Description of the Detection Process

Detektor: receives signals and decides on object existence
Processor: processes detected signals and produces measurements

‘D’ detector detects an object
D: object actually existent
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Description of the Detection Process

Detektor: receives signals and decides on object existence
Processor: processes detected signals and produces measurements

‘D’ detector detects an object error of 1. kind: P = P(—'D’|D)
D: object actually existent error of 2. kind: P =P(‘'D’|-D)

measure of detection performance: Pp = P(‘D’|D)

detector properties characterized by two parameters:
— detection probability Pp =1 — A
— false alarm probability Pr = Fy;
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Description of the Detection Process

Detektor: receives signals and decides on object existence
Processor: processes detected signals and produces measurements

‘D’ detector detects an object error of 1. kind: P = P(—'D’|D)
D: object actually existent error of 2. kind: P =P(‘'D’|-D)

measure of detection performance: Pp = P(‘D’|D)

detector properties characterized by two parameters:
— detection probability Pp =1 — A
— false alarm probability Pr = Fy;

example (Swerling | model): Pp = Pp(Pr,SNR) = p}/““‘SNR)

detector design: Maximize detection probability Pp
for a given, predefined false alarm probability Pg!
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Likelihood Functions

The likelihood function answers the question:
What does the sensor tell about the state x of the object?

(input: sensor data, sensor model)

e ideal conditions, one object: PH = 1, ppr =0

' zr|xr) = N (zk; Hx;, R
at each time one measurement: (20 = N xR |

e real conditions, one object: PH < 1, pr >0

at each time ny, measurements Z;, = {z},...,z,*}!

p(Zk, ng|xx) o< (L — Pp)pr + Pp Z J\/'(Z?;; Hx;, R)

=1
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Bayes Filtering for: Pp < 1, pr > 0, well-separated objects

state x;, current data 7, = {zk} accumulated data z* = {7, Z¥1}

Jj=01

interpretation hypotheses F,. for 7,

object not detected, 1 — Pp _ .
z;. € Z from object, Pp } my + 1 interpretations

o tree structure: H, = (Ey,, H,_1) € H*

interpretation histories H;, for Z* o
e current: Ey,, prehistories: Hy_;

p(xk| 2¥) = p(xw, Hy| 2¥) Z p(Hi| 2*) p(xi| H, 2") ‘mixture’ density
Hk k

welght' given Hk unique
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Closer look: Pp < 1, pr > 0, well-separated targets

filtering (at time ¢;_1): p(xk_l\Z’“‘l) = Z PH, . N<Xk:—1; XHy 15 PH,H)
Hy_,

prediction (for time t;):

pGul21) = [ dxiapGalxi) pGua]2470) (MaRKoV mode)

Z pH, ., N (xi; Fxpg, ,, FPy F' + D) (IMM also possible)
Hy s

measurement likelihood:

p(Zk, mk|Xk) = Zp(ZHEi, Xk, mk) P(Ei|a:k, mk) (Ei interpretations)
Jj=0 .
o« (1-Pp)pr—+ Pp Z N (z}; Hx;, R) (H, R, Pp, pr)

j=1
filtering (at time ¢;):
p(xelZ") o< p(Zp, mulxi) p(xk|Z¥71)  (BAYES' rule)

= Z pr, N (Xi; xm,, Pr,)  (Exploit product formula)
Hy

\
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Problem: Growing Memory Disaster:

m data, N hypotheses — N™11 continuations

radical solution: mono-hypothesis approximation
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Problem: Growing Memory Disaster:

m data, N hypotheses — N™11 continuations

radical solution: mono-hypothesis approximation

e gating: Exclude competing data with |[v,, ;|| > Al

KALMAN filter (KF)
_>

very simple, — X too small: loss of target measurement
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Problem: Growing Memory Disaster:

m data, N hypotheses — N™11 continuations

radical solution: mono-hypothesis approximation

e gating: Exclude competing data with |[v,, ;|| > Al

KALMAN filter (KF)
_>

very simple, — X too small: loss of target measurement
e Force a unique interpretation in case of a conflict!

look for smallest statistical distance: min; ||V

R Nearest-Neighbor filter (NN)

pll
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Problem: Growing Memory Disaster:

m data, N hypotheses — N™11 continuations

radical solution: mono-hypothesis approximation

e gating: Exclude competing data with |[v,, |l > Al

KALMAN filter (KF)
%

very simple, — )\ too small: loss of target measurement

e Force a unique interpretation in case of a conflict!

look for smallest statistical distance: min; | |u§'€| w1l

Nearest-Neighbor filter (NN)
_>

one hypothesis, — hard decision, — not adaptive

e global combining: Merge all hypotheses!

