
Description of the Detection Process

Detektor: receives signals and decides on object existence

Processor: processes detected signals and produces measurements

‘D’: detector detects an object
D: object actually existent
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Description of the Detection Process

Detektor: receives signals and decides on object existence

Processor: processes detected signals and produces measurements

‘D’: detector detects an object
D: object actually existent

error of 1. kind: PI = P (¬‘D’|D)

error of 2. kind: PII = P (‘D’|¬D)

measure of detection performance: PD = P (‘D’|D)

detector properties characterized by two parameters:

− detection probability PD = 1− PI
− false alarm probability PF = PII
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Description of the Detection Process

Detektor: receives signals and decides on object existence

Processor: processes detected signals and produces measurements

‘D’: detector detects an object
D: object actually existent

error of 1. kind: PI = P (¬‘D’|D)

error of 2. kind: PII = P (‘D’|¬D)

measure of detection performance: PD = P (‘D’|D)

detector properties characterized by two parameters:

− detection probability PD = 1− PI
− false alarm probability PF = PII

example (Swerling I model): PD = PD(PF ,SNR) = P
1/(1+SNR)
F

detector design: Maximize detection probability PD
for a given, predefined false alarm probability PF !
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Likelihood Functions

The likelihood function answers the question:

What does the sensor tell about the state x of the object?

(input: sensor data, sensor model)

• ideal conditions, one object: PD = 1, ρF = 0

at each time one measurement:
p(zk|xk) = N (zk;Hxk,R)

• real conditions, one object: PD < 1, ρF > 0

at each time nk measurements Zk = {z1k, . . . , z
nk
k }!

p(Zk, nk|xk) ∝ (1− PD)ρF + PD

nk∑
j=1

N
(
zjk; Hxk, R

)
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Bayes Filtering for: PD < 1, ρF > 0, well-separated objects

state xk, current data Zk = {zjk}
mk

j=1, accumulated data Zk = {Zk,Zk−1}

interpretation hypotheses Ek for Zk
object not detected, 1− PD
zk ∈ Zk from object, PD

}
mk +1 interpretations

interpretation histories Hk for Zk • tree structure: Hk = (EHk
, Hk−1) ∈ Hk

• current: EHk
, prehistories: Hk−i

p
(
xk| Zk

)
=
∑
Hk

p
(
xk, Hk| Zk

)
=
∑
Hk

p
(
Hk| Zk

)︸ ︷︷ ︸
weight!

p
(
xk|Hk,Zk

)︸ ︷︷ ︸
given Hk: unique

‘mixture’ density
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Closer look: PD < 1, ρF > 0, well-separated targets

filtering (at time tk−1): p(xk−1|Zk−1) =
∑
Hk−1

pHk−1 N
(
xk−1; xHk−1, PHk−1

)
prediction (for time tk):

p(xk|Zk−1) =

∫
dxk−1 p(xk|xk−1) p(xk−1|Zk−1) (MARKOV model)

=
∑
Hk−1

pHk−1 N
(
xk; FxHk−1, FPHk−1F

>+D
)

(IMM also possible)

measurement likelihood:

p(Zk,mk|xk) =
mk∑
j=0

p(Zk|Ej
k,xk,mk) P (Ej

k|xk,mk) (Ej
k: interpretations)

∝ (1− PD) ρF + PD

mk∑
j=1

N
(
zjk; Hxk, R

)
(H, R, PD, ρF )

filtering (at time tk):

p(xk|Zk) ∝ p(Zk,mk|xk) p(xk|Zk−1) (BAYES’ rule)

=
∑
Hk

pHk
N
(
xk; xHk

, PHk

)
(Exploit product formula)
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Problem: Growing Memory Disaster:
m data, N hypotheses→ Nm+1 continuations

radical solution: mono-hypothesis approximation

Sensor Data Fusion - Methods and Applications, 10th Lecture on January 16, 2019



Problem: Growing Memory Disaster:
m data, N hypotheses→ Nm+1 continuations

radical solution: mono-hypothesis approximation

• gating: Exclude competing data with ||νik|k−1|| > λ!

