
Infrastructure Provisioning for

Human Penetration Testing

René Julian Neff

Master Thesis

. September

st Examiner: Prof. Dr. Michael Meier
nd Examiner: Jun. Prof. Dr. Ing. Delphine Reinhardt

Supervisor: Dipl. Inf. Matthias Wübbeling

Institute for Informatik IV
Work Group IT-Security

Rheinische Friedrich-Wilhelms-Universität Bonn

Danksagung

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mich während der
Anfertigung dieser Masterarbeit unterstützt und motiviert haben.

Zuerst gebührt mein Dank Herrn Prof. Dr. Michael Meier, der meine Masterarbeit
betreut und begutachtet hat. Für die Möglichkeit mich ins aktive Projektgeschehen
einzubringen sowie für seine hilfreichen Anregungen bei der Erstellung dieser Arbeit
möchte ich mich herzlich bedanken.

Ebenso danke ich mich bei Frau Jun.-Prof. Dr.-Ing. D. Reinhardt für die Bereitschaft,
die Aufgabe des Zweitbetreuers zu übernehmen.

Weiterhin danke ich Dipl.-Inform. Matthias Wübbeling, der mich während dieser
Arbeit und meinen Studien bestens unterstützte und mir immer ein offenes Ohr schenkte.
Danken möchte ich außerdem allen Mitarbeitern der Arbeitsgruppe IT-Sicherheit, mit
denen ich zusammen seit meiner Bachelorzeit an neuen Herrausforderungen wachsen
konnte.

Ebenfalls möchte ich mich bei meinen Kommilitonen Thomas Maqua und Jörg Stucke
für die zahlreichen interessanten Debatten und die erfolgreiche Teamarbeit in den
Vorlesungen des Masterstudiums bedanken.

Ein besonderer Dank gilt meiner Freundin Anuschka Clasen, die mit Liebe, viel
Geduld und starkem Rückhalt immer für mich da war.

Für die immer gebotene Unterstützung zum Studium und bei all meinen Entschei-
dungen und sowie das in mich gesetzte Vertrauen möchte ich mich insbesondere bei
meinen Eltern Ulrike Neff und Helmut Meis bedanken.

i

Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Masterarbeit selbstständig nur mit den angegebenen
Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen entnommen
wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher
Form noch keiner Prüfungsbehörde vorgelegen.

Statement of Authorship

I hereby confirm that the work presented in this master thesis has been performed and
interpreted solely by myself except where explicitly identified to the contrary. I declare
that I have used no other sources and aids other than those indicated. This work has not
been submitted elsewhere in any other form for the fulfillment of any other degree or
qualification.

Bonn, ..
René Julian Neff

ii

Abstract

In contrast to classic penetration tests, Human Penetration Testing (HPT) probes the user
of an IT system, not the machines. Artifacts, presented to a test subject, are used to
challenge a reaction which can be used to evaluate the subject’s IT Security Awareness
level. With the IT-Security Awareness Penetration Testing Environment (ITS.APE) a tool
for performing a HPT is provided.

Within this thesis an extension, improving framework’s task of generating and man-
aging of required infrastructure for artifact presentation, is designed and developed.
Manual configuration of routing is automated; a routing system is conceptualized
and implemented. The implemented extension supports generic infrastructure types,
with no need for sourcecode manipulation. Three concrete types are designed; a fully
configured webserver and e-mail sending infrastructure are provided. All designs
and implementations are presented thoroughly, while an evaluation shows the created
software’s performance.

iii

Contents

 Introduction
. Human Penetration Testing (HPT) .
. IT-Security Awareness Penetration (ITS.APT) Project
. Related Work .

 Background
. Service Environment .
. Protocols .

.. Internet Protocol version & (IPv & IPv)
.. Domain Name System (DNS) .
.. Server Message Block (SMB) / Common Internet File System (CIFS)
.. Simple Mail Transfer Protocol (SMTP)
.. Hypertext Transfer Protocol (HTTP)
.. Protocols over SSL/TLS (HTTPS, SMTPS)

. Virtualization .
. IT-Security Awareness Penetration Testing Environment (ITS.APE)

.. ITS.APE framework goals .
.. Modules .
.. Models .
.. Technology .
.. Human Penetration Test Workflow

 Design
. Requirements Analysis .
. Virtualization Technique .
. ITS.APE Infrastructure Generator Extension
. Design of Provided Services .

.. Mail Service .
.. File Sharing Service .
.. Website Service .
.. Redirect System .

 Implementation of ITS.APE Infrastructure Management Extension (IME)
. Type-based Naming Scheme .
. Configuration of the Infrastructure Management Extension

iv

Contents

. Internal Infrastructure Manager Module (IIM)
.. Properties .
.. Methods .

. ITSAPE Container Model .
.. Properties .
.. Methods .

. Extended Legacy Framework Modules & Models
.. Modifications to the APE Module
.. Modifications to Infrastructure Generator (IG)
.. Modifications to Delivery Manager (DM)
.. Modifications to Infrastructure Element (IE)

. Routing via Redirect System .
.. IP .
.. DNS .

. Generalized Service Infrastructure .
.. Infrastructure Specific Scripts .
.. Mail Service .
.. Website Service .

 Evaluation
. Conform with formulated Requirements
. Type-based Naming Scheme .
. Configuration .
. Internal Infrastructure Module .
. ITSAPE Container Model .
. Extended Legacy Framework Modules & Models
. Evaluation of Routing via Redirect System
. Evaluation of Generalized Service Infrastructure

.. Evaluation of Mail Service .
.. Evaluation of Website Service .

 Summary & Future Work

v

 Introduction

Modern industrial production, daily business and personal lives are heavily influenced
by the fast improvement of communication technology. Within industrial production
cycles, automated processing is widely used; machines, robots and industrial factories
make use of interconnected control, monitoring and information gathering systems.
Additionally, many critical infrastructure related tasks are handled via complex inter-
connected computer systems, including oil and gas pipeline systems, refineries, water
distribution systems, communication service providers, hospitals, nuclear power plants
and train signaling systems.[] E-Commerce and around-the-clock online services
provide benefits to customers and new opportunities to start-ups.

Attacks against such systems are on the rise, as interconnection through the Internet
provides a world-wide available weak point.[] Penetration Testing is used to find
open vulnerabilities as well as to test a company’s IT systems against already known
attacks. A resulting report allows system administrators to apply necessary patches
or other instruments to mitigate the risk from a technical point of view. Such classic
penetration testing lacks the ability to test another typical component within a company’s
IT environment: the human user. A typical test environment is depicted in Figure .

While special cyber-security trainings are used to provide a basic knowledge about IT
security, the user’s IT security awareness is hard to determine [,]. Evaluation is often
done via written or multiple-choice tests and fails to test a deeper understanding of IT
security in real life situations. Users lacking IT security awareness are especially prone
to social-engineering attacks, including widely used phishing attacks.

The IT-Security Awareness Penetration Testing (ITS.APT) project aims to provide a
methodology to perform close to real life testing of user’s IT security awareness. Within
the project, the IT-Security Awareness Penetration Environment (ITS.APE) framework is
designed and presented.

With this framework, multiple testing situations can be generated for groups of
subjects. These tests require certain infrastructure to present test elements to a specific
subject and observe the subject’s reaction to such a test element. Setting up, configuration
and managing such infrastructure is a tedious task.[]

 Introduction

This master thesis presents an extension to the already existing ITS.APE framework
to simplify the work of the penetration tester while performing a Human Penetration
Test (HPT). The following contributions are made:

. An extension design based on software design patterns and conform to ten iden-
tified requirements. Including designs of three concrete infrastructure services
used for HPT.

. The design of a redirecting system, used to ensure test-conform exposure of
subjects to test elements.

. Implementation of an extension capable of managing HPT infrastructure with
support of legacy script-based infrastructure management, configurable black- and
whitelisting of managed infrastructure types. The extension uses a simple configu-
ration, which requires only four parameter stated in a text-based configuration file
to support a new managed infrastructure type. It is capable of generating generic
managed infrastructure based on containers and consolidating of commissioned
demand with compatible running containers.

. An implementation of an IP and name-based redirect system capable of routing
specific subjects to designated infrastructure based on a provided schedule.

. An evaluation confirming compliance of the implemented extension to the for-
mulated requirements by RSpec unit tests and performed test cases of provided
infrastructure.

To provide a structured overview of motivation, necessary background information,
design and implementation as well as the process of evaluation of stated contributions
and an outlook on future work this thesis is structured into six chapters.

Chapter Introduction presents the basic idea of a Human Penetration Test. The
reader is introduced to the IT-Security Awareness Penetration (ITS.APT) Project and its
realization of such a test. A description of related work closes this chapter.

The following Background chapter provides necessary information needed for the
understanding of this thesis. Services within the context of infrastructure demands
of a HPT are explained. Network protocols relevant for such services in a business
environment are identified and technical details are presented. A section about the
concept of virtualization and the concrete difference between containers and fully virtu-
alized machines follows. Next the IT-Security Awareness Penetration Testing Environment
(ITS.APE) is introduced. The framework’s idea, its models and modules as well as used
technology are presented. The workflow to realize a HPT concludes this chapter.

The Design chapter presents the idea of the Infrastructure Management Extension
(IME). A requirement analysis identifies and formulates ten demands to the extensions de-
sign and implementation. A decision for a requirement conform virtualization technique
is presented. Said technique is incorporated into the design of a class-based module
for automated infrastructure generation and managing. In context of the developed
design three distinct services relevant for human penetration testing are identified. The
chapter closes with the presentation of a designed redirecting system.

The fourth chapter presents the Implementation of the designed extension. Deviat-
ing from the original design a more generic implementation and its type-based concept

 Introduction

are introduced. The software’s configuration option are described and explained. Imple-
mentation of realized modules and models their properties and methods are presented.
Required modifications to legacy framework components are disclosed and extended
functionality is explained. The realized implementation is finalized by a presentation of
two realized managed infrastructure compositions, including all necessary components
to be usable with a HPT.

An Evaluation chapter shows compliance of the designed and implemented software
to all of the formulated requirements. Used testing methods and their implementation
for testing the IME are presented and justified. A description of a testing environment
for the implemented managed infrastructure types and performed test cases conclude
this chapter.

This master thesis closes with a summary of the contributed work and an outlook on
possible future enhancements.

Figure : Penetration testing environment with highlighted parts of classic and human
penetration testing. According to []

 Introduction

. Human Penetration Testing (HPT)

Human penetration testing (HPT) describes a new concept to enhance a company’s IT
security. While technical assessment of IT infrastructure is a well-known concept that
can be performed in an automated fashion, acquiring an evaluation of users’ IT security
awareness is not.[]

IT security awareness is defined as follows:

‘IT security awareness is situation awareness limited to elements directly or
indirectly related to IT security.’[]

Within a situation, a subject comes into contact with different kinds of elements as
part of its (IT) surrounding. Elements can be part of either of two groups. First there are
typical elements generated by legitimate procedures or techniques to protect IT systems.
These elements are called natural elements. For example a legitimate authentication
prompt which expects an username and a password. In contrast, elements that are
part of an attack, directly or indirectly, are called artifacts. This includes all observable
objects, items, events or effects as far as they are artificially constructed. A suitable
example is an artificially introduced authentication prompt with the objective of gaining
knowledge of the subject’s credentials.

A subject is able to recognize such an attempt of cyber theft, if it is aware of the
specific incident situation on all three levels of situational awareness. For level of
situational awareness, a subject must ‘perceive the status, attributes, and dynamics of
relevant elements in the environment’[]. Based on the perceived situation from level ,
level requires a subject to ‘form a holistic picture of the environment, comprehending the
significance of objects and events’[]. Finally level of situational awareness allows the
subject to ‘project the future actions of the elements in the environment [...] achieved through
knowledge of the status and dynamics of the elements and comprehension of the situation
[...]’[].[,]

In context of human penetration testing, situational awareness of level is given if
the subject is able to distinguish between elements that are relevant to IT security in
general. Further, level situational awareness for IT security is present if the subject
can differentiate natural elements from artifacts. Projecting future relevance of these
artifacts relates to situational awareness level , as it requires knowledge about a systems’
security mechanisms and possible attack strategies.[]

Attacks on IT systems can leave behind some recognizable residuals. These leftover
elements can be used to identify already known techniques and parts of cyber attacks
or to identify new ways of compromise. While this highly technical investigations are
performed by security community members, some of these residuals are recognizable
by typical IT system users as well. Therefore, artifacts are separated into two groups:
st-order artifacts and nd-order artifacts. st-order artifacts are inserted by the pene-
tration tester into the IT infrastructure and are persistent against a variability of this
infrastructure. One or more multiple st-order artifacts are then part of a perceivable
stimulus to the subject.[]

 Introduction

The subject’s reaction to perceived nd-order artifacts is used to evaluate the subject’s
IT security awareness level. Consequently, it must be assured that the artifacts were
perceived by the subject in the first place. Additionally, capturing the subject’s reaction
towards this artifacts is required for later evaluation.

. IT-Security Awareness Penetration (ITS.APT) Project

Derived from this background the IT-security awareness penetration testing (ITS.APT)
project aims to extend classic penetration testing by including the IT security awareness
of the participating users. Therefore, a scaling of IT security awareness besides suitable
methods for its measurement are designed. As classic IT security evaluations, such as
questionnaires and interviews, are biased, ITS.APT aims to provide practical concept
for measuring a subject’s IT security awareness. This requires specific, structured and
cost-efficient methods.[]

With the IT-Security Awareness Penetration Testing Environment (ITS.APE) a pene-
tration tester is provided a tool to present predefined artifacts to participating users,
called subjects.[] Given a suitable selection of artifacts the subject’s level of IT security
awareness can be determined.[]

The basic idea of an ITS.APT penetration test follows the idea of pre-post design. More
precisely, a pre-test is performed and subjects are exposed to artifacts. This pre-test
provides a baseline of the subjects’ current IT security awareness level. Followed by
an educational program, for example in class training, the subjects are taught details
about IT security, for example how to recognize possible attacks and how to react in
such situations. A post-test is conducted to capture immediate results of such training,
while later follow-up tests can be used to show long-term improvement.[]

The following describes how a human penetration test can be performed using
ITS.APE. A detailed description of the ITS.APE framework’s models and modules
is given in section ..

Provided with a selection of artifacts, a penetration tester has to prepare a dataset
with necessary subject details, such as subject’s name, surname, e-mail address, title
and other data depending on the chosen recipe. A classification of artifacts and details
about suitable compilations of artifacts are provided in []. Given selected artifacts
and subject details, a matching between each subject and artifact is created. It is ensured
that every subject is scheduled for exposure to each kind of artifact class, as only this
will test all aspects of the subject’s IT security awareness [,].

A prepared schedule is including time periods in which a specific artifact is presented
to the subject. Additionally, this schedule ensures that no subject is exposed to more
than one artifact at any given time. This restriction is applied to avoid biasing and
overstraining the subject.[]

Furthermore, some artifacts are enriched with subject-specific information. Such
details can be used to provide different forms of artifacts. For example, a spear phishing
mail artifact may include proper naming of the addressed subject.[]

 Introduction

Generation of artifacts and deployment are used to provide selected artifacts to the
subject’s IT interaction point, most often a PC workstation which is used by the subject.
Artifacts are designed to allow the ITS.APE framework to recognize if and when a subject
is actually exposed to the specific artifact. A subject’s reaction to a perceived artifact is
the most important part of the testing process, recording is key for a human penetration
test. All observations, collected throughout all deployed artifacts and subjects, are
aggregated to generate a statistical evaluation for a final report.[]

As different kind of artifact types exist, different kind of infrastructure is needed to
generate corresponding st-order artifacts that cause desired nd-order artifacts to a
subject. Moreover, this infrastructure must support various observation mechanisms,
for example logging a subject’s interaction with artifacts.[] A compilation of artifacts
is needed to test a subject’s IT security awareness properly []. For each test, artifact
infrastructure is needed, it must be provided by the penetration tester. Configuration of
each prepared infrastructure is needed in order to be compatible with the company’s IT
environment and its specific artifact. If the human penetration test is completed and
all relevant test data is collected, set up infrastructure must be torn down again.[]
Infrastructure needed for HPT with two artifacts is depicted in Figure .

Figure : A Human Penetration testing setup within a company’s IT environment including
highlighted infrastructure used for presenting two types of artifacts to subjects.
According to []

Performing such a human penetration test might require changes to the company’s
network system or the subject’s workstation. Introduced changes should not create
obstacles to any user’s daily work. This policy might only be infringed for participating
subjects confronted by a concrete artifact, therefore possible obstruction is limited to
their work alone. It is essential to bear in mind that if the penetration test is finished and
all needed data is collected, the original network state needs to be established again.[]

The process of setting up, configuring, instantiating and tearing down of the described
infrastructure can be improved. As stated above, st-order artifacts are platform-
agnostic, as such a required set of infrastructures can be identified to provide the

 Introduction

required deployment services. Some artifacts require a common infrastructural service
for their deployment, as such these infrastructural requirements can be pooled. For
known artifacts, suitable configuration parameters can be tailored to match this prepared
infrastructure. For example, generic phishing mails and personalized spear phishing
mail artifacts can be deployed via the same e-mail transport server.

To be able to perform a HPT, with the current framework, every single artifact has
to have its own infrastructure, even if identical infrastructure demands exist. This
forces a penetration tester to perform repetitious and inconvenient tasks. In addition,
every single instantiated infrastructure requires configuration parameters to allow for
seamless interaction with the company’s IT environment. In summary, test deployment
is a costly and cumbersome undertaking. These repetitious but complex tasks provide
an error-prone system that makes regular human penetration tests costly and difficult
to perform.

. Related Work

Publicly available tools or frameworks that relate to the ITS.APE human penetration
testing framework are spare. The Social-Engineer Toolkit (SET) provides a combination of
penetration tests aimed at targeting different aspects of Social-Engineering []. It is an
open-source tool developed in Python by TrustedSec Inc. and its supporting community
[]. The toolkit supports multiple attacks such as: Spear-Phishing Attacks, Website
Attacks, Mass Mailer Attacks, Wireless Access Point Attacks and others. Furthermore, it
can generate malicious QR-Codes, infectious media and payloads as well as counterpart
listeners. SET is designed to leverage the Metasploit framework for certain scenarios.[,
]

SET’s mailer function can be used to send generated attack payloads that connects
back to the penetration tester’s machine. Additionally, it can be used to send in a mass
mailing phishing attack that holds no payload but a link to lure the recipient to a certain
website.[]

Different malicious websites can be generated by SET, websites holding Java Applets,
performing a Tabnabbing attack or other similar attacks. A method to clone legitimate
websites, used for these attack scenarios is provided. For websites used to authenticate
users, a special credential harvesting attack can be set up. Entered credentials are
collected in a text document.[]

SET uses its own python web server and the sendmail command to propagate generated
websites and e-mails. Where necessary, a penetration tester alternatively can set up an
Apache web server and configure SET to deploy generated websites via its server.[]

SET does not support complex coordinated test scheduling, nor does it provide an
evaluation or report function. A penetration tester can automate different functions by
calling SET with a small text file that holds menu point numbers and necessary parame-
ters associated to the desired attack method. Further automation is not possible.[]

 Background

This chapter presents necessary background information for the understanding of this
master thesis. At first the idea of services, which are used in context of the ITS.APT
project are explained in detail. Further, different network communication protocols,
used by the mentioned services, are described. Another section focuses on virtualization.
It compiles virtualization basics while highlighting differences to the later used virtu-
alization technique. As this thesis proposes an extension, a description of the already
existing framework is given.

. Service Environment

IT infrastructure is involved in many aspects of a typical day-to-day office job. Database
systems, file storage systems, user communication systems such as mail servers and
others are part of this infrastructure environment. All these systems aid users in their
daily job routine, they are monitored, patched and expected to be available when needed.

These systems provide a Service to users in form of functionality. Their use can be
controlled via policies, based for example on the user’s identity.[]

The Organization for the Advancement of Structured Information Standards (OASIS)
defines service as:

‘[...] mechanism to enable access to one or more capabilities, where the
access is provided using a prescribed interface and is exercised consistent
with constraints and policies as specified by the service description.’[]

As for the ITS.APT project, human penetration tests are conducted in the Universität-
sklinikum Schleswig-Holstein (UKSH) []. With a workforce of over , people
and about medical centers and departments it is the major employer in the state of
Schleswig-Holstein []. As part of their IT infrastructure network, several services
are present: directory services, websites, e-mail, malware protection systems, network-
attached file storage, printing and VoIP telecommunication []. An authorized user can
directly interact with those systems while other systems are only provided as part of the
underlying network architecture. Underlying network services are for example name
resolution, access control and services that dynamically distribute network configuration
parameters. While both are not exhaustive lists, several of these services can be used to
present artifacts to subjects participating in human penetration tests [].

 Background

Each of these infrastructure services can be realized by different kinds of software,
depending on the specific requirements and other factors. A web server has different
features, such as TLS or PHP support. Different products and projects compete for
this job. There are three major products present on the Internet: Apache HTTP Server
Project, Microsoft’s Internet Information Services (IIS) and the NGINX web server.[]
Furthermore, other web server projects aim to provide lightweight web servers, which
have a low memory footprint and light CPU load and focus on providing static content.
Examples for static web servers are lighttpd and darkhttpd.[,] Consequently, there is
no such thing as a single web server product to chose from.

This example can be transferred to different information technologies used within a
typical office environment. A common determination is the information technologies’
supported protocol and therefore the provided service of a network infrastructure
component.

. Protocols

This section starts with a presentation of necessary protocols used within the implemen-
tation of this master thesis. As presented, services build upon protocols to provide a
way for exchanging data. A protocol is a set of rules and regulations that defines how
data is transmitted between two or more entities [].

For network communication protocols, a special conceptual model exists which
provides a standard for characterization of protocols. The Open Systems Interconnection
model (OSI model) focuses on telecommunication and computing system protocols. It
excludes underlying internal structure and technology. Seven layers are described by
the model, these can be separated into two sets: The media layers (. to . layer) and
the host layers (. to . layer) []. The media layers focus on the connection itself,
the communication between two distinct endpoints and the running of a multi-node
network. In contrast, the host layers ensure reliable end-to-end connections, host-to-host
communication, concrete representations of data and finally provide transferred data to
applications. Host and media layer as well as their associated sets of layers, including
their purpose, are depicted in Figure .[]

Besides the general approach provided by the OSI model, other models exist. The
TCP/IP model provides a concrete description of layers and protocols which are used on
the Internet. In contrast to the OSI model there are only four layers in the TCP/IP model:
link, internet, transport and application. [] The link layer in the TCP/IP model is a
combination of layer and as defined within the OSI model. General host-to-network
communication is part of this first layer and can be realized via various technologies,
examples are: ARPANET, SATNET, wireless connections and LAN. Further, there is no
session and presentation layer as in the OSI model, these layers are omitted as they were
thought none essential.[] Figure matches the TCP/IP layers to similar OSI model
layers.

 Background

Figure : Open Systems Interconnection model (OSI model) protocol stack, as defined in [,
]

.. Internet Protocol version & (IPv & IPv)

The Internet Protocol version (IPv) is part of the fourth layer of the OSI model. As
defined in RFC it is a connectionless protocol, therefore no apriori information is
exchanged and no information about ongoing, future or past communication is stored
or available []. IP is part of the Internet Protocol Suite as are the User Datagram Protocol
(UDP) and the Transmission Control Protocol (TCP). As defined by the TCP/IP model,
the combinations of TCP/IP and UDP/IP are used heavily on the Internet [].

IPv is used in networks that focus on packet-switching. In such a network data
is grouped into bundles of data, called packets. These packets are sent over a shared
medium in which multiple communications can take place. Each packet is separated
into two parts: header and payload. While the payload of a packet which originates
from a lower layer contains again header and payload needed by layers above. This
encapsulation of data is a main principle on the Internet []. A packet from the Internet
layer, as defined by the TCP/IP model, is used by network routing technology to deliver
each packet to its final host. Arrived at its destination, a packet is processed and the

 Background

Internet layer header is stripped, leaving the payload part. This payload part is then a
transport layer packet, as defined by the TCP/IP model, and can be further processed.
Only then, if the transport layer packet is stripped from its header, the actual data is
finally made available for application software. Figure shows the encapsulation of
data through the various layers.

Figure : Encapsulation of application data descending through the layers, as described in
[]

IPv is used for communication on the Internet, its origin goes back to the ARPANET
in . A final version is defined in IETF publication RFC in end of [].
It is the fourth version of the network protocol and provides a standard method for
communication between many different kinds of technologies. With the beginning of
the nineties, the need for a larger address pool of devices connected to the Internet is
discussed. Since no more IPv addresses can be allocated by the Internet Assigned
Numbers Authority (IANA) []. The exhaustion of addresses used in IPv had occurred,
the growing number of devices joining the Internet had depleted the address space of
4,294,967,296 (232) addresses.

The huge success of the Internet and its IPv led to the development of a successor
supporting more address allocations. From up to the new Internet Protocol
version (IPv) is developed by the Internet Engineering Task Force (IETF). While not
compatible with IPv this new protocol supports a vastly larger address space. An IPv
address is defined by 128 bits, while an IPv address has only 32 bits. The IPv address
space therefore has 2128 or approximately 3.4 ∗1038 addresses.[,] An IPv and IPv
address are depicted in Figure respectively Figure .

In addition to different ways of addressing network components, other features are
introduced with this new protocol. For example a way of multicasting, previously

 Background

not available with IPv, and stateless address auto-configuration (SLAAC) are added.
Alongside other improvements, these two allow for abstaining formerly additionally
needed protocols. The provision of these advantages is in contrast to the fact, that IPv
and IPv networks are not able to communicate with each other directly. IPv does
create a parallel independent network, besides an already existing IPv network.[]
To exchange data between these two networks translating gateways are required []. A
different approach can be used, if IPv traffic is tunneled through an IPv network [].

Figure : An IPv address in dotted-decimal notation, as defined in []

Figure : An IPv address in hexadecimal notation, as defined in []

While IPv is needed, as IPv addresses are becoming rare, its usage on the Internet
is rather low. As one of the major companies, Google publishes information about
the availability of IPv among their users worldwide. In May around % of
these users are connected via IPv []. Other companies report about % of IPv
connectivity in Belgium and about % availability in Switzerland, Germany or Greece
[].

.. Domain Name System (DNS)

As IPv and IPv addresses are hard to remember and a full address table of all valid
host names and their corresponding IP mapping is not practicable, an hierarchical model
is used to allow for a distributed system to assign names to computers or resources
connected to the Internet or to a private network []. The Domain Name System (DNS)
provides a translation service between domain names and a numerical or hexadecimal

 Background

representation used by the IP protocols.[,] As it provides a classic directory service,
it is part of the application layer (layer) in the TCP/IP model.

The communication protocol defined for DNS requests allows to request mappings
between a certain domain name and its associated records. Different kinds of record
types exist and can be requested; for example holds the A record the IPv address stored
to this domain while the AAAA record holds the IPv address [,]. If no record for
a domain is found in the local database, for example if the record’s time-to-live (TTL)
has expired, a request to a root server is initiated. The root server responds with an
associated top-level domain name server which can further resolve the authoritative
name server that holds the actual name record. Recursion of this process will finally
lead to the requested record, if it exists.[]

A resolving task like this is handled by a resolver; it can either handle requests
recursively or iteratively. In both cases a request is looked up in the name server’s local
database. If such a record is present, it is used to satisfy the request. Only if a record
cannot be found, these two kinds of requests perform differently. With a recursive
request, each requested name server initiates further requests to the next name server
which is needed for resolving the domain request. While, with an iterative request, a
name server responds with the address of the next name server. Which is then requested
and further resolving is performed by the initiating resolver.[]

Defined by the standard, DNS request communication has to take place via port .
A single UDP packet is sent from the client to the name server which responds with a
single UDP packet as well. Only if the response message size is exceeding bytes, a
TCP connection can be used. In this case the UDP request is replied to by a truncated
answer by the name server. This answer must have the TC flag set to indicate this
circumstance. A new domain name request over TCP can be initiated if the truncated
record does not hold all needed information.[,]

.. Server Message Block (SMB) / Common Internet File System (CIFS)

To exchange application data between two hosts, additional protocols are needed. IP
and DNS support identification and exchange between two or more hosts. As already
stated, file exchange through an IP network connection is used by the UKSH. The Server
Message Block (SMB) Protocol is used for this task. It is part of the application layer in
both the OSI as well as the TCP/IP model. Different versions of this network file sharing
protocol exist, while no clear standard documentation or definition is available through
IETF.[]

The development started in the early ’s by Dr. B. Feigenbaum at IBM. Back then it
is given the name BAF (after his initials). The protocol is renamed to SMB and further
improved by Microsoft, Intel and Com. Again, it is given a new name, CIFS, when an
even further improved version is presented by Microsoft in .[] Multiple attempts
to form a proper standard were made by different groups, but ultimately failed.[,]
By today, there still exists no authoritative protocol specification to check for correctness
of any given implementation.[]

 Background

Microsoft is supporting its implementation of SMB, still called CIFS, and provides
a detailed description of its ’dialect’ of SMB as it is used by the Microsoft NT LAN
Manager (NTLM) []. Microsoft products such as Windows NT Server ., Windows
XP or Windows use CIFS []. To improve speed of data exchange, a reduction
in commands and a new way of linking them to each other, were implemented by
Microsoft. The CIFS successor is again renamed and is called SMB .. SMB . is used
in Microsoft’s Windows Vista, Windows Server and Windows . With SMB . the
protocol supports multichannel transmissions and an end-to-end encryption is added.
SMB . is used in Microsoft’s Windows , Windows ., Windows Server and
Windows .[]

As SMB/CIFS is part of the application layer, it relies on lower-level protocols for
transport. The transport layer protocol in use, is most often NetBIOS over TCP/IP (NBT).
Alternatively, SMB can be run directly through a TCP connection, while NBT is used for
backwards compatibility.[] In case of a direct TCP connection port is used, NTB
connections use TCP port [].

.. Simple Mail Transfer Protocol (SMTP)

The Simple Mail Transfer Protocol (SMTP) is an application layer protocol which is used
for Internet electronic mail transport. It is designed as a mail transport and delivery
protocol that only relies on an ordered data stream channel. Mainly SMTP over TCP
is used, but other transport protocols, such as NCP in the ARPANET, can be used
too. SMTP features mail relaying, which allows for transporting mails across multiple
networks. Therefore, a mail message can be transmitted through some intermediate
relay or gateway hosts on its way from sender to ultimate recipient.

A basic transmission of a typical message via the SMTP protocol is depicted in Figure
. From a user’s host a mail user agent (MUA) is used to transfer electronic mail to a
mail submission agent (MSA), using SMTP on TCP port []. While submitting a
message is not defined to be done via TCP port , it is supported by many mailbox
providers.[] At the beginning, a message is forwarded from the MSA to a mail transfer
agent (MTA), these two agents can be bundled as a single piece of software. If agents are
distributed among multiple machines SMTP is used to transfer the electronic messages
between them. The MTA is responsible for locating the target host, which can be within
the same local network or part of the Internet. If it is the latter, DNS is used to look
up the mail exchange (MX) record for the associated domain provided as recipient. This
record holds the target host, which is a MTA, too. The originating MTA can connect to
this mail exchange server (MXS) as an SMTP client and transfer its electronic message.
The transfer can occur directly between two MTAs or through multiple hops passing
intermediate systems. Finally, the recipient’s MTA delivers the message to a mail delivery
agent (MDA).[] Retrieving a message from an MDA can be done using specialized
protocols such as Post Office Protocol version (POP) or Internet Message Access Protocol
(IMAP) [,].

All mentioned SMTP connections are, by definition, handled via TCP port . Legacy
systems that use Transport Layer Security (TLS) to transfer messages use TCP port .

 Background

These connections are called Secure Simple Mail Transfer Protocol (SSMTP) []. Modern
systems use Opportunistic TLS, called STARTTSL, to secure plain text communication
such as SMTP, POP and IMAP []. STARTTLS is designed to upgrade an existing
connection. This allows for retaining the originally assigned TCP port , instead of
providing a separate port used for encrypted connections only.[]

SMTP is just a transport protocol and does not define the message content. Con-
sequently, only the message’s envelope and its parameters are defined; these are: the
envelope sender, but no header or message content. The message itself, header and body,
is defined by a different standard and is referred to as the Internet Message Format.[]

Figure : Basic SMTP communication, including several SMTP connections to deliver an
user’s message, as defined in [].

.. Hypertext Transfer Protocol (HTTP)

The World Wide Web (WWW) is a worldwide network for exchanging data via various
protocols. It was first used by the European Organization for Nuclear Research (French:
Organisation européenne pour la recherche nucléaire). The CERN is an European
research organization that operates the largest particle physics laboratory in the world.
In the WWW is invented to share scientific research of the CERN with scientists
from all over the world. Its main purpose is to enable exchange of reports, drafts,
sketches, pictures and other documents in an efficient and persistent way.[]

Berners-Lee presented his proposal of a network of linking documents, including a
first prototype for a text-based browser in . A connection between two documents
via a Link is called Hypertext and is presented by Vannevar Bush back in . Berners-
Lee used this already known concept and combined it with the idea of the Internet.

 Background

He presented a system to identify resources (e.g. documents, pictures, ...) via Uniform
Resource Identifier (URI) in a general way. Additionally, special URIs are available that
define the means of acting upon or obtaining the representation of a resource: Uniform
Resource Locator (URL). The documents used in his proposal and his idea of the Web
are written in a standardized way: the publishing language HyperText Markup Language
(HTML). They may include other resources, these are identified via Multipurpose Internet
Mail Extensions (MIME) types, also used for e-mail attachments. Different MIME-
types allow for bundling different kind of content within a single file, MIME-tags
provide suitable markers for separation of this content for example by the web browser.
Furthermore, to provide a standardized way of communication, a protocol is defined:
the Hypertext Transfer Protocol (HTTP).[]

The above mentioned development makes it obvious that the World Wide Web is differ-
ent from the Internet. As the Web only defines an information network of hyperlinked
documents and other resources identified via URIs. This network facilitates the services
provided by the Internet, which is done by its Web-client (Browser) and Web-server. They
communicate via HTTP.[] HTTP communication, by definition, is realized via TCP/IP
on TCP port []. Besides TCP/IP, DNS is used to locate the associated Web-server
that is specified in the host part of an URI [].

In May a successor of the HTTP . protocol is presented: HTTP/. The
new protocol is developed by Google and focuses on improving latency of website
requests. While the protocol aims for compatibility to HTTP ., it supports new
features: compressed HTTP headers, pipelined requests and multiplexing multiple
requests over a single connection.[] It is supported by all major browsers in June
[]. In October about % of Alexa top websites supported HTTP/. Varvello
et al. find an % decrease in page load time of their measurements of Alexas top
million websites.[]

.. Protocols over SSL/TLS (HTTPS, SMTPS)

Traffic sent via TCP is not secured against outside attackers. Additionally, a user can not
validate authenticity of a website without additional information.[] To protect users’
privacy and integrity of exchanged data via TCP, an additional protocol is used. Secure
Sockets Layer (SSL) and Transport Layer Security (TLS) are used to secure a connection
between two communication partners. They are both part of the application layer within
the TCP/IP model.[] SSL and TLS provide a sub-layer within the actual communication
layer as they encapsulate traffic from typical application layer protocols.[]

To secure traffic, HTTP and other application protocols can use SSL/TLS. HTTP is
then called HTTPS. Other protocols are for example FTP, then called FTPS, or SMTP,
which is then called SMTPS [,]. For HTTP traffic secured via SSL/TCP, TCP port
 is standardized. In addition URLs of a secured website begin with "https://" [].
As early implementations of SSL/TLS are insecure, new TLS versions are developed [].
As of this writing, TLS protocol version . is the newest standard, since April
TLS protocol version . is under development and new drafts are released on a regular
basis [, ,].

 Background

SSL/TLS communication uses different cryptographic principles to secure a connec-
tion. Symmetric cryptography is used to encrypt actual application data, these symmet-
ric keys are generated for each connection. The identity of a communication partner
can be authenticated via public-key cryptography. Standard browsers are equipped with
around public keys signed by trusted certificate authorities. To provide integrity
of a connection, message authentication codes (MACs) are used to detect alteration and
loss of data.[] Said newest version of TLS supports forward secrecy, which prevents
decryption of messages sent in the past by future encryption keys [].

Each communication therefore has to exchange or agree upon certain cryptographic
parameters. This cryptographic information is sent, in addition to more general infor-
mation, such as supported compression algorithms, in a single TLS ClientHello message.
The SSL/TLS client sends a cipher suite list that contains supported cryptographic
algorithms in order of its preference (favorite choice first). A cipher suite defines a key
exchange algorithm, an encryption algorithm used for data transfer, a MAC algorithm
and a pseudo-random function. The server will select a cipher suite from this list or, if
no acceptable choices are available, it will return a handshake failure alert and close the
connection.[] This is an example for a st order artifact.

Different websites may have different website certificates used to establish a secure
connection. As the actual HTTP GET request, including the requested domain, is only
transmitted after a secure connection could be established, a server can not decide on
which website host and therefore which certificate is requested. Server Name Indication
(SNI) is an extension that sends the requested host name along the TLS ClientHello
message, which lets the server choose the correct certificate. Without SNI, every server’s
IP interface could only be used for a single secure website.

. Virtualization

With the beginning of mainframe computers back in to , virtualization is
used to share limited resources between multiple users or application. Before this
technological improvement, only a single application could be run at a time. Besides
computing power, applications are sometimes run on dedicated machines to avoid
conflicts with other applications.[]

With separation between running instances of the same or of different applications,
the user is provided with additional security against attacks on one of the applications.
In a case like that only the attacked virtual machine if said application is affected, while
this is no guaranteed security because this additional layer can be mitigated. It still
provides an additional obstacle for an attacker.[]

Different kinds of definitions can be found, Amit Singh’s definition tries do give a
rather broad idea of virtualization:

"‘Virtualization is a framework or methodology of dividing the resources
of a computer into multiple execution environments, by applying one or
more concepts or technologies just as hardware and software partitioning,

 Background

time-sharing, partial or complete machine simulation, emulation, quality of
service, and many others."’[]

Classic Virtualization

A classical virtualization system uses a software called hypervisor that orchestrates
control flow between one or multiple virtual machines. It handles all communications
between the host operating system, the so-called host OS, and each virtual machine.
Type hypervisors are applications running on top of an OS present at the host system.
In contrast, type hypervisors operate directly on the system’s hardware. Each machine
has its own separate operation system, called guest OS.[]

The hypervisor tries to emulate basic underlying hardware to the guest OS. Therefore
the guest system can be run as if it would be running on the bare system’s hardware
machine. A virtual system’s guest OS can be different from the host OS or can be the
same, while restricted by the underlaying hardware. For example compatible hardware
systems such as x can be virtualized on an x- host machine as the x instruction
set uses a subset of the x- instruction set. Known implementations of this are
AMD and Intel . Applications running on a virtual machine OS have their own
libraries and resources. Even if the same libraries or resources are used they have are
placed separately into each machine. A typical virtualization stack is depicted in Figure
.[]

Figure : Basic virtualization stack running three seperate virtual machines on a single host
machine is compared to a container virtualization stack running three seperate
containers on a single host. Two applications require the same library.

 Background

Virtualization with Containers

This concept provides rather strict separation through fully virtualized machines. Dif-
ferent to this hard separation, other virtualization technologies omit a separate guest
OS. Solaris Zones, limited to Solaris OS, provides such application separation []. For
Linux, OpenVZ is presented in , but required a patched host system kernel [].
The same holds for Linux VServer []. By a combination of several technologies, like
CGroups, kernel namespaces and chroot, Linux Containers (LXC) provided a container
solution from onwards. LXC offers an interface for the Linux kernel containment
features, it allows for creating and managing whole virtualized systems or application
containers.[] Docker Inc. present’s their Docker Engine with a focus on providing an
operating environment for applications, rather than systems. Their engine is capable of
running so-called Docker Containers, these are portable encapsulation of applications
and their needed dependencies. In contrast to full virtualized machines they share
resources with the host’s OS, therefore hardware emulation of the hypervisor can be
omitted.[]

A container engine provides necessary translation and interconnection between the
host OS and other containers, it acts similar to a hypervisor used by a full virtualized
machine. Almost direct interaction with the host system’s resources allow containers to
be more efficient, as such they can be started and stopped within in seconds. Further-
more, applications executed in a container, run only with little overhead compared to
applications operating on the host system directly.[]

As most resources are already provided by the underlying host OS, only applica-
tion specific dependencies must be made available to the container. This allows for
lightweight and therefore portable application containers. Additionally, such a con-
trolled environment, provided by a container, can be defined to hold necessary pa-
rameters needed for complex applications, this lowers configuration complexity for
users.[]

A container setup with three containers is depicted in Figure , too. Two of these
application containers share the same libraries instead of having their separate copies.

. IT-Security Awareness Penetration Testing Environment
(ITS.APE)

The following will present the software framework implemented to support the ITS.APT
project. A short description of the basic functionality of this framework is followed by a
more detailed run through the different modules and models used within the framework.
Used tools and technologies are presented, as this section closes with an exemplary
description of the different stages a penetration test will pass during its execution. The
internal frameworks’ concept documentation is used as the primary source for this
section [].

 Background

.. ITS.APE framework goals

To achieve the idea of measuring the security awareness level, the IT-Security Awareness
Penetration Testing Environment (ITS.APE) is used. This framework allows evaluating
a user’s security awareness level within its normal working environment. ITS.APE
supports and handles most of the penetration tester’s tasks, as it can be used for test
preparation, actual test running as well as the generation of presentable test results.[]

As described in section ., artifacts are mixed into a subject’s daily routine work,
while its reactions are observed. Generation and deployment of artifacts should be
done in a way which will not reveal the artifacts artificial nature. Therefore, a subject
may not be able to distinguish between an artifact provided by ITS.APE and an artifact
provided by actual malicious sources. Overall, subjects’ interactions with the framework
must not provide any unintended obstacles for their daily work. In direct interaction
with framework parts, as presented, artifacts are one mean in which a subject can come
into contact with the framework. Indirect contact with the framework can happen if a
subject reports intentionally introduced anomalies to the companies’ IT helpdesk. The
helpdesk supporter is therefore able to report the subject’s observation via the reporting
feature of the framework. Again, this is to be kept simple even if the supporter is not
a direct subject himself but is reacting on behalf of a subject. Reactions to artifacts
presented by ITS.APE must be observed, as they provide the necessary feedback for later
evaluation.[]

The system is operated by a penetration tester whose duty is the provision of artifacts
which should be presented. Depending on the artifact’s type, different services or
combined services are required to present an artifact to a subject.[] All necessary
information about an artifact is bundled in a so-called Recipe, which will be explained
in detail in section ... Provided with a Recipe, the framework is able to generate
personalized artifacts. While the Recipe provides the basic template, the specific subject
data is required too. Consequently, the penetration tester has to select the subjects
who are tested and must provide required subject specific information. Setting-up an
ITS.APT penetration test shall be possible within a short time frame; only a small set
of configuration parameters is required.[] These parameters depend on the chosen
type of artifact []. The penetration tester’s interaction with configuration files and
command line outside of the ITS.APE framework shall be avoided.[]

The framework is used within a given infrastructure of a company, this testing en-
vironment allows for testing the user’s security awareness level with a low bias. Not
all required services might be available in an examined company. Furthermore, ser-
vices already present within a company’s infrastructure might not be operated by a
framework compatible software. It is possible, that this infrastructure is not as con-
figurable or up-to-date as necessary. Finally, due to policies within a company, some
services are not accessible for necessary changes in configuration. For example, these
configurations could be the installation of outdated certificates to test subjects for their
reactions towards affiliated browser warnings. Moreover, only a limited group of users
within a company’s network are participating in an ITS.APT penetration test. There-
fore only these subjects must be affected by the ITS.APE introduced artifacts. Hence,

 Background

the framework must provide infrastructure on its own, which provides the necessary
and compatible set of configuration parameters stated within the penetration tester’s
recipe.[]

.. Modules

The following paragraphs decribe all modules present in the ITS.APE framework. A
short motivation for each module is followed by a description of the module’s features.

APE

Different components are orchestrated, additional control flow and user interaction
needs to be managed. The APE module allows for user input and will present necessary
prompts to the penetration tester. Furthermore, all control flow starts and returns to
this module. Subsequent modules return to the APE module when their actions are
finished.

The module is run as a daemon and interacts with all other modules as it is the main
process. Hence, initializing is done from this module. Through a socket connection, the
module is capable of interacting with the user via an user interface. It provides several
commands via this interface to start, stop and control ITS.APT penetration tests.[]

Artifact Generator

As explained, the ITS.APE framework uses Recipes, datasets containing technical infor-
mation of a human penetration test needed to set up a complete testing environment.
For example e-mail templates used to create a specific e-mail phishing campaign are
part of those datasets.[]

Some kinds of artifacts need modification or adaption before a single artifact can be
presented to a subject. For example a simple phishing mail might only use a single
generic recipient e-mail address. In contrast, a more sophisticated phishing mail uses
the subject’s e-mail address and a valid response e-mail address. Enriching artifacts
with subject specific details, such as the subject name or correct e-mail address are
therefore needed. Such details are used to create more precise artifacts, which can be
part of more sophisticated ITS.APE penetration tests. Besides subject specific details,
other parameters could be part of this adaption process as well. Typical examples are
the response e-mail address or phishing websites. To create different kinds of phishing
website artifacts, a penetration tester can for example specify a more realistic domain
name in contrast to a simple random string domain name.[]

Deriving enriched artifacts from the Recipe’s template, by using additional informa-
tion, is done by the Artifact Generator module. Generated artifacts are temporarily stored
on the machine running the ITS.APE framework daemon.[]

 Background

Infrastructure Generator

As stated earlier, the framework has to leverage different kinds of infrastructure to
provide required services for selected Recipes.[] Different approaches can be used to
achieve this goal:

. In one possible scenario the company already has compatible infrastructure soft-
ware within its network and the possibility to adapt its configuration.

This arises the need for a suitable instruction for manually configuring this in-
frastructure; a written instruction is required. This kind of infrastructure is not
easily manageable, as all configuration and changes to already leveraged infras-
tructure must be handled manually. These changes are time consuming as they
are performed by personnel from within the company and not the penetration
tester himself.[]

Infrastructure used as described within this scenario is called: External Infrastruc-
ture.

. Within a different scenario, no compatible infrastructure software inside the
company’s network exists or can be altered due to other factors. This scenario
requires that infrastructure is set up including a suitable configuration.

Required infrastructure is therefore set up manually by the penetration tester and
necessary configuration is entered as provided by the framework’s instructions.
Besides the additional task of setting up needed infrastructure, written instruction
are required too. This kind of infrastructure is under full control of the penetration
tester. It can be made accessible and changes can happen automatically if necessary
access is configured. Nevertheless, setting up, maintaining and later tearing down
this infrastructure is a tedious task, as manual work is necessary for every new
recipe and its infrastructural needs.[]

Infrastructure used as described within this scenario is called: Internal-Manually-
Setup Infrastructure.

The Infrastructure Generator Module is responsible for this task. It uses the information
stored within the selected Recipe, to generate instructions which are presented to the
penetration tester. All necessary information required for the infrastructure is available,
this includes at least: IP address, port and credentials.[]

With this limited information, the framework itself cannot distinguish whether pro-
vided infrastructure is set up by the penetration tester or has already been part of the
company’s network. Such infrastructure is indifferent from a technical standpoint. A
differentiation is only relevant on an organizational level, hence it determines whether
the penetration tester has to manually provide infrastructure or can leverage it when
already existing.

 Background

Deployment & Delivery Manager

As stated before, generated artifacts are created and stored on the machine running the
ITS.APE framework daemon. The framework is designed to use services provided by
machine independent infrastructure to present artifacts.

Artifacts, which are ready for presentation, need to be transferred to the corresponding
infrastructure machine. The Deployment Manager module is designated to fulfill this
task.[]

As prepared artifacts are deployed to the infrastructure by the Deployment Manager,
the Delivery Manager module is designated to invoke necessary actions in order to deliver
a single artifact from the infrastructure to the user. As an example for an e-mail the
execution of a send function with parameters could be named; this could be the subject’s
e-mail address and the prepared phishing mail.[]

Scheduler

Typically an ITS.APT penetration test can be separated into multiple parts. These are:
pre-evaluation, training and a follow-up evaluation, referring to .. Furthermore, prepar-
ing an ITS.APT penetration test involves many factors and parameters. Depending on
a chosen artifact, infrastructure required to be set up and/or configured. A selection
of an Recipe and necessary artifacts template’s parameters have to occur. A group of
test subjects must be assembled while other test specific actions have to be undertaken.
Besides these technical tasks, organizational obstacles require to be taken care of. There-
fore an important part is subject test timing. Presenting artifacts while the subject is on
vacation or working in shifts might result in a state in which the subject is avoided any
contact to the specific artifact.[]

To tackle such timing issues, the Scheduler module is used.[] Provided with parame-
ters such as a penetration test runtime and all test specific parameters, it generates a
test schedule. Besides a test’s runtime, certain constraints are taken into account when a
schedule is generated. For example, there shall be no double exposure of two artifacts
or more to a single subject at any given moment. It is possible to provide a set of office
hours in which artifacts are presented. Furthermore, a schedule is automatically adapted
if it was paused during its execution. Therefore running tests will be postponed to
meet the predefined test runtime. According to this schedule the Delivery Manager
is used to deliver artifacts. Additionally, the Scheduler’s logic allows for determining,
when a certain test is finished; as no more artifacts are commissioned for delivery. This
information is used to initiate function to tear down used infrastructure.[]

Track Collector

As already stated, a crucial task within the ITS.APT project is tracking user reactions
towards presented artifacts. For example, reactions can be observed by checking access
log files for entries which are associated with artifacts only made available to a single

 Background

subject. A simple example might be a logged access to a specific website through a link
only provided to a specific subject via a phishing e-mail.[]

Recipes can leverage different services to present artifacts. This necessitates the need
for different infrastructure. As presented in the Infrastructure Generator paragraph,
different kinds of infrastructure exist. Especially External Infrastructure is not easily
accessible, as all configuration and changes to already leveraged infrastructure are
handled manually and are time consuming because of organizational obstacles.

Collecting user reactions, especially from External Infrastructure, therefore needs to
happen in an automated fashion. This feature is provided by the Track Collector module
and its supporting external component, the so-called Satellite.[]

The module uses predefined filter rules upon log files, which allow for a transfor-
mation of general log file entries to ITS.APE framework conform representation of
an observed action, so-called Tracks. A Track therefore is an observation of a specific
reaction of a subject to an artifact. Necessary filter rules are provided with each recipe
and are called Track filter.[]

To eliminate the need for manual log file retrieving, a local component is used which
is called Satellite and is running on used infrastructure machines. It can connect to
the ITS.APE framework through a secure connection and observes a single log file. By
this setup, Tracks can be created automatically while confidentially and integrity are
ensured.[]

Result Generator

Observed reactions to artifacts are scored with different values, indicating the subject’s
security awareness level. Ranking of a reaction towards an artifact is given by predeter-
mined scoring defined by the penetration tester. Training for example can have an effect
on the subject’s awareness. Conducting an equivalent penetration test as a follow-up
might show an improvement in the subject’s security awareness.[]

Subject specific results, performance information of conducted penetration tests are
collected. As part of the ITS.APT project, penetration tests are reevaluated as an ongoing
task to improve future testing.[]

Generating reports is done with the Result Generator module. These reports provide
graphical representation of statistical information and results, which can later be used
in trainings and penetration test reports.[]

Different levels of detail are possible. On the one hand information about subject’s
performance towards one specific artifact can be evaluated to allow for inter-artifact
comparison. On the other hand, to evaluate subjects, two kinds of reports are possible.
Status reports allow for evaluating the progress of an ongoing test season. A final
report compares two test seasons and allows for observing the effect of intermediate
training.[]

 Background

Miscellaneous Modules

Modules necessary for the direct ITS.APT project purpose, additional modules help to
provide consistent access to information within the implemented framework.

Database access is realized through the ActiveRecord Database Connector module and
is used heavily by the ITS.APE models which are described in the next section.[]

For debugging and error logging purposes throughout all parts of the framework, a
logging module is provided. Different levels of log entries are available: error, warning,
info, debug.[]

The Configuration Manager module allows for an easy access to the framework config-
uration information. By design, several information such as subject data, recipes and
others are not stored in the database or are accessible via the module class. This module
allows for a generic and easy access to this data throughout the whole framework.[]

Future extensions shall make use of the provided logging capability and may use
presented modules as needed.

.. Models

The ITS.APE framework uses models to provide consistent instances of datasets used by
multiple modules. This section presents important models of the ITS.APE framework
and their use within the framework is explained while some specifics are highlighted.
All modules except for the Subject module are Active Record modules and therefore
stored in the framework database.[]

Recipe

A Recipe contains all data needed to create a specific ITS.APT penetration test season.
Every Recipe must have a name and a duration, defining a penetration test’s runtime.
Furthermore, a description of necessary infrastructure known as Infrastructure Elements
is given too. Regular expressions are used within Track Filter instances and allow for later
use within the Track Collector. A parameters’ hash map allows for defining test specific
configuration options as for example placeholder identifiers. These parameters are used
in conjunction with an Artifact Generation’s Script used by the Artifact Generator, to create
subject specific artifacts. Finally, a Recipe has to provide scripts which are used to handle
and deliver these artifacts. For transferring or providing access to prepared artifacts, for
final presentation to a subject, a so-called Deploy Script is used. Arm- & Disarm-Scripts
are used for activating and deactivating artifact presentation to a subject.[]

Infrastructure Element

An ITS.APT penetration test can use different kinds of services as well as infrastructure
to present artifacts to a subject. An Infrastructure Element describes a required service,
for example a web server, to present a website artifact. All kind of infrastructure used

 Background

within the framework needs detailed setup descriptions. Accordingly, written guides are
part of this dataset. In addition to setup descriptions, it provides appropriate tear down
instructions. As an alternative to a written guide on how to set up needed infrastructure,
a penetration tester can provide scripts which are executed to set up and tear down
infrastructure. Either way, while running a set up service, it requires monitoring, a
dedicated status script is used by the framework to check whether the infrastructure is
providing correct artifacts. This status script is supplied by the penetration tester as
well.[]

Subject

For each test participant a Subject instance is created. While each Subject has to have
a name, surname, e-mail address and an username, there can be additional subject
specific information. This additional information can be defined by the penetration
tester and used within scripts if necessary. For example a subject’s gender can be
stored too; this will allow for a correct form of address, for example in a phishing mail.
As such information is highly personal, database duplication must be avoided. This
design decision respects the German laws governing data protection and data security.
The Subject class therefore is capable of accessing the subject’s information from a
single comma-separated value’s (CSV) file, provided by the penetration tester. In this
document the class model is denoted by Subject, while a human test subject is referred
to as subject.[]

Test Specific Models

A penetration tester can create multiple Test Programs within a single test environment.
While for example the administration department is tested for its security awareness in
context with phishing mails, manipulated website certificate warnings are presented to
the sales department.[]

Each Test Program has multiple Test Series. A Test Series is created to store selected
subjects for a specific Test Program. This data model is used to provide a persistent
access to subject information for all modules.[]

Again, each Test Series has multiple Test Seasons. A Test Season is created to store the
penetration tester’s selected Recipe for a specific Test Season.[] The Artifact Generator
module can use additional parameters which are stored in the Test Season’s dataset to
further adapt a created artifact. After the generation is done by the Scheduler, each
Test Season holds all generated Test Episodes which have been created for the specific
Recipe.[]

By creating a cross product between Subjects and Test Seasons, Test Episodes are created
by the Scheduler module. Each Test Episode has exactly one Schedule instance containing
information about start and end date. Furthermore, each Test Episode instance stores a
status, whether this episode is prepared, running, paused or already completed.[]

 Background

A Schedule instance stores the start and end date of an ITS.APT penetration test
instance. The duration between the start and end date is given by the Recipe’s parameters.
A typical example is a phishing website which is available for just one week.[]

Track Filter

The Track Filter model is used to store regular expressions used for later extraction of
generated log entries generated on infrastructure that is part of this human penetration
test. Such log entries are used to determine the action a subject took during its pene-
tration test. Additionally, each action is rated with a score to allow for later evaluation.
Suitable regular expression as well as the ranking of each action and its associated score
are provided by the penetration tester.[]

A processed log entry is stored in an instance of a Track Entry. This model allows
for storing the concrete observed action, the subject’s id and the associated score of the
chosen action. Each Track Entry has a timestamp, preserving when the subject showed
this reaction.[]

When a subject interacts directly with the framework, for example when visiting a
phishing website as part of a human penetration test, this interaction can be associated
to the subject’s accessing device. Each of these devices is stored in an instance of a
Computer model. This model stores the computer associated IP address and its host
name. As multiple reactions can be observed, for example a phishing mail can be read
and a phishing website can be visited, each Computer instance can be linked to multiple
Track Entries.[]

.. Technology

Several well established technologies are used to implement the ITS.APE framework,
this section presents them.

To allow for use in combination with well-established technical penetration test-
ing frameworks, such as the Metasploit Framework, ITS.APE is written in the Ruby
programming language.[,]

It uses object-relational mapping (ORM) to store most of its data in a provided
database. This feature is realized by the ActiveRecord library available for Ruby.[] The
ActiveRecord library is the default ‘model’ part of the Ruby on Rails framework which is
a well-established web-application model-view-controller framework. The library itself
is available as a stand-alone ORM package for other Ruby applications and benefits from
improvements made by many contributors. []

Within the ITS.APE framework an SQLite database is used during development. For
later production purposes a PostgreSQL database should be used.[]

Furthermore, a high test coverage percentage (approximately %) is required for all
framework source code; documented and test-driven software provides a foundation for

 Background

further development. Extensions such as the one developed within this thesis context,
have to comply with these goals too.[]

.. Human Penetration Test Workflow

Figure : A single lifecycle of a Human Penetration Test. Showing process flow between
different stages. Designed according to [].

Figure shows a full Human Penetration Test’s including its several stages:
First, the penetration tester provides items and configuration for this test instance:

. An artifact template, included in a Recipe, which can be personalized.
. Subject information, including subject specific information to create personalized

artifacts.
. Information about infrastructure used to present these artifacts in the form of

Infrastructure Elements.
. Parameters used to create a test schedule.

 Background

With this given information the ITS.APE framework creates subject specific artifacts.
The provided infrastructure information is used to interact with framework external
infrastructure via scripts. The generate script is executed during this stage.

Followed by this, the artifacts are deployed to the infrastructure. Therefore, the deploy
script is executed.

According to a the specified parameters a test schedule is created by the framework.
This schedule is used to control artifact presentation to its specific subject. A subjects
test is activated by executing the arm script.

The Observation of a subject’s reaction to an artifact is required for later test evaluation.
During the subjects test period, Tracks are recorded, they store the subject’s reaction to
the presented artifact.

The disarm stage concludes a test period. A single subject’s test period is finalized by
executing the disarm script. If all test periods are finished the infrastructure can be torn
down, therefore the destroy script is executed.

The framework provides a reporting functionality based on the observed reaction.
Recorded Tracks are evaluated according to the scoring provided with the artifact
template. A subject or subject group specific rating can be published.

Infrastructure Interaction

Most of the presented stages involve actions coupled to infrastructure for this HPT. This
infrastructure is:

. set up,
. deployed with artifacts,
. used to to present artifacts,
. required to support recording of Tracks,
. finally torn down.

It supports report of status information, as program flow can only continue if certain
operations are finished. For example artifact deployment requires finished generation
of its infrastructure.

The communication diagram, Figure , focuses on module communication involving
the Infrastructure Generator.

 Background

Figure : Communication diagram focusing on the Infrastructure Generator module
communication.[]

 Design

The ITS.APE framework provides a tool for conducting Human Penetration Tests (HPTs).
HPTs have several stages which require interaction between the penetration tester and
the framework. Providing suitable test artifacts, to quantify a subject’s IT security
awareness level, is an initial task.

The framework supports the penetration tester in his job, for example generation
of subject specific artifacts based on provided templates and subject information is
automated. Other preparations are laborious and can be repetitive: To artifacts present
artifacts to a subject, infrastructure is required, for example a webserver. The framework
provides a system to leverage script-based instructions for infrastructure generation and
management.

This kind of generated infrastructure is artifact- and HPT-specific, in addition each
penetration test instantiates its own infrastructure. It is unaware of already existing
infrastructure, for example used by a similar HPT. Often artifact presentation involves
redirecting of subject’s traffic. With the current implementation this routing has to be
established manually.

This master thesis provides a system for automated generation and consolidation of
artifact infrastructure. It improves to the former described process of infrastructure
generation and managing. Additionally, the penetration tester is no longer required to
perform manual configuration to establish necessary routing of subjects. IP- and name-
based routing of subject traffic is automated and requires no more manual interaction.
This chapter presents the design of an extension used with the ITS.APE framework to
achieve this.

. Requirements Analysis

The following tasks have bee identified to achieve the former described challenges and
conform to the goals set:

. Select Services (R): Identify typical IT services used within a company. Given
these services derive infrastructure types and systems which are used to provide
them. A justified selection of five services is required.

. Customizability (R): Having a set of services from the previous requirement, a
suitable technology for providing necessary them must be selected. Furthermore,
it is required to compile dependencies of the selected technology; providing a selec-

 Design

tion of software for said technologies. Different flavors of configurations (R.) of
a service are possible too, they have to be easily selectable (R.). As the ITS.APE
framework tests for IT security awareness, especially multiple configurations in
regard to a service’s confidentiality (R.) have to be possible.

. Suitable Technology (R): Furthermore, it is required to identify a suitable envi-
ronment for rapid deployment (R.) of the selected software. A selected solution
has to respect low resource (R.) and timeliness (R.) requirements. To prove
the applicability of the identified deployment environment, it is required to set up
and configure identified services using suitable software.

. Support Satellites (R): As observation of subject reactions is key for evaluating
the subject’s IT security awareness, actions performed shall be tracked by the
ITS.APE satellite system. Infrastructure developed within this thesis support the
use of said tracking system.

. Garbage Collection (R): To respect the limited resource requirements (see R.)
all instantiated infrastructure has to provide a suitable clean up functionality
(R.). Consequently, infrastructure that is no longer needed (R.), for example
if all associated HPT are complete, shall be torn down.

. Compatibility (R): Software designed and implemented to interact with the
ITS.APE framework must support already existing infrastructure deployment
methods, such as script-based infrastructure, refer to ...

. Respect Restrictions (R): Company policies or other regulations can prohibit
framework generated infrastructure at all or allow only specific types of infras-
tructure. Additionally, because the desired software is integrated into a company’s
network, only provided IP addresses must be used. This prevents IP address
conflicts caused by generated infrastructure. These restrictions must be take into
account when infrastructure is generated.

. Redirecting System (R): Obvious use cases such as redirecting websites requests
for artifact presentation shall be automated. This redirection has to respond to
provided domains (R.) and IP addresses (R.). Therefore a special redirecting
system has to be designed and implemented. It is required to chose suitable
redirection technology as well as realizing software. Configuration of said software
is required too. To meet the stated requirement for easy configuration (see R.)
this system must be compatible to the ITS.APE scheduler (R.). Additional
protocols might be added if results from R present a specific use case. Only
users participating of an IT security awareness penetration test shall be affected
by traffic manipulation, the redirection system must only affect specified domains
and IP addresses (R.).

. Infrastructure Status (R): Current recipes are provided with a monitoring script
capable of checking whether artifacts are deployed correctly. While the way of
generating infrastructure should be improved, change to the concept of artifact
testing is not. Generated infrastructure shall only provide basic status information
such as: running, paused, not available.

. Infrastructure White Box Testing (R): To determine the overall extensions
functionality suitable test methods should be chosen and appropriate cases must

 Design

be designed. This white box testing method provides necessary evaluation of the
realized system.

. Virtualization Technique

Standard virtualization techniques, cf. section ., enforce duplication of shared re-
sources. Such duplicated libraries and applications result in higher resource require-
ments for standard virtualization. Additionally, each new virtual machine has its own
full guest operating system that is started when a virtual machine is instantiated. Updat-
ing a virtual machine requires the same work as updating a standard operating system
and with each update special care is required in terms of compatibility issues regarding
installed applications. Benefits such as stronger separation between guest and host
system are not needed in the ITS.APE framework. A penetration test requires only
known software are executed on such a virtual machine setup. Already existing security
measures, such as firewalls, separate ITS.APE components from outside systems and
the Internet.

In contrast a container virtualization does not require a full guest operating system.
With trading of strong separation between host and guest system, a container can lever-
age existing host operating systems functions and libraries. Nevertheless applications
can bring their own libraries separate from the host system’s libraries as part of the
container. Docker provides fast deployment and allows for easy generation of images
that can be used to instantiate containers. Via an API the Docker Engine can be managed
and images, containers and their configuration can be customized []. Docker-api is an
Ruby gem and it provides an object-oriented interface to the Docker Remote API [].
This gem supports a broad spectrum of requests ranging from basic status information
as the container’s name or its IP address to managing functionality as container start,
stop and command execution. These qualities meet the stated requirement of Suitable
Technology (R), as Docker containers can be started in a rapid fashion while they are
resource-efficient; libraries and other components can be used by multiple containers at
the same time.

Furthermore, different basic images upon which a user can run its desired application
already exist and are updated regularly []. Maintainers of these images take care of
possible update issues regarding software bundled within such a container. The ITS.APE
Infrastructure Manager Extension uses a basic container image for each of its specialized
infrastructure containers. As described, Docker Containers can be easily adapted to the
users needs. This meets the Configurable (R.) requirement.

. ITS.APE Infrastructure Generator Extension

The current Infrastructure Generator of the ITS.APE framework supports only script-
based generation or usage of infrastructure. Thus, every recipe, used to bundle infor-
mation for creating one or multiple HPT artifacts, has to provide all necessary Generate
Scripts for creating and setting up required infrastructure. Such scripts are cumbersome

 Design

to handle while they allow for a high degree of freedom for the penetration tester.
The script-based approach separates the framework from its used infrastructure. For
example, already existing company infrastructure, infrastructure provided and set up
by the penetration tester or generated from within the generation script itself can be
accessed via such scripts. Therefore, infrastructure is transparent to the framework.

This freedom comes with the price of inhomogeneous generation instructions, no
clear managing and maintaining interface and cumbersome testing. It is only possible to
test generated infrastructure by executing a created recipe within the framework. This
requires creation of a full testing scenario, including: a Test Program and at least one Test
Series that requires a group file with subject data. Additionally, at least one Test Season
has to be created that refers to a recipe including to be tested infrastructure elements.
For this whole setup a Schedule is generated and actual presentation of artifacts is
simulated. Only then log file entries handled by the satellite system are generated. The
generated schedule is executed fully as tearing down generated infrastructure is only
initiated if all Test Episodes are carried out. The whole testing process requires additional
or manual interaction to react to presented artifacts, while a complete artifact live cycle
is required to test only a single infrastructure instance.

Furthermore, direct interaction with instantiated infrastructure is only possible via
scripts specially adapted to suit the generated infrastructure. Consequently, changes in
a generation script might require changes in all subsequent managing scripts too. As
stated in the requirements, