Likelihood Functions

The likelihood function answers the question:
What does the sensor tell about the state x of the object?

(input: sensor data, sensor model)

- **ideal conditions, one object:** $P_D = 1$, $\rho_F = 0$

 at each time one measurement:

 $$p(z_k|x_k) = \mathcal{N}(z_k; Hx_k, R)$$

- **real conditions, one object:** $P_D < 1$, $\rho_F > 0$

 at each time n_k measurements $Z_k = \{z_k^1, \ldots, z_k^{n_k}\}$

 $$p(Z_k, n_k|x_k) \propto (1 - P_D)\rho_F + P_D \sum_{j=1}^{n_k} \mathcal{N}(z_k^j; Hx_k, R)$$
Bayes Filtering for: \(P_D < 1, \rho_F > 0 \), well-separated objects

state \(x_k \), current data \(Z_k = \{ z_k^j \}_{j=1}^{m_k} \), accumulated data \(\mathcal{Z}^k = \{ Z_k, Z^{k-1} \} \)

interpretation hypotheses \(E_k \) for \(Z_k \)

object not detected, \(1 - P_D \)

\(z_k \in Z_k \) from object, \(P_D \)

\(m_k + 1 \) interpretations

interpretation histories \(H_k \) for \(\mathcal{Z}^k \)

- tree structure: \(H_k = (E_{H_k}, H_{k-1}) \in \mathcal{H}^k \)
- current: \(E_{H_k} \), prehistories: \(H_{k-i} \)

\[
p(x_k | \mathcal{Z}^k) = \sum_{H_k} p(x_k, H_k | \mathcal{Z}^k) = \sum_{H_k} \underbrace{p(H_k | \mathcal{Z}^k)}_{\text{weight!}} \underbrace{p(x_k | H_k, \mathcal{Z}^k)}_{\text{given } H_k: \text{ unique}}
\]

‘mixture’ density
Closer look: \(P_D < 1, \rho_F > 0 \), well-separated targets

filtering (at time \(t_{k-1} \)):
\[
p(x_{k-1} | \mathcal{Z}^{k-1}) = \sum_{H_{k-1}} p_{H_{k-1}} \mathcal{N}(x_{k-1}; x_{H_{k-1}}, P_{H_{k-1}})
\]

prediction (for time \(t_k \)):
\[
p(x_k | \mathcal{Z}^{k-1}) = \int dx_{k-1} p(x_k | x_{k-1}) p(x_{k-1} | \mathcal{Z}^{k-1}) \quad \text{(MARKOV model)}
\]
\[
= \sum_{H_{k-1}} p_{H_{k-1}} \mathcal{N}(x_k; F_x H_{k-1}, FP_{H_{k-1}} F^T + D) \quad \text{(IMM also possible)}
\]

measurement likelihood:
\[
p(Z_k, m_k | x_k) = \sum_{j=0}^{m_k} p(Z_k | E^j_k, x_k, m_k) P(E^j_k | x_k, m_k) \quad (E^j_k: \text{interpretations})
\]
\[
\propto (1 - P_D) \rho_F + P_D \sum_{j=1}^{m_k} \mathcal{N}(z^j_k; H x_k, R) \quad (H, R, P_D, \rho_F)
\]

filtering (at time \(t_k \)):
\[
p(x_k | \mathcal{Z}^k) \propto p(Z_k, m_k | x_k) p(x_k | \mathcal{Z}^{k-1}) \quad \text{(BAYES' rule)}
\]
\[
= \sum_{H_k} p_{H_k} \mathcal{N}(x_k; x_{H_k}, P_{H_k}) \quad \text{(Exploit product formula)}
\]
Problem: Growing Memory Disaster:

\[m \text{ data, } N \text{ hypotheses } \rightarrow N^{m+1} \text{ continuations} \]

radical solution: mono-hypothesis approximation

- **gating:** Exclude competing data with \(\| \nu_{k|k-1}^i \| > \lambda! \)
 - \(\text{KALMAN filter (KF)} \)
 - + very simple, – \(\lambda \) too small: loss of target measurement

- Force a **unique interpretation** in case of a conflict!
 - look for **smallest statistical distance**: \(\min_i \| \nu_{k|k-1}^i \| \)
 - \(\text{Nearest-Neighbor filter (NN)} \)
 - + one hypothesis, – hard decision, – not adaptive

- **global combining:** Merge all hypotheses!
 - \(\text{PDAF, JPDAF filter} \)
 - + all data, + adaptive, – reduced applicability
Moment Matching: Approximate an arbitrary pdf $p(x)$ with $\mathbb{E}[x] = x$, $\mathbb{C}[x] = P$ by $p(x) \approx \mathcal{N}(x; x, P)$!