→
KALMAN filter (KF)

+ very simple, − λ too small: loss of target measurement
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Problem: Growing Memory Disaster:
m data, N hypotheses→ Nm+1 continuations

radical solution: mono-hypothesis approximation

• gating: Exclude competing data with ||νik|k−1|| > λ!

→
KALMAN filter (KF)

+ very simple, − λ too small: loss of target measurement

• Force a unique interpretation in case of a conflict!

look for smallest statistical distance: mini ||νik|k−1||

→
Nearest-Neighbor filter (NN)
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Problem: Growing Memory Disaster:
m data, N hypotheses→ Nm+1 continuations

radical solution: mono-hypothesis approximation

• gating: Exclude competing data with ||νik|k−1|| > λ!

→
KALMAN filter (KF)

+ very simple, − λ too small: loss of target measurement

• Force a unique interpretation in case of a conflict!

look for smallest statistical distance: mini ||νik|k−1||

→
Nearest-Neighbor filter (NN)

+ one hypothesis, − hard decision, − not adaptive

• global combining: Merge all hypotheses!

→
PDAF, JPDAF filter

+ all data, + adaptive, − reduced applicability
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PDAF Filter: formally analog to Kalman Filter

Filtering (scan k−1): p(xk−1|Zk−1) = N (xk−1; xk−1|k−1,Pk−1|k−1) (→ initiation)

prediction (scan k): p(xk|Zk−1) ≈ N (xk; xk|k−1,Pk|k−1) (like Kalman)

Filtering (scan k): p(xk|Zk) ≈
mk∑
j=0

pjkN (xk; x
j
k|k,P

j
k|k) ≈ N (xk; xk|k,Pk|k)

νk =

∑mk

j=0 p
j
k ν

j
k
, νjk = zjk −Hxk|k−1 combined innovation

Wk = Pk|k−1H
>S−1k , Sk = HPk|k−1H

>+Rk Kalman gain matrix

pjk = pi∗k /
∑

j p
j∗
k , pj∗k =

{
(1− PD) ρF

PD√
|2πSHk |

e−
1

2
ν>HkSHkνHk

weighting factors

xk = xk|k−1 +Wk νk (Filtering Update: Kalman)

Pk = Pk|k−1 − (1−p0k)WkSW>
k (Kalman part)

+ Wk

{∑mk

j=0 p
j
k ν

j
kν

j>
k − νkνk>

}
W>

k (Spread of Innovations)
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The qualitative shape of p(xk|Zk) is often much simpler

than its correct representation: a few pronounced modes

adaptive solution: nearly optimal approximation
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The qualitative shape of p(xk|Zk) is often much simpler

than its correct representation: a few pronounced modes

adaptive solution: nearly optimal approximation

• individual gating: Exclude irrelevant data!
before continuing existing track hypotheses Hk−1

→ limiting case: KALMAN filter (KF)
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The qualitative shape of p(xk|Zk) is often much simpler

than its correct representation: a few pronounced modes

adaptive solution: nearly optimal approximation

• individual gating: Exclude irrelevant data!
before continuing existing track hypotheses Hk−1

→ limiting case: KALMAN filter (KF)

• pruning: Kill hypotheses of very small weight !
after calculating the weights pHk

, before filtering

→ limiting case: Nearest Neighbor filter (NN)
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The qualitative shape of p(xk|Zk) is often much simpler

than its correct representation: a few pronounced modes

adaptive solution: nearly optimal approximation

• individual gating: Exclude irrelevant data!
before continuing existing track hypotheses Hk−1

→ limiting case: KALMAN filter (KF)

• pruning: Kill hypotheses of very small weight !
after calculating the weights pHk

, before filtering

→ limiting case: Nearest Neighbor filter (NN)

• local combining: Merge similar hypotheses!
after the complete calculation of the pdfs

→ limiting case: PDAF (global combining)
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Retrodiction of Hypotheses’ Weights

Consider approximation: neglect RTS step!

p(xl|Hk,Zk) = N
(
xl; xHk

(l|k), PHk
(l|k)

)
≈ N

(
xl; xHk

(l|l), PHk
(l|l)

)
p(xl|Hk,Zk) ≈

∑
Hl

p∗Hl
N
(
xl; xHk

(l|l), PHk
(l|l)

)

with recursively defined weights:
p∗Hk = pHk, p∗Hl =

∑
p∗Hl+1

summation over all histories Hl+1 with equal pre-histories!

