mathbf{j}_k} = \begin{cases} 1 - P_D & \text{for } j_{k+1} = 0 \\ \frac{P_D}{\rho_F} \mathcal{N}(\boldsymbol{\nu}_{j_{k+1}\mathbf{j}_k}, \mathbf{S}_{j_{k+1}\mathbf{j}_k}) & \text{for } j_{k+1} \neq 0 \end{cases}$$

$$\begin{array}{lll} \text{innovation:} & \boldsymbol{\nu}_{j_{k+1}\mathbf{j}_k} = \mathbf{z}_{j_{k+1}} - \mathbf{H}_{j_{k+1}} \mathbf{x}_{\mathbf{j}_{k+1|k}} \\ \text{innov. cov.:} & \mathbf{S}_{j_{k+1}\mathbf{j}_k} = \mathbf{H}_{j_{k+1}} \mathbf{P}_{\mathbf{j}_{k+1|k}} \mathbf{H}_{j_{k+1}}^\top + \mathbf{R}_{j_{k+1}} \\ \text{state update:} & \mathbf{x}_{\mathbf{j}_{k+1|k}} = \mathbf{F}_{j_{k+1}} \mathbf{x}_{\mathbf{j}_k} & \mathbf{x}_{\mathbf{j}_k} = \mathbf{x}_{\mathbf{j}_{k|k-1}} + \mathbf{W}_{j_k\mathbf{j}_{k-1}} \boldsymbol{\nu}_{j_k,\mathbf{j}_{k-1}} \\ \text{covariances:} & \mathbf{P}_{\mathbf{j}_{k+1|k}} = \mathbf{F}_{j_{k+1}} \mathbf{P}_{\mathbf{j}_k} \mathbf{F}_{j_{k+1}}^\top + \mathbf{D}_{j_{k+1}} & \mathbf{P}_{\mathbf{j}_k} = \mathbf{P}_{\mathbf{j}_{k|k-1}} - \mathbf{W}_{j_k\mathbf{j}_{k-1}} \mathbf{S}_{j_k\mathbf{j}_{k-1}} \mathbf{W}_{j_k\mathbf{j}_{k-1}}^\top \end{array}$$

- -

Iteration Formula for
$$LR(k) = p(\mathcal{Z}^k|h_1)/p(\mathcal{Z}^k|h_0)$$

$$\begin{array}{ll} \text{initiation:} & k = 0, \quad \mathbf{j}_0 = 0, \quad \lambda_{\mathbf{j}_0} = 1 \\ \text{recursion:} & \mathsf{LR}(k+1) = \sum_{\mathbf{j}_{k+1}} \lambda_{\mathbf{j}_{k+1}} = \sum_{j_{k+1}=0}^{m_{k+1}} \sum_{\mathbf{j}_k} \lambda_{j_{k+1}\mathbf{j}_k} \lambda_{\mathbf{j}_k} \\ \text{with:} & \lambda_{j_{k+1}\mathbf{j}_k} = \begin{cases} 1 - P_D & \text{for } j_{k+1} = 0 \\ \frac{P_D}{\rho_F} \mathcal{N}(\boldsymbol{\nu}_{j_{k+1}\mathbf{j}_k}, \mathbf{S}_{j_{k+1}\mathbf{j}_k}) & \text{for } j_{k+1} \neq 0 \end{cases}$$

innovation:
$$\nu_{j_{k+1}\mathbf{j}_k} = \mathbf{z}_{j_{k+1}} - \mathbf{H}_{j_{k+1}}\mathbf{x}_{\mathbf{j}_{k+1|k}}$$

innov. cov.: $\mathbf{S}_{j_{k+1}\mathbf{j}_k} = \mathbf{H}_{j_{k+1}}\mathbf{P}_{\mathbf{j}_{k+1|k}}\mathbf{H}_{j_{k+1}}^\top + \mathbf{R}_{j_{k+1}}$
state update: $\mathbf{x}_{\mathbf{j}_{k+1|k}} = \mathbf{F}_{j_{k+1}}\mathbf{x}_{\mathbf{j}_k}$ $\mathbf{x}_{\mathbf{j}_k} = \mathbf{x}_{\mathbf{j}_{k|k-1}} + \mathbf{W}_{j_k\mathbf{j}_{k-1}}\nu_{j_k,\mathbf{j}_{k-1}}$
covariances: $\mathbf{P}_{\mathbf{j}_{k+1|k}} = \mathbf{F}_{j_{k+1}}\mathbf{P}_{\mathbf{j}_k}\mathbf{F}_{j_{k+1}}^\top + \mathbf{D}_{j_{k+1}}$ $\mathbf{P}_{\mathbf{j}_k} = \mathbf{P}_{\mathbf{j}_{k|k-1}} - \mathbf{W}_{j_k\mathbf{j}_{k-1}}\mathbf{S}_{j_k\mathbf{j}_{k-1}}\mathbf{W}_{j_k\mathbf{j}_{k-1}}$

Exercise 10.1 Show that this recursion formulae for calculating the decision function is true.