Here especially:

$$p(x) = \sum_{H} p_H \mathcal{N}(x; x_H, P_H) \quad (\text{normal mixtures})$$

$$x = \sum_{H} p_H x_H$$

$$P = \sum_{H} p_H \left\{ P_H + (x_H - x)(x_H - x)^\top \right\}$$

spread term
PDAF Filter: formally analogous to Kalman Filter

Filtering (scan $k-1$):
\[
p(x_{k-1}|Z^{k-1}) = \mathcal{N}(x_{k-1}; x_{k-1|k-1}, P_{k-1|k-1}) \quad \text{→ initiation}
\]

Prediction (scan k):
\[
p(x_k|Z^{k-1}) \approx \mathcal{N}(x_k; x_{k|k-1}, P_{k|k-1}) \quad \text{(like Kalman)}
\]

Filtering (scan k):
\[
p(x_k|Z^k) \approx \sum_{j=0}^{m_k} p^j_k \mathcal{N}(x_k; x^j_k|k, P^j_k|k)
\]

\[
x^j_k|k = \begin{cases} x_{k|k-1} & j=0 \\ x_{k|k-1} + W_k \nu^j_k & j \neq 0 \end{cases}
\]

\[
\nu^j_k = z^j_k - H x_k, \quad W_k = P_{k|k-1} H^T S_k^{-1}, \quad S_k = H P_{k|k-1} H^T + R_k
\]

\[
p^j_k = p^*_k \sum_j p^*_j, \quad p^*_k = \begin{cases} (1 - P_D) \rho_F & j=0 \\ \frac{P_D}{\sqrt{2\pi S_h}} e^{-\frac{1}{2} \nu_{h_k}^T S_h^{-1} \nu_{h_k}} & j \neq 0 \end{cases}
\]
PDAF Filter: formally analog to Kalman Filter

Filtering (scan $k-1$):
\[p(x_{k-1}|Z^{k-1}) = \mathcal{N}(x_{k-1}; x_{k-1|k-1}, P_{k-1|k-1}) \] (\text{\textit{\rightarrow} initiation})

prediction (scan k):
\[p(x_k|Z^{k-1}) \approx \mathcal{N}(x_k; x_{k|k-1}, P_{k|k-1}) \] (like Kalman)

Filtering (scan k):
\[p(x_k|Z^k) \approx \sum_{j=0}^{m_k} p^j_k \mathcal{N}(x_k; x^j_k|k, P^j_k) \approx \mathcal{N}(x_k; x_{k|k}, P_{k|k}) \]

\[\nu_k = \sum_{j=0}^{m_k} p^j_k \nu^j_k, \quad \nu^j_k = z^j_k - Hx_{k|k-1} \quad \text{combined innovation} \]

\[W_k = P_{k|k-1}H^T S_k^{-1}, \quad S_k = HP_{k|k-1}H^T + R_k \quad \text{Kalman gain matrix} \]

\[p^j_k = p^j_k^* / \sum_j p^j_k^*, \quad p^j_k^* = \left\{ \frac{(1 - P_D) \rho_F}{\sqrt{2\pi S_{h_k}} e^{-\frac{1}{2} \nu^T_{h_k} S_{h_k} \nu_{h_k}}} \right\} \quad \text{weighting factors} \]

\[x_k = x_{k|k-1} + W_k \nu_k \] (Filtering Update: Kalman)

\[P_k = P_{k|k-1} - (1-P^0_k) W_k S W_k^T \] (Kalman part)

\[+ W_k \left\{ \sum_{j=0}^{m_k} p^j_k \nu^j_k \nu^T_k - \nu_k \nu_k^T \right\} W_k^T \] (Spread of Innovations)
The qualitative shape of $p(x_k | Z^k)$ is often much simpler than its correct representation: *a few pronounced modes*

adaptive solution: nearly optimal approximation
The qualitative shape of $p(x_k|\mathcal{Z}_k)$ is often much simpler than its correct representation: a few pronounced modes

adaptive solution: nearly optimal approximation

- **individual gating**: Exclude *irrelevant data*! before continuing existing track hypotheses H_{k-1}
 - → *limiting case*: KALMAN filter (KF)
The qualitative shape of $p(x_k | z^k)$ is often much simpler than its correct representation: *a few pronounced modes*