PDAF, JPDAF filter I
%

all data, -+ adaptive, — reduced applicability

\

~ Fraunhofer

Sensor Data Fusion - Methods and Applications, 10th Lecture on January 16, 2019 FKIE



PDAF Filter: formally analog to Kalman Filter

Filtering (scan k—1): p(x;—1|Z% 1) = N(Xp—1; Xp—1k-1, Pr—1x-1) (— initiation)
prediction (scan k): p(xi| ZF 1) = N(xp; : ) (like Kalman)
Filtering (scan k): p(xi|2F) = Y PN (xi; Xi|k’Pi|k) ~ N (Xk; Xpjs Prir)
j=0
DR - « L .
v, = , v, = z; — Hxyp4 combined innovation
W, = Py 1H'S; ', S, = HP,, ;H" + Ry Kalman gain matrix
| | - - (1 - Pp)pr
P, = v/ > plY,  plf = { Py o~ Suwn, weighting factors
\/ |27TSHk|
Xp = + W, v, (Filtering Update: Kalman)
P, = — (1-p9) W, ,SW/ (Kalman part)
+ Wk{ S vyl — VkaT}W;’ (Spread of Innovations)

11
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The qualitative shape of p(x;|Z¥) is often much simpler

than its correct representation: a few pronounced modes

adaptive solution: nearly optimal approximation
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The qualitative shape of p(x;|Z¥) is often much simpler

than its correct representation: a few pronounced modes

adaptive solution: nearly optimal approximation

¢ individual gating: Exclude irrelevant data!
before continuing existing track hypotheses Hj,_1
— limiting case: KALMAN filter (KF)
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The qualitative shape of p(x;|Z¥) is often much simpler

than its correct representation: a few pronounced modes

adaptive solution: nearly optimal approximation

¢ individual gating: Exclude irrelevant data!
before continuing existing track hypotheses Hj,_1
— limiting case: KALMAN filter (KF)

e pruning: Kill hypotheses of very small weight!
after calculating the weights py, , before filtering
— limiting case: Nearest Neighbor filter (NN)
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The qualitative shape of p(x;|Z¥) is often much simpler

than its correct representation: a few pronounced modes

adaptive solution: nearly optimal approximation

¢ individual gating: Exclude irrelevant data!
before continuing existing track hypotheses Hj,_1
— limiting case: KALMAN filter (KF)

e pruning: Kill hypotheses of very small weight!
after calculating the weights py, , before filtering
— limiting case: Nearest Neighbor filter (NN)

e local combining: Merge similar hypotheses!
after the complete calculation of the pdfs
— limiting case: PDAF (global combining)
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Retrodiction of Hypotheses’ Weights

Consider approximation: neglect RTS step!
p(xi|Hy, Z2*) = N (xi; xg,(1|k), Py, (Uk)) = N (x5 x,(1|1), Py, (1]1))

p(xi|Hy, Z°) & Z P, N (xi; xg,(1|1), Pa,(1]1))
H,

| | | | Ph, = PHy» PH, = X PH,,
with recursively defined weights:

summation over all histories H; ; with equal pre-histories!

e Strong sons strengthen weak fathers.
e Weak sons weaken even strong fathers.
e If all sons die, also the father must die.
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Track Extraction: Initiation of the PDF lteration

extraction of target tracks: detection on a higher level of abstraction

start: datasets Z;, = {zi}?l:’fl (sensor performance: Pp, pr, R)

goal: Detect a target trajectory in a time series: Z¥ = {Z;}F_,!

at first simplifying assumptions:

e The targets in the sensors’ field of view (FoV) are well-separated.
e The sensordatainthe FoV in scan ¢ are produced simultaneously.
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Track Extraction: Initiation of the PDF lteration

extraction of target tracks: detection on a higher level of abstraction

start: datasets Z;, = {zi}?l:’fl (sensor performance: Pp, pr, R)

goal: Detect a target trajectory in a time series: Z¥ = {Z;}F_,!

at first simplifying assumptions:

e The targets in the sensors’ field of view (FoV) are well-separated.
e The sensordatainthe FoV in scan : are produced simultaneously.

decision between two competing hypotheses:

hi: Besides false returns Z* contains also target measurements.
ho: There is no target existing in the FoV; all data in Z* are false.

statistical decision errors:

P; = Prob(accept h1|h1) analogous to the sensors’ Pp,
Py = Prob(accept h1|hg) analogous to the sensors’ Pr
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Practical Approach: Sequential Likelihood Ratio Test

Goal: Decide as fast as possible for given decision errors Py, P;! I

Consider the ratio of the conditional probabilities p(h1|2%), p(ho|Z*) and the
likelihood ratio LR(k) = p(Z¥|h1)/p(Z¥|ho) as an intuitive decision function:

p(h1|ZF) _ p(Z¥|h1) p(h1)
p(holZF)  p(ZF|hg) p(ho)

a priori: p(h1) = p(ho)
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Practical Approach: Sequential Likelihood Ratio Test

Goal: Decide as fast as possible for given decision errors Py, P;! I

Consider the ratio of the conditional probabilities p(h1|2%), p(ho|Z*) and the
likelihood ratio LR(k) = p(Z¥|h1)/p(Z¥|ho) as an intuitive decision function:

p(h1|Z¥) _ p(Z¥|h1) p(h1)
p(holZF)  p(ZF|hg) p(ho)

a priori: p(h1) = p(hg)

Starting from a time window with length £ = 1, calculate the test function
LR(k) successively and compare it with two thresholds A, B:

If LR(k) < A, accept hypothesis hq (i.e. no target is existing)!
If LR(k) > B, accept hypothesis h1 (i.e. target exists in FoV)!
If A< LR(k)< B, waitfornew data Z;_ 1, repeat with LR(k + 1)!
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Sequential LR Test: Some Useful Properties

1. Thresholds and decision errors are approximately related to each other by:

1—P P
A~ 1 and Bz—l

1— Py Py

2. The actual decision length (number of scans required) is a random variable.
3. On average, the test has a minimal decision length for given errors P, P;.
4. The quantity Py (P;) affects the mean decision length given hq (hg) holds.
5. Choose the probability P; close to 1 for actually detecting real target tracks.

6. 5 should be small for not overloading the tracking system with false tracks.

21
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lterative Calculation of the Likelihood Ratio

p 1) Xk P\ Lk, M, Xgy, Z7 7|11
(Z¥h1)  [dxip(Z Zk=1hy)

LR(k) = _
p(Z¥|ho) p(Zy, my, ZF=1 ho)

\
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lterative Calculation of the Likelihood Ratio

p(Z*|h1) [ dxi p(Zk, mp, X, 2571 1) _ [ dxi p(Zy, mg|xi) p(xk| 2571, h1) p(ZF7 1 h1)

LR(k) = —
p(Z*|ho) P(Zg, mg, 251, ho) [FoV|=" pp(my) p(Z2F~1]ho)

\
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lterative Calculation of the Likelihood Ratio

p(Z*|h1) _ [ dxi p(Zy, m, xi, ZF7 1 1) _ [ dxi p(Zy, mg|xi) p(xk| 2571, h1) p(ZF7 1 h1)
p(Z*|ho) p(Zy, mi, Zk=1, ho) [FoV|=™ pp(my) p(Z2F~1|ho)

_ [ dxp p(Zy, my|xp, h1) p(xk| 2571, ha)
[FoV|= pp(my)

LR(E) =

LR(k — 1)

basic idea: iterative calculation!

\
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lterative Calculation of the Likelihood Ratio

p(Z*|h1) _ [ dxi p(Zy, m, xi, ZF7 1 1) _ [ dxi p(Zy, mg|xi) p(xk| 2571, h1) p(ZF7 1 h1)
p(Z*|ho) p(Zy, mi, Zk=1, ho) [FoV|=™ pp(my) p(Z2F~1|ho)

_ [ dxp p(Zy, my|xp, h1) p(xk| 2571, ha)
[FoV|= pp(my)

LR(k) =

LR(k — 1)

basic idea: iterative calculation!

Let H, = {E}, H,_1} be an interpretation history of the time series Z¥ = {Z,,, Z¥~1}.

E, = E9: target was not detected, E, = EY: 7z’ € Z, is a target measurement.
k: ke 2,

p(xk| 2571 ha) = p(xe|Hy-12571 ha) p(Hi-1|2* 7', h1)  The standard MHT prediction!
kal

p(Zg, | X, b1, ha) =Y p(Zi, x|k, h1) The standard MHT likelihood function!
E;

The calculation of the likelihood ratio is just a by-product of Bayesian MHT tracking.

\
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lteration Formula for LR(k) = p(Z*|h1) /p(Z%|hg)

initiation: k=0, jo=0, ). =1

JO
M+1
recursion: LR(E+1)= ) Ajpgr — > 2 Aot M
Jk+1 Ik+170 Jg

1—-Pp for jk_|_1 =0

Ao o= <p .
]k—l—ljk {p_;)N(ij—s—ljk’ S]H—le) fOr ]k;—|—1 7‘_E O

convenient notation:  with j. = (ji, ..., j1) let ZAM = Z Z N, s
]k— 1—0

\
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lteration Formula for LR(k) = p(Z*|h1) /p(Z%|hg)

initiation: k=0, jo=0, X,=1
M1
recursion: LR(k+1)= > Njpys = > Yy Nt 1in N
Jk+1 Ik+170 Jg

1-Pp for  jx4+1 =0

with: A .= 9P ;
]k—l—ljk {p_;)N(ij—s—ljk’ S]H—le) fOr ]k;—|—1 7‘_E O

innovation: v, ; =1z; , —H;, % .
. _ _ T
INNOV. COV.. Sjk,+1jk, — ij+1ij+1\Aeij+1 + Rjk+1

state update:  x; . =F, x, Xj, = Xjys T Wi Vg

Jk+1
: . _ T — T
covariances: P,..=F; . P,F. +D;.,, P,=P;  —W,;;.S,i. . W,

jk:-s-uk Je+17 Ik Jrt1 Jrjk—1 ]kjkfl

\
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lteration Formula for LR(k) = p(Z*|h1) /p(Z%|hg)

initiation: k=0, jo=0, X,=1
M1
recursion: LR(k+1)= > Njpys = > Yy Nt 1in N
Jk+1 Ik+170 Jg

1—-Pp for jk_|_1 =0

with: A; i = -
]k—l—ljk {%N(ij+ljk7 S]H—le) fOr ]k;—|—1 7‘_E O

innovation: v, ; =1z, —H; x. .,
. i _ il
INNOV. COV.. Sjk-{—ljk: — ij+1ij;+1\A¢ij+1 + Rjk+l

state update:  x; . =F, x, Xj, = Xjys T Wi Vg

Jk+1
: . _ T — T
covariances: P,..=F; . P,F. +D;.,, P,=P;  —W,;;.S,i. . W,

Jet1jk Je+1 Jo ™ Jrg1 Jrjk—1 Jedr—1

Exercise 10.1  Show that this recursion formulae for calculating the decision function is true.

\
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Sequential Track Extraction: Discussion

e LR(k) is given by a growing number of summands, each related to a parti-

cular interpretation history. The tuple {\; ,x; P: } is called a sub-track.
I Ik Jk
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Sequential Track Extraction: Discussion

e LR(k) is given by a growing number of summands, each related to a parti-
cular interpretation history. The tuple {}; ,x; P; } is called a sub-track.

e For mitigating growing memory problems all approximations discussed for
track maintenance can be used if they do not significantly affect LR(k):

— Individual gating: Exclude data not likely to be associated.
— pruning: Kill sub-tacks contributing marginally to the test function.
— local combining: Merge similar sub tracks:

N, x;,P;}i — {\x, P} with: A= >, A,

x =3 YiAixi, P= 3 NP+ (g —x)(. )]
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Sequential Track Extraction: Discussion

e LR(k) is given by a growing number of summands, each related to a parti-
cular interpretation history. The tuple {}; ,x; P; } is called a sub-track.

e For mitigating growing memory problems all approximations discussed for
track maintenance can be used if they do not significantly affect LR(k):

— Individual gating: Exclude data not likely to be associated.

— pruning: Kill sub-tacks contributing marginally to the test function.
— local combining: Merge similar sub tracks:

N, x;,P;}i — {\x, P} with: A= >, A,

x =3 YiAixi, P= 3 NP+ (g —x)(. )]

e The LR test ends with a decision in favor of or against the hypotheses: hg
(no target) or hq (target existing). Intuitive interpretation of the thresholds!
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track extraction at¢,: Decide in favor of /!

initiation of pdf iteration (track maintenance):
Ak |

Normalize coefficients Ait o Dy, = Z—)\
Ik "k

Jk

Continue track extraction with the remaining sensor data!
sequential LR test for track monitoring:

After deciding in favor of hq reset LR(0) = 1! Calculate LR(k) from p(xj|Z*)!

track confirmation: LR(k) > %: reset LR(0) = 1!

track deletion: LR(k) < %:%; ev. track re-initiation
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DEMONSTRATION (simulated)
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DEMONSTRATION (simulated)

Exercise 10.2 (voluntary)

Simulate a detection process with a given Pp, target measurements with a given R, a
detection process with a given Pp and realize the track extraction procedure.

\
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Generalization to Target Cluster (Perfect Resolution)
Scheme directly extendable to clusters consisting of n targets, if n is known!
principal approach in case of unknown n:

1. Start with sensor measurements 2.

2. Assume for a target cluster n < N! A-priorily: P(n) = %

3. hypothesis h,,: there exist n targets; the data set Z;1 contains at
least one target measurement; hg: no target existing at all

4. Consider the following ratio (at least 1, at most NV targets):

p(h1V...vhy|ZF) SN p(ha|ZF) gj p(Z¥|hn) p(hn)
p(ho| ZF) p(ho| ZF) =1 P(Z¥|ho) p(ho)
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Generalization to Target Cluster (Perfect Resolution)
Scheme directly extendable to clusters consisting of n targets, if n is known!
principal approach in case of unknown n:

1. Start with sensor measurements 2.

2. Assume for a target cluster n < N! A-priorily: P(n) = %

3. hypothesis h,,: there exist n targets; the data set Z;1 contains at
least one target measurement; hg: no target existing at all

4. generalized LR test function: LR(k) = — p( k| n)
N n=1 p(Z |h0)

5. Calculate LRy (k) = p(Z*|hn) /p(Z¥|hg) in analogy to n = 1.

6. ‘Cardinality’ of having n objects in the cluster: c;.(n) = Z Fraunhofer
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DEMONSTRATION (simulated)
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ABRAHAM WALD (1902-1950) Austro-Hungarian mathematician who contributed to decision theory,
geometry, and econometrics; founded the theory of economic equilibria in Oskar Morgenstern’s institut in
Vienna: “Berechnung der Ausschaltung von Saisonschwankungen” (Springer Verlag, 1936) the basis of
Game Theory: Morgenstern, John von Neumann, John Forbes Nash (1994: Nobel price with Reinhard
Selten, Bonn University) — sensor management! Founder of statistical sequential analysis in WW [l. 1950
plenary talk at the International Congress of Mathematicians ICM, Cambridge (Mass.): “Basic ideas of a
general theory of statistical decision rules” (1900: Hilbert’s 23 Problems).

Student and friend: Jacob Wolfowitz (statistician, information theory), classical text book: “Coding
Theorems of Information Theory” (1978). Posthumous attack by Ronald Fisher: “an incompetent book on
statistics”, passionately defended by Jerzy Neyman as imminent a statistician as Fisher.

\
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Quite general: agent switching between different modes of over-all behavior

\
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Quite general: agent switching between different modes of over-all behavior
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Quite general: agent switching between different modes of over-all behavior

P(1]1)

P(1]1) + P2[1) + P(3|1) = 1
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Quite general: agent switching between different modes of over-all behavior

P(1]1)

(@

P(2]2)

P(1]2)

P(1[3) P(2|3)

P(1]1) + P1) + P(3[1) = 1
P(1]2) + P(22) + P(3[2) = 1
P(1|3) + P(2|3) + P(3[3) = 1

\
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Generalization to Ambiguous Sensor Data:

Calculate the pdfs  p(xx|Z¥"1) =¥ p, ., p(xg, Hi_1 | ZF71) | |

1 . : 1
p(xp, Hy_1|12F" )y = ¥ /ka—l P(Xpg, iy Xpo—1, 551, Hp— 1|27 1)
Usll—1

. . 1 ~1
= > /dxk—l p(Xpy i Xp—1, 11| Hy—1, 2" 1) p(Hy_1|2571)
Uhylk—1 ) o ’

uniaue! weight??iltering

calculation: as before!

\
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Design of IMM Modelling

e number r of models: relevant only for standard IMM

e decisive: sufficiently many GausBian picture components

e irrelevant: by r or length of dynamics khistories n g

e recommendation: worst/best case, histories (r = 2, ny = 3)

e benefit: interpretable, close-to-reality dynamics parameters

Demonstration
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