Sequential Track Extraction: Discussion

• LR(k) is given by a growing number of summands, each related to a particular interpretation history. The tuple $\{\lambda_{j_k}, \mathbf{x}_{j_k}\mathbf{P}_{j_k}\}$ is called a *sub-track*.

Sequential Track Extraction: Discussion

- LR(k) is given by a growing number of summands, each related to a particular interpretation history. The tuple $\{\lambda_{j_k}, \mathbf{x}_{j_k}\mathbf{P}_{j_k}\}$ is called a *sub-track*.
- For mitigating growing memory problems all approximations discussed for track maintenance can be used if they do not significantly affect LR(k):
 - *individual gating:* Exclude data not likely to be associated.
 - pruning: Kill sub-tacks contributing marginally to the test function.
 - *local combining:* Merge similar sub tracks:

 $\{\lambda_i, \mathbf{x}_i, \mathbf{P}_i\}_i \to \{\lambda, \mathbf{x}, \mathbf{P}\} \quad \text{with:} \quad \lambda = \sum_i \lambda_i, \\ \mathbf{x} = \frac{1}{\lambda} \sum_i \lambda_i \mathbf{x}_i, \quad \mathbf{P} = \frac{1}{\lambda} \sum_i \lambda_i [\mathbf{P}_i + (\mathbf{x}_i - \mathbf{x})(\ldots)^\top].$

Sequential Track Extraction: Discussion

- LR(k) is given by a growing number of summands, each related to a particular interpretation history. The tuple $\{\lambda_{j_k}, \mathbf{x}_{j_k}\mathbf{P}_{j_k}\}$ is called a *sub-track*.
- For mitigating growing memory problems all approximations discussed for track maintenance can be used if they do not significantly affect LR(k):
 - *individual gating:* Exclude data not likely to be associated.
 - *pruning:* Kill sub-tacks contributing marginally to the test function.
 - *local combining:* Merge similar sub tracks:

$$\{\lambda_i, \mathbf{x}_i, \mathbf{P}_i\}_i \to \{\lambda, \mathbf{x}, \mathbf{P}\} \quad \text{with:} \quad \lambda = \sum_i \lambda_i, \\ \mathbf{x} = \frac{1}{\lambda} \sum_i \lambda_i \mathbf{x}_i, \quad \mathbf{P} = \frac{1}{\lambda} \sum_i \lambda_i [\mathbf{P}_i + (\mathbf{x}_i - \mathbf{x})(\dots)^\top].$$

• The LR test ends with a decision in favor of or against the hypotheses: h_0 (no target) or h_1 (target existing). Intuitive interpretation of the thresholds!

track extraction at t_k : Decide in favor of h_1 !

initiation of pdf iteration (track maintenance):

Normalize coefficients
$$\lambda_{\mathbf{j}_k}$$
: $p_{\mathbf{j}_k} = \frac{\lambda_{\mathbf{j}_k}}{\sum_{\mathbf{j}_k} \lambda_{\mathbf{j}_k}}!$

$$(\lambda_{\mathbf{j}_k}, \mathbf{x}_{\mathbf{j}_k}, \mathbf{P}_{\mathbf{j}_k}) \rightarrow p(\mathbf{x}_k | \mathcal{Z}^k) = \sum_{\mathbf{j}_k} p_{\mathbf{j}_k} \mathcal{N}(\mathbf{x}_k; \mathbf{x}_{\mathbf{j}_k}, \mathbf{P}_{\mathbf{j}_k})$$

Continue track extraction with the remaining sensor data!

sequential LR test for track monitoring:

After deciding in favor of h_1 reset LR(0) = 1! Calculate LR(k) from $p(\mathbf{x}_k | \mathcal{Z}^k)!$

track confirmation:
$$LR(k) > \frac{P_1}{P_0}$$
: reset $LR(0) = 1!$
track deletion: $LR(k) < \frac{1-P_1}{1-P_0}$; ev. track re-initiation

DEMONSTRATION (simulated)

DEMONSTRATION (simulated)

Exercise 10.2 (voluntary)

Simulate a detection process with a given P_D , target measurements with a given \mathbf{R} , a detection process with a given P_D and realize the track extraction procedure.

Generalization to Target Cluster (Perfect Resolution)

Scheme directly extendable to clusters consisting of *n* targets, *if n is known*!

principal approach in case of *unknown n*:

1. Start with sensor measurements Z_1 .

- **2.** Assume for a target cluster $n \leq N!$ A-priorily: $P(n) = \frac{1}{N}$
- **3.** hypothesis h_n : there exist *n* targets; the data set Z_1 contains at least one target measurement; h_0 : no target existing at all
 - **4.** Consider the following ratio (at least 1, at most *N* targets):

$$\frac{p(h_1 \vee \ldots \vee h_N | \mathcal{Z}^k)}{p(h_0 | \mathcal{Z}^k)} = \frac{\sum_{n=1}^N p(h_n | \mathcal{Z}^k)}{p(h_0 | \mathcal{Z}^k)} = \sum_{n=1}^N \frac{p(\mathcal{Z}^k | h_n)}{p(\mathcal{Z}^k | h_0)} \frac{p(h_n)}{p(h_0)}$$

Generalization to Target Cluster (Perfect Resolution)

Scheme directly extendable to clusters consisting of *n* targets, *if n is known*!

principal approach in case of *unknown n*:

1. Start with sensor measurements Z_1 .

- **2.** Assume for a target cluster $n \leq N!$ A-priorily: $P(n) = \frac{1}{N}$
- **3.** hypothesis h_n : there exist *n* targets; the data set Z_1 contains at least one target measurement; h_0 : no target existing at all
 - **4.** generalized LR test function: $LR(k) = \frac{1}{N} \sum_{n=1}^{N} \frac{p(\mathcal{Z}^k|h_n)}{p(\mathcal{Z}^k|h_0)}$
- 5. Calculate $LR_n(k) = p(\mathcal{Z}^k|h_n)/p(\mathcal{Z}^k|h_0)$ in analogy to n = 1.

6. 'Cardinality' of having n objects in the cluster: $c_k(n) = \frac{\mathsf{LR}_n(k)}{\sum_{n=1}^N \mathsf{LR}_n(k)}$ Fraunhofer

DEMONSTRATION (simulated)

ABRAHAM WALD (1902-1950) Austro-Hungarian mathematician who contributed to decision theory, geometry, and econometrics; founded the theory of economic equilibria in Oskar Morgenstern's institut in Vienna: "Berechnung der Ausschaltung von Saisonschwankungen" (Springer Verlag, 1936) the basis of Game Theory: Morgenstern, John von Neumann, John Forbes Nash (1994: Nobel price with Reinhard Selten, Bonn University) → sensor management! Founder of statistical sequential analysis in WW II. 1950 plenary talk at the International Congress of Mathematicians ICM, Cambridge (Mass.): "Basic ideas of a general theory of statistical decision rules" (1900: Hilbert's 23 Problems).

Student and friend: Jacob Wolfowitz (statistician, information theory), classical text book: "Coding Theorems of Information Theory" (1978). Posthumous attack by Ronald Fisher: "an incompetent book on statistics", passionately defended by Jerzy Neyman as imminent a statistician as Fisher.

Generalization to Ambiguous Sensor Data:

Calculate the pdfs
$$p(\mathbf{x}_k | \mathcal{Z}^{k-1}) = \sum_{H_{k-1}} p(\mathbf{x}_k, H_{k-1} | \mathcal{Z}^{k-1}) !$$

$$p(\mathbf{x}_k, H_{k-1} | \mathcal{Z}^{k-1}) = \sum_{i_k, i_{k-1}} \int d\mathbf{x}_{k-1} \, p(\mathbf{x}_k, i_k, \mathbf{x}_{k-1}, i_{k-1}, H_{k-1} | \mathcal{Z}^{k-1})$$

$$= \sum_{i_k, i_{k-1}} \int d\mathbf{x}_{k-1} p(\mathbf{x}_k, i_k, \mathbf{x}_{k-1}, i_{k-1} | \underbrace{\underline{H_{k-1}, \mathcal{Z}^{k-1}}}_{\text{unique!}}) \underbrace{\underline{p(H_{k-1} | \mathcal{Z}^{k-1})}}_{\text{weight: filtering}}$$

calculation: as before!

Design of IMM Modelling

- *number* r of models: relevant only for standard IMM
- *decisive:* sufficiently many Gausßian picture components
- *irrelevant:* by r or length of dynamics khistories n_H
- *recommendation:* worst/best case, histories ($r = 2, n_H = 3$)
- *benefit:* interpretable, close-to-reality dynamics parameters

Demonstration