Adaptive solution: nearly optimal approximation

- **Individual gating:** Exclude *irrelevant data*! before continuing existing track hypotheses H_{k-1}

 → *Limiting case:* KALMAN filter (KF)

- **Pruning:** Kill hypotheses of very *small weight*!

 after calculating the weights p_{H_k}, before filtering

 → *Limiting case:* Nearest Neighbor filter (NN)
The qualitative shape of $p(x_k|\mathcal{Z}^k)$ is often much simpler than its correct representation: *a few pronounced modes*

adaptive solution: nearly optimal approximation

- **individual gating**: Exclude *irrelevant data*! before continuing existing track hypotheses H_{k-1}
 \rightarrow *limiting case*: KALMAN filter (KF)

- **pruning**: Kill hypotheses of very *small weight*! after calculating the weights p_{H_k}, before filtering
 \rightarrow *limiting case*: Nearest Neighbor filter (NN)

- **local combining**: Merge *similar hypotheses*! after the complete calculation of the pdfs
 \rightarrow *limiting case*: PDAF (global combining)
Successive Local Combining

Partial sums of similar densities \rightarrow moment matching:

$$
\sum_{H_k \in \mathcal{H}^{k*}} p_{H_k} \mathcal{N}(x_k; x_{H_k}, P_{H_k}) \approx p_{H_k^*} \mathcal{N}(x_k; x_{H_k^*}, P_{H_k^*})
$$

$\mathcal{H}^{k*} \subset \mathcal{H}^k \rightarrow H^*_k$: effective hypothesis
Successive Local Combining

Partial sums of similar densities \rightarrow moment matching:

$$\sum_{H_k \in \mathcal{H}^k} p_{H_k} \mathcal{N}(x_k; x_{H_k}, P_{H_k}) \approx p_{H^*_k} \mathcal{N}(x_k; x_{H^*_k}, P_{H^*_k})$$

$\mathcal{H}^* \subset \mathcal{H}^k$ \rightarrow H_k^*: effective hypothesis

similarity: $d(H_1, H_2) < \mu$ mit (z.B.):

$$d(H_1, H_2) = (x_{H_1} - x_{H_2})^\top (P_{H_1} + P_{H_2})^{-1} (x_{H_1} - x_{H_2})$$

Start: Hypothesis of highest weight H_1 \rightarrow search similar hypothesis $(p_{H \downarrow})$ \rightarrow merge: $(H_1, H) \succ H_1^* \rightarrow$ continue search $(p_{H \downarrow})$... \rightarrow **restart:** hypothesis with next to highest weight $H_2 \rightarrow$...
Successive Local Combining

Partial sums of similar densities → moment matching:

\[
\sum_{H_k \in \mathcal{H}^{k*}} p_{H_k} \mathcal{N}(x_k; x_{H_k}, P_{H_k}) \approx p_{H_k^*} \mathcal{N}(x_k; x_{H_k^*}, P_{H_k^*})
\]

\(\mathcal{H}^{k*} \subset \mathcal{H}^k \rightarrow H_k^*: \text{effective hypothesis}\)

similarity: \(d(H_1, H_2) < \mu\) mit (z.B.):

\[
d(H_1, H_2) = (x_{H_1} - x_{H_2})^\top (P_{H_1} + P_{H_2})^{-1} (x_{H_1} - x_{H_2})
\]

Start: Hypothesis of highest weight \(H_1\) → search similar hypothesis \((p_{H \setminus \sigma})\) → merge: \((H_1, H) \succ H_1^*\) → continue search \((p_{H \setminus \sigma})\) . . .

→ restart: hypothesis with next to highest weight \(H_2\) → . . .