• Strong sons strengthen weak fathers.
• Weak sons weaken even strong fathers.
• If all sons die, also the father must die.

Sensor Data Fusion - Methods and Applications, 10th Lecture on January 16, 2019



Track Extraction: Initiation of the PDF Iteration
extraction of target tracks: detection on a higher level of abstraction

start: data sets Zk = {zjk}
mk
j=1 (sensor performance: PD, ρF , R)

goal: Detect a target trajectory in a time series: Zk = {Zi}ki=1!

at first simplifying assumptions:

• The targets in the sensors’ field of view (FoV) are well-separated.
• The sensor data in the FoV in scan i are produced simultaneously.
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Track Extraction: Initiation of the PDF Iteration
extraction of target tracks: detection on a higher level of abstraction

start: data sets Zk = {zjk}
mk
j=1 (sensor performance: PD, ρF , R)

goal: Detect a target trajectory in a time series: Zk = {Zi}ki=1!

at first simplifying assumptions:

• The targets in the sensors’ field of view (FoV) are well-separated.
• The sensor data in the FoV in scan i are produced simultaneously.

decision between two competing hypotheses:

h1: Besides false returns Zk contains also target measurements.
h0: There is no target existing in the FoV; all data in Zk are false.

statistical decision errors:

P1 = Prob(accept h1|h1) analogous to the sensors’ PD
P0 = Prob(accept h1|h0) analogous to the sensors’ PF
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Practical Approach: Sequential Likelihood Ratio Test

Goal: Decide as fast as possible for given decision errors P0, P1!

Consider the ratio of the conditional probabilities p(h1|Zk), p(h0|Zk) and the
likelihood ratio LR(k) = p(Zk|h1)/p(Zk|h0) as an intuitive decision function:

p(h1|Zk)
p(h0|Zk)

=
p(Zk|h1)
p(Zk|h0)

p(h1)

p(h0)
a priori: p(h1) = p(h0)
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Practical Approach: Sequential Likelihood Ratio Test

Goal: Decide as fast as possible for given decision errors P0, P1!

Consider the ratio of the conditional probabilities p(h1|Zk), p(h0|Zk) and the
likelihood ratio LR(k) = p(Zk|h1)/p(Zk|h0) as an intuitive decision function:

p(h1|Zk)
p(h0|Zk)

=
p(Zk|h1)
p(Zk|h0)

p(h1)

p(h0)
a priori: p(h1) = p(h0)

Starting from a time window with length k = 1, calculate the test function
LR(k) successively and compare it with two thresholds A, B:

If LR(k) < A, accept hypothesis h0 (i.e. no target is existing)!

If LR(k) > B, accept hypothesis h1 (i.e. target exists in FoV)!

If A < LR(k) < B, wait for new data Zk+1, repeat with LR(k+1)!
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Sequential LR Test: Some Useful Properties

1. Thresholds and decision errors are approximately related to each other by:

A ≈
1− P1
1− P0

and B ≈
P1
P0

2. The actual decision length (number of scans required) is a random variable.

3. On average, the test has a minimal decision length for given errors P0, P1.

4. The quantity P0 (P1) affects the mean decision length given h1 (h0) holds.

5. Choose the probability P1 close to 1 for actually detecting real target tracks.

6. P0 should be small for not overloading the tracking system with false tracks.
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Iterative Calculation of the Likelihood Ratio

LR(k) =
p(Zk|h1)
p(Zk|h0)

=

∫
dxk p(Zk,mk,xk,Zk−1|h1)
p(Zk,mk,Zk−1, h0)
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Iterative Calculation of the Likelihood Ratio

LR(k) =
p(Zk|h1)
p(Zk|h0)

=

∫
dxk p(Zk,mk,xk,Zk−1|h1)
p(Zk,mk,Zk−1, h0)

=

∫
dxk p(Zk,mk|xk) p(xk|Zk−1, h1) p(Zk−1|h1)

|FoV|−mk pF(mk) p(Zk−1|h0)
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Iterative Calculation of the Likelihood Ratio

LR(k) =
p(Zk|h1)
p(Zk|h0)

=

∫
dxk p(Zk,mk,xk,Zk−1|h1)
p(Zk,mk,Zk−1, h0)

=

∫
dxk p(Zk,mk|xk) p(xk|Zk−1, h1) p(Zk−1|h1)

|FoV|−mk pF(mk) p(Zk−1|h0)

=

∫
dxk p(Zk,mk|xk, h1) p(xk|Zk−1, h1)

|FoV|−mk pF(mk)
LR(k − 1)

basic idea: iterative calculation!
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Iterative Calculation of the Likelihood Ratio

LR(k) =
p(Zk|h1)
p(Zk|h0)

=

∫
dxk p(Zk,mk,xk,Zk−1|h1)
p(Zk,mk,Zk−1, h0)

=

∫
dxk p(Zk,mk|xk) p(xk|Zk−1, h1) p(Zk−1|h1)

|FoV|−mk pF(mk) p(Zk−1|h0)

=

∫
dxk p(Zk,mk|xk, h1) p(xk|Zk−1, h1)

|FoV|−mk pF(mk)
LR(k − 1)

basic idea: iterative calculation!

Let Hk = {Ek, Hk−1} be an interpretation history of the time series Zk = {Zk,Zk−1}.

Ek = E0
k : target was not detected, Ek = Ej

k: zjk ∈ Zk is a target measurement.

p(xk|Zk−1, h1) =
∑
Hk−1

p(xk|Hk−1Zk−1, h1) p(Hk−1|Zk−1, h1) The standard MHT prediction!

p(Zk,mk|xk, h1, h1) =
∑
Ek

p(Zk, Ek|xk, h1) The standard MHT likelihood function!

The calculation of the likelihood ratio is just a by-product of Bayesian MHT tracking.
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Iteration Formula for LR(k) = p(Zk|h1)/p(Zk|h0)

initiation: k = 0, j0 = 0, λj0 = 1

recursion: LR(k+1) =
∑
jk+1

λjk+1
=

mk+1∑
jk+1=0

∑
jk

λjk+1jk
λjk

with: λjk+1jk
=

{
1− PD for jk+1 = 0
PD
ρF
N (νjk+1jk,Sjk+1jk) for jk+1 6= 0

convenient notation: with jk = (jk, . . . , j1) let
∑
jk

λjk =
mk∑
jk=0

· · ·
m1∑
j1=0

λjk...j1
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Iteration Formula for LR(k) = p(Zk|h1)/p(Zk|h0)

initiation: k = 0, j0 = 0, λj0 = 1

recursion: LR(k+1) =
∑
jk+1

λjk+1
=

mk+1∑
jk+1=0

∑
jk

λjk+1jk
λjk

with: λjk+1jk
=

{
1− PD for jk+1 = 0
PD
ρF
N (νjk+1jk,Sjk+1jk) for jk+1 6= 0

innovation: νjk+1jk = zjk+1 −Hjk+1xjk+1|k

innov. cov.: Sjk+1jk = Hjk+1Pjk+1|kH
>
jk+1

+Rjk+1

state update: xjk+1|k = Fjk+1xjk xjk = xjk|k−1 +Wjkjk−1νjk,jk−1

covariances: Pjk+1|k = Fjk+1PjkF
>
jk+1

+Djk+1 Pjk = Pjk|k−1 −Wjkjk−1Sjkjk−1W
>
jkjk−1
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Iteration Formula for LR(k) = p(Zk|h1)/p(Zk|h0)