- In many cases: good approximations → quasi-optimality
- PDAF, JPDAF: \(\mathcal{H}^{k*} = \mathcal{H}^k\) → limited applicability
- robustness → detail mostly irrelevant
Retrodiction for Gaussian Mixtures

\[
\text{wanted: } p(x_l|Z^k) \leftarrow p(x_{l+1}|Z^k) \text{ for } l < k
\]

\[
p(x_l|Z^k) = \sum_{H_k} p(x_l, H_k|Z_k) = \sum_{H_k} \left(\frac{p(x_l|H_k, Z^k) \cdot p(H_k|Z^k)}{\text{no ambiguities!}} \right) \text{ filtering!}
\]

Calculation of \(p(x_l|H_k, Z^k) \) as in case of \(P_D = 1, \rho_F = 0! \)

\[
p(x_l|H_k, Z^k) = \mathcal{N}(x_l; x_{H_k}(l|k), P_{H_k}(l|k))
\]

with parameters given by RAUCH-TUNG-STRIEBEL formulae:

\[
x_{H_k}(l|k) = x_{H_k}(l|l) + W_{H_k}(l|k) \left(x_{H_k}(l+1|k) - x_{H_k}(l+1|l) \right)
\]

\[
P_{H_k}(l|k) = P_{H_k}(l|l) + W_{H_k}(l|k) \left(P_{H_k}(l+1|k) - P_{H_k}(l+1|l) \right) W_{H_k}(l|k)^T
\]

\[
\text{gain matrix: } W_{H_k}(l|k) = P_{H_k}(l|l)F_{l+1}^{T}P_{H_k}(l+1|l)^{-1}
\]
Retrodiction of Hypotheses’ Weights

Consider approximation: neglect RTS step!

\[p(x_l|H_k, Z^k) = \mathcal{N}(x_l; x_{H_k}(l|k), P_{H_k}(l|k)) \approx \mathcal{N}(x_l; x_{H_k}(l|l), P_{H_k}(l|l)) \]

\[p(x_l|H_k, Z^k) \approx \sum_{H_{l+1}} p^*_H \cdot \mathcal{N}(x_l; x_{H_k}(l|l), P_{H_k}(l|l)) \]

with recursively defined weights:

\[p^*_H = p_{H_k}, \quad p^*_H = \sum p^*_{H_{l+1}} \]

summation over all histories \(H_{l+1} \) with equal pre-histories!

- Strong sons strengthen weak fathers.
- Weak sons weaken even strong fathers.
- If all sons die, also the father must die.

Sensor Data Fusion - Methods and Applications, 7th Lecture on December 20, 2017
Recapitulation: Detection Process for Sensors

Detector: receives signals and decides on object existence

Processor: processes detected signals and produces measurements

‘\(D\)’: detector detects an object

\(D\): object actually existent

error of 1. kind: \(P_I = P(\neg 'D'|D)\)

error of 2. kind: \(P_{II} = P('D'|\neg D)\)

measure of detection performance: \(P_D = P('D'|D)\)

detector properties characterized by two parameters:

– detection probability \(P_D = 1 - P_I\)

– false alarm probability \(P_F = P_{II}\)

example (Swerling I model): \(P_D = P_D(P_F, \text{SNR}) = P_F^{1/(1+\text{SNR})}\)

Detector Design: Maximize detection probability \(P_D\)

for a given, predefined false alarm probability \(P_F\).
Track Extraction: Initiation of the PDF Iteration

extraction of target tracks: detection on a higher level of abstraction

start: data sets $Z_k = \{z_{kj}^j\}_{j=1}^{mk}$ (sensor performance: P_D, ρ_F, R)

goal: Detect a target trajectory in a time series: $\mathcal{Z}^k = \{Z_i\}_{i=1}^k$

at first simplifying assumptions:

- The targets in the sensors’ field of view (FoV) are well-separated.
- The sensor data in the FoV in scan i are produced simultaneously.
Track Extraction: Initiation of the PDF Iteration

extraction of target tracks: detection on a higher level of abstraction

start: data sets \(Z_k = \{ z_{kj} \}_{j=1}^{m_k} \) (sensor performance: \(P_D, \rho_F, R \))

goal: Detect a target trajectory in a time series: \(\mathcal{Z}^k = \{ Z_i \}_{i=1}^{k} \! \)

at first simplifying assumptions:

- The targets in the sensors’ field of view (FoV) are well-separated.
- The sensor data in the FoV in scan \(i \) are produced simultaneously.

decision between two competing hypotheses:

\(h_1 \): Besides false returns \(\mathcal{Z}^k \) contains also target measurements.