initiation: k = 0, j0 = 0, λj0 = 1

recursion: LR(k+1) =
∑
jk+1

λjk+1
=

mk+1∑
jk+1=0

∑
jk

λjk+1jk
λjk

with: λjk+1jk
=

{
1− PD for jk+1 = 0
PD
ρF
N (νjk+1jk,Sjk+1jk) for jk+1 6= 0

innovation: νjk+1jk = zjk+1 −Hjk+1xjk+1|k

innov. cov.: Sjk+1jk = Hjk+1Pjk+1|kH
>
jk+1

+Rjk+1

state update: xjk+1|k = Fjk+1xjk xjk = xjk|k−1 +Wjkjk−1νjk,jk−1

covariances: Pjk+1|k = Fjk+1PjkF
>
jk+1

+Djk+1 Pjk = Pjk|k−1 −Wjkjk−1Sjkjk−1W
>
jkjk−1

Exercise 10.1 Show that this recursion formulae for calculating the decision function is true.
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Sequential Track Extraction: Discussion

• LR(k) is given by a growing number of summands, each related to a parti-
cular interpretation history. The tuple {λjk,xjkPjk

} is called a sub-track.
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Sequential Track Extraction: Discussion

• LR(k) is given by a growing number of summands, each related to a parti-
cular interpretation history. The tuple {λjk,xjkPjk

} is called a sub-track.

• For mitigating growing memory problems all approximations discussed for
track maintenance can be used if they do not significantly affect LR(k):

– individual gating: Exclude data not likely to be associated.

– pruning: Kill sub-tacks contributing marginally to the test function.

– local combining: Merge similar sub tracks:

{λi,xi,Pi}i → {λ,x,P} with: λ =
∑
i λi,

x = 1
λ

∑
i λixi, P = 1

λ

∑
i λi[Pi+ (xi − x)(. . .)>].
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Sequential Track Extraction: Discussion

• LR(k) is given by a growing number of summands, each related to a parti-
cular interpretation history. The tuple {λjk,xjkPjk

} is called a sub-track.

• For mitigating growing memory problems all approximations discussed for
track maintenance can be used if they do not significantly affect LR(k):

– individual gating: Exclude data not likely to be associated.

– pruning: Kill sub-tacks contributing marginally to the test function.

– local combining: Merge similar sub tracks:

{λi,xi,Pi}i → {λ,x,P} with: λ =
∑
i λi,

x = 1
λ

∑
i λixi, P = 1

λ

∑
i λi[Pi+ (xi − x)(. . .)>].

• The LR test ends with a decision in favor of or against the hypotheses: h0
(no target) or h1 (target existing). Intuitive interpretation of the thresholds!
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track extraction at tk: Decide in favor of h1!

initiation of pdf iteration (track maintenance):

Normalize coefficients λjk: pjk =
λjk∑
jk
λjk

!

(λjk,xjk,Pjk
) → p(xk|Zk) =

∑
jk

pjk N
(
xk; xjk, Pjk

)

Continue track extraction with the remaining sensor data!

sequential LR test for track monitoring:

After deciding in favor of h1 reset LR(0) = 1! Calculate LR(k) from p(xk|Zk)!

track confirmation: LR(k) > P1
P0

: reset LR(0) = 1!

track deletion: LR(k) < 1−P1
1−P0 ; ev. track re-initiation
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DEMONSTRATION (simulated)
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DEMONSTRATION (simulated)

Exercise 10.2 (voluntary)

Simulate a detection process with a given PD, target measurements with a given R, a
detection process with a given PD and realize the track extraction procedure.
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Generalization to Target Cluster (Perfect Resolution)

Scheme directly extendable to clusters consisting of n targets, if n is known!

principal approach in case of unknown n:

1. Start with sensor measurements Z1.

2. Assume for a target cluster n ≤ N ! A-priorily: P (n) = 1
N

3. hypothesis hn: there exist n targets; the data set Z1 contains at
least one target measurement; h0: no target existing at all

4. Consider the following ratio (at least 1, at most N targets):

p(h1 ∨ . . . ∨ hN |Zk)
p(h0|Zk)

=

∑N
n=1 p(hn|Z

k)

p(h0|Zk)
=

N∑
n=1

p(Zk|hn)
p(Zk|h0)

p(hn)

p(h0)
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Generalization to Target Cluster (Perfect Resolution)

Scheme directly extendable to clusters consisting of n targets, if n is known!

principal approach in case of unknown n:

1. Start with sensor measurements Z1.

2. Assume for a target cluster n ≤ N ! A-priorily: P (n) = 1
N

3. hypothesis hn: there exist n targets; the data set Z1 contains at
least one target measurement; h0: no target existing at all

4. generalized LR test function: LR(k) =
1

N

N∑
n=1

p(Zk|hn)
p(Zk|h0)

5. Calculate LRn(k) = p(Zk|hn)/p(Zk|h0) in analogy to n = 1.

6. ‘Cardinality’ of having n objects in the cluster: ck(n) =
LRn(k)∑N
n=1LRn(k)Sensor Data Fusion - Methods and Applications, 10th Lecture on January 16, 2019



DEMONSTRATION (simulated)
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ABRAHAM WALD (1902-1950) Austro-Hungarian mathematician who contributed to decision theory,
geometry, and econometrics; founded the theory of economic equilibria in Oskar Morgenstern’s institut in
Vienna: “Berechnung der Ausschaltung von Saisonschwankungen” (Springer Verlag, 1936) the basis of
Game Theory: Morgenstern, John von Neumann, John Forbes Nash (1994: Nobel price with Reinhard

Selten, Bonn University)→ sensor management! Founder of statistical sequential analysis in WW II. 1950
plenary talk at the International Congress of Mathematicians ICM, Cambridge (Mass.): “Basic ideas of a

general theory of statistical decision rules” (1900: Hilbert’s 23 Problems).

Student and friend: Jacob Wolfowitz (statistician, information theory), classical text book: “Coding
Theorems of Information Theory” (1978). Posthumous attack by Ronald Fisher: “an incompetent book on

statistics”, passionately defended by Jerzy Neyman as imminent a statistician as Fisher.
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Quite general: agent switching between different modes of over-all behavior

© Fraunhofer FKIE  
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Quite general: agent switching between different modes of over-all behavior

© Fraunhofer FKIE  
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Quite general: agent switching between different modes of over-all behavior

© Fraunhofer FKIE  

M1 

M3 

M2 

P(2|1) 

P(3|1) 

P(1|1) 

P(1|1) + P(2|1) + P(3|1) = 1 
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Quite general: agent switching between different modes of over-all behavior

© Fraunhofer FKIE  

M1 

M3 

M2 

P(2|1) 

P(1|2) 

P(3|2) 
P(2|3) P(1|3) 

P(3|1) 

P(1|1) P(2|2) 

P(3|3) 

P(1|1) + P(2|1) + P(3|1) = 1 
P(1|2) + P(2|2) + P(3|2) = 1 
P(1|3) + P(2|3) + P(3|3) = 1 
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Generalization to Ambiguous Sensor Data:

Calculate the pdfs p(xk|Zk−1) =
∑
Hk−1 p(xk, Hk−1 | Z

k−1) !

p(xk, Hk−1|Zk−1) =
∑

ik,ik−1

∫
dxk−1 p(xk, ik,xk−1, ik−1, Hk−1|Zk−1)

=
∑

ik,ik−1

∫
dxk−1 p(xk, ik,xk−1, ik−1|Hk−1,Zk−1︸ ︷︷ ︸

unique!

) p(Hk−1|Zk−1)︸ ︷︷ ︸
weight: filtering

calculation: as before!
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Design of IMM Modelling

• number r of models: relevant only for standard IMM

• decisive: sufficiently many Gausßian picture components

• irrelevant: by r or length of dynamics khistories nH

• recommendation: worst/best case, histories (r = 2, nH = 3)

• benefit: interpretable, close-to-reality dynamics parameters

Demonstration
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