\(h_0 \): There is no target existing in the FoV; all data in \(\mathcal{Z}^k \) are false.

statistical decision errors:

\[
\begin{align*}
P_1 & = \text{Prob}(\text{accept } h_1| h_1) \quad \text{analogous to the sensors’ } P_D \\
P_0 & = \text{Prob}(\text{accept } h_1| h_0) \quad \text{analogous to the sensors’ } P_F
\end{align*}
\]
Practical Approach: Sequential Likelihood Ratio Test

Goal: Decide as fast as possible for given decision errors P_0, P_1!

Consider the ratio of the conditional probabilities $p(h_1|Z^k)$, $p(h_0|Z^k)$ and the likelihood ratio $LR(k) = p(Z^k|h_1)/p(Z^k|h_0)$ as an intuitive decision function:

$$\frac{p(h_1|Z^k)}{p(h_0|Z^k)} = \frac{p(Z^k|h_1)}{p(Z^k|h_0)} \frac{p(h_1)}{p(h_0)}$$

a priori: $p(h_1) = p(h_0)$
Practical Approach: Sequential Likelihood Ratio Test

Goal: Decide as fast as possible for given decision errors P_0, P_1!

Consider the ratio of the conditional probabilities $p(h_1|Z^k), p(h_0|Z^k)$ and the likelihood ratio $LR(k) = p(Z^k|h_1)/p(Z^k|h_0)$ as an intuitive decision function:

$$\frac{p(h_1|Z^k)}{p(h_0|Z^k)} = \frac{p(Z^k|h_1)\cdot p(h_1)}{p(Z^k|h_0)\cdot p(h_0)}$$

a priori: $p(h_1) = p(h_0)$

Starting from a time window with length $k = 1$, calculate the test function $LR(k)$ successively and compare it with two thresholds A, B:

- If $LR(k) < A$, accept hypothesis h_0 (i.e. no target is existing)!
- If $LR(k) > B$, accept hypothesis h_1 (i.e. target exists in FoV)!
- If $A < LR(k) < B$, wait for new data Z_{k+1}, repeat with $LR(k+1)$!
Iterative Calculation of the Likelihood Ratio

$$LR(k) = \frac{p(Z^k|h_1)}{p(Z^k|h_0)} = \frac{\int dx_k p(Z_k, m_k, x_k, Z^{k-1}|h_1)}{p(Z_k, m_k, Z^{k-1}, h_0)}$$
Iterative Calculation of the Likelihood Ratio

\[
\text{LR}(k) = \frac{p(Z^k|h_1)}{p(Z^k|h_0)} = \frac{\int dx_k p(Z_k, m_k, x_k, Z^{k-1}|h_1)}{p(Z_k, m_k, Z^{k-1}, h_0)} = \frac{\int dx_k p(Z_k, m_k|x_k) p(x_k|Z^{k-1}, h_1) p(Z^{k-1}|h_1)}{|\text{FoV}|^{-m_k} p_F(m_k) p(Z^{k-1}|h_0)}
\]
Iterative Calculation of the Likelihood Ratio

\[
\text{LR}(k) = \frac{p(Z^k|h_1)}{p(Z^k|h_0)} = \frac{\int dx_k p(Z_k, m_k, x_k, Z^{k-1}|h_1)}{p(Z_k, m_k, Z^{k-1}, h_0)} = \frac{\int dx_k p(Z_k, m_k | x_k) p(x_k | Z^{k-1}, h_1) p(Z^{k-1} | h_1)}{|\text{FoV}|^{-m_k} p_F(m_k) p(Z^{k-1} | h_0)}
\]

= \frac{\int dx_k p(Z_k, m_k | x_k, h_1) p(x_k | Z^{k-1}, h_1)}{|\text{FoV}|^{-m_k} p_F(m_k)} \text{LR}(k - 1)

basic idea: iterative calculation!
LR(k) = \frac{p(Z^k|h_1)}{p(Z^k|h_0)} = \frac{\int dx_k p(Z_k, m_k, x_k, Z^{k-1}|h_1)}{p(Z_k, m_k, Z^{k-1}, h_0)} = \frac{\int dx_k p(Z_k, m_k|x_k) p(x_k|Z^{k-1}, h_1) p(Z^{k-1}|h_1)}{|\text{FoV}|^{-m_k} p_F(m_k) p(Z^{k-1}|h_0)}

= \frac{\int dx_k p(Z_k, m_k|x_k, h_1) p(x_k|Z^{k-1}, h_1)}{|\text{FoV}|^{-m_k} p_F(m_k)} LR(k-1)

basic idea: iterative calculation!

Let \(H_k = \{ E_k, H_{k-1} \} \) be an interpretation history of the time series \(Z^k = \{ Z_k, Z^{k-1} \} \).

\(E_k = E^0_k \): target was not detected, \(E_k = E^j_k \): \(z^j_k \in Z_k \) is a target measurement.

\[p(x_k|Z^{k-1}, h_1) = \sum_{H_{k-1}} p(x_k|H_{k-1}Z^{k-1}, h_1) p(H_{k-1}|Z^{k-1}, h_1) \] The standard MHT prediction!

\[p(Z_k, m_k|x_k, h_1, h_1) = \sum_{E_k} p(Z_k, E_k|x_k, h_1) \] The standard MHT likelihood function!

The calculation of the likelihood ratio is just a by-product of Bayesian MHT tracking.
Iteration Formula for \(LR(k) = p(Z^k|h_1)/p(Z^k|h_0) \)

initiation: \(k = 0, \ j_0 = 0, \ \lambda_{j_0} = 1 \)

recursion: \(LR(k+1) = \sum_{j_{k+1}} \lambda_{j_{k+1}} = \sum_{j_{k+1}=0}^{m_k+1} \sum_{j_k} \lambda_{j_{k+1}j_k} \lambda_{j_k} \)

with: \(\lambda_{j_{k+1}j_k} = \begin{cases} 1 - P_D & \text{for } j_{k+1} = 0 \\ \frac{P_D}{\rho_F} \mathcal{N}(\nu_{j_{k+1}j_k}, S_{j_{k+1}j_k}) & \text{for } j_{k+1} \neq 0 \end{cases} \)

convenient notation: with \(j_k = (j_k, \ldots, j_1) \) let \(\sum_{j_k} \lambda_{j_k} = \sum_{j_k=0}^{m_k} \cdots \sum_{j_1=0}^{m_1} \lambda_{j_k \ldots j_1} \)
Iteration Formula for $LR(k) = \frac{p(Z^k|h_1)}{p(Z^k|h_0)}$

initiation:

\[k = 0, \quad j_0 = 0, \quad \lambda_{j_0} = 1 \]

recursion:

\[LR(k+1) = \sum_{j_{k+1}} \lambda_{j_{k+1}} = \sum_{j_{k+1}=0}^{m_{k+1}} \sum_{j_k} \lambda_{j_{k+1}j_k} \lambda_{j_k} \]

with:

\[\lambda_{j_{k+1}j_k} = \begin{cases} 1 - P_D & \text{for } j_{k+1} = 0 \\ \frac{P_D}{\rho_F} \mathcal{N}(\nu_{j_{k+1}j_k}, S_{j_{k+1}j_k}) & \text{for } j_{k+1} \neq 0 \end{cases} \]

innovation:

\[\nu_{j_{k+1}j_k} = Z_{j_{k+1}} - H_{j_{k+1}}x_{j_{k+1}|k} \]

innov. cov.:

\[S_{j_{k+1}j_k} = H_{j_{k+1}}P_{j_{k+1}|k}H_{j_{k+1}}^T + R_{j_{k+1}} \]

state update:

\[x_{j_{k+1}|k} = F_{j_{k+1}}x_{j_k} \quad \quad x_j = x_{j|k-1} + W_{j_{k-1}} \nu_{j_k|k-1} \]

covariances:

\[P_{j_{k+1}|k} = F_{j_{k+1}}P_{j_k}F_{j_{k+1}}^T + D_{j_{k+1}} \quad P_{j_k} = P_{j|k-1} - W_{j_{k-1}}S_{j_{k-1}}W_{j_{k-1}}^T \]
Iteration Formula for \(LR(k) = \frac{p(\mathcal{Z}^k|h_1)}{p(\mathcal{Z}^k|h_0)} \)

initiation:
\[k = 0, \quad j_0 = 0, \quad \lambda_{j_0} = 1 \]

recursion:
\[LR(k+1) = \sum_{j_{k+1}} \lambda_{j_{k+1}} = \sum_{j_{k+1}=0}^{m_{k+1}} \sum_{j_k} \lambda_{j_{k+1}j_k} \lambda_{j_k} \]

with:
\[\lambda_{j_{k+1}j_k} = \begin{cases}
1 - P_D & \text{for } j_{k+1} = 0 \\
p_D \frac{\mathcal{N}(\nu_{j_{k+1}j_k}, S_{j_{k+1}j_k})}{\rho_F} & \text{for } j_{k+1} \neq 0
\end{cases} \]

innovation:
\[\nu_{j_{k+1}j_k} = z_{j_{k+1}} - H_{j_{k+1}} x_{j_{k+1}|k} \]

innov. cov.:
\[S_{j_{k+1}j_k} = H_{j_{k+1}} P_{j_{k+1}|k} H_{j_{k+1}}^T + R_{j_{k+1}} \]

state update:
\[x_{j_{k+1}|k} = F_{j_{k+1}} x_j \]

\[x_j = x_{j_{k-1}|k} + W_{j_{k-1}} \nu_{j_{k-1}} \]

covariances:
\[P_{j_{k+1}|k} = F_{j_{k+1}} P_j F_{j_{k+1}}^T + D_{j_{k+1}} \]

\[P_j = P_{j_{k-1}} - W_{j_{k-1}} S_{j_{k-1}} W_{j_{k-1}}^T \]

Exercise 7.1
Show that this recursion formulae for calculating the decision function is true.
Sequential Track Extraction: Discussion

- \(\text{LR}(k) \) is given by a growing number of summands, each related to a particular interpretation history. The tuple \(\{\lambda_{jk}, x_{jk}, P_{jk}\} \) is called a sub-track.
Sequential Track Extraction: Discussion

- $LR(k)$ is given by a growing number of summands, each related to a particular interpretation history. The tuple $\{\lambda_{jk}, x_{jk}, P_{jk}\}$ is called a sub-track.

- For mitigating growing memory problems all approximations discussed for track maintenance can be used if they do not significantly affect $LR(k)$:
 - *individual gating*: Exclude data not likely to be associated.
 - *pruning*: Kill sub-tacks contributing marginally to the test function.
 - *local combining*: Merge similar sub tracks:

$$
\{\lambda_i, x_i, P_i\}_i \rightarrow \{\lambda, x, P\} \quad \text{with: } \lambda = \sum_i \lambda_i,
\[
\begin{align*}
\lambda_i \times x_i, \quad P & = \frac{1}{\lambda} \sum_i \lambda_i \left[P_i + (x_i - x)(\ldots)^\top \right].
\end{align*}
$$
Sequential Track Extraction: Discussion

- \(\text{LR}(k) \) is given by a growing number of summands, each related to a particular interpretation history. The tuple \(\{ \lambda_{jk}, x_{jk} P_{jk} \} \) is called a sub-track.

- For mitigating growing memory problems all approximations discussed for track maintenance can be used if they do not significantly affect \(\text{LR}(k) \):
 - individual gating: Exclude data not likely to be associated.
 - pruning: Kill sub-tacks contributing marginally to the test function.
 - local combining: Merge similar sub tracks:

\[
\{ \lambda_i, x_i, P_i \}_i \rightarrow \{ \lambda, x, P \}
\text{ with: } \lambda = \sum_i \lambda_i, \\
x = \frac{1}{\lambda} \sum_i \lambda_i x_i, \quad P = \frac{1}{\lambda} \sum_i \lambda_i [P_i + (x_i - x)(\ldots)^\top].
\]

- The LR test ends with a decision in favor of or against the hypotheses: \(h_0 \) (no target) or \(h_1 \) (target existing). Intuitive interpretation of the thresholds!
track extraction at t_k: Decide in favor of h_1!

initiation of pdf iteration (track maintenance):

Normalize coefficients λ_{jk}:

$$p_{jk} = \frac{\lambda_{jk}}{\sum_{j_k} \lambda_{jk}}!$$

$$(\lambda_{jk}, x_{jk}, P_{jk}) \rightarrow p(x_k|Z^k) = \sum_{j_k} p_{jk} \mathcal{N}(x_k; x_{jk}, P_{jk})$$

Continue track extraction with the remaining sensor data!

sequential LR test for track monitoring:

After deciding in favor of h_1 reset $LR(0) = 1$! Calculate $LR(k)$ from $p(x_k|Z^k)$!

track confirmation: $LR(k) > \frac{P_1}{P_0}$: reset $LR(0) = 1$!

track deletion: $LR(k) < \frac{1-P_1}{1-P_0}$; ev. track re-initiation
DEMONSTRATION (simulated)
DEMONSTRATION (simulated)

Exercise 7.2 (voluntary)

Simulate a detection process with a given P_D, target measurements with a given R, a detection process with a given P_D and realize the track extraction procedure.
Generalization to Target Cluster (Perfect Resolution)

Scheme directly extendable to clusters consisting of \(n \) targets, if \(n \) is known!

principal approach in case of unknown \(n \):

1. Start with sensor measurements \(Z_1 \).

2. Assume for a target cluster \(n \leq N \)! A-priorily: \(P(n) = \frac{1}{N} \)

3. hypothesis \(h_n \): there exist \(n \) targets; the data set \(Z_1 \) contains at least one target measurement; \(h_0 \): no target existing at all

4. Consider the following ratio (at least 1, at most \(N \) targets):

\[
\frac{p(h_1 \lor \ldots \lor h_N | Z^k)}{p(h_0 | Z^k)} = \frac{\sum_{n=1}^{N} p(h_n | Z^k)}{p(h_0 | Z^k)} = \frac{\sum_{n=1}^{N} \frac{p(Z^k | h_n) p(h_n)}{p(h_0)}}{p(h_0)}
\]
Generalization to Target Cluster (Perfect Resolution)

Scheme directly extendable to clusters consisting of \(n \) targets, \textit{if \(n \) is known}!

principal approach in case of unknown \(n \):

1. Start with sensor measurements \(Z_1 \).

2. Assume for a target cluster \(n \leq N \)! A-priorily: \(P(n) = \frac{1}{N} \)

3. hypothesis \(h_n \): there exist \(n \) targets; the data set \(Z_1 \) contains at least one target measurement; \(h_0 \): no target existing at all

4. generalized LR test function: \(\text{LR}(k) = \frac{1}{N} \sum_{n=1}^{N} \frac{p(Z^k|h_n)}{p(Z^k|h_0)} \)

5. Calculate \(\text{LR}_n(k) = p(Z^k|h_n)/p(Z^k|h_0) \) in analogy to \(n = 1 \).

6. ‘Cardinality’ of having \(n \) objects in the cluster: \(c_k(n) = \frac{\text{LR}_n(k)}{\sum_{n=1}^{N} \text{LR}_n(k)} \)
DEMONSTRATION (simulated)

Moment Matching: Approximate an arbitrary pdf $p(x)$ with $\mathbb{E}[x] = x$, $\mathbb{C}[x] = P$ by $p(x) \approx \mathcal{N}(x; x, P)$.

Here especially:

$$p(x) = \sum_i p_i \mathcal{N}(x; x_i, P_i) \quad \text{(Gaussian mixtures)}$$

Exercise Show:

$$x = \sum_i p_i x_i$$

$$P = \sum_i p_i \left\{ P_i + (x_i - x)(x_i - x)^\top \right\}$$
2nd Order Approximation:

\[p(x) = \sum_i p_H \mathcal{N}(x; x_i, P_i) \approx \mathcal{N}(x; \mathbb{E}_p[x], C_p[x]) \]

\[\mathbb{E}_p[x] = \int dx x p(x) = \sum_i p_i \int dx x \mathcal{N}(x; x_i, P_i) = \sum_i p_i x_i =: \mathbf{x} \]

\[C_p[x] = \int dx p(x) (x - \mathbb{E}_p[x]) (x - \mathbb{E}_p[x])^\top = \sum_i p_i \int dx (x - \mathbf{x})(x - \mathbf{x})^\top \mathcal{N}(x; x_i, P_i) \]

\[= \sum_i p_i \int dx \left\{ (x - \mathbf{x})(x - \mathbf{x})^\top - 2(x - x_i)(x_i - x)^\top \right\} \mathcal{N}(x; x_i, P_i) \]

since we have:

\[\int dx (x - x_i)(x_i - x)^\top \mathcal{N}(x; x_i, P_i) = 0 \]

\[= \sum_i p_i \int dx \left\{ x x^\top - 2x x_i^\top + x_i x_i^\top + x_i x_i^\top - 2x_i x_i^\top + x x^\top \right\} \mathcal{N}(x; x_i, P_i) \]

\[= \sum_i p_i \int dx \left\{ (x - x_i)(x - x_i)^\top + (x_i - x)(x_i - x)^\top \right\} \mathcal{N}(x; x_i, P_i) \]

\[= \sum_i p_i \left\{ P_i + (x_i - x)(x_i - x)^\top \right\} = P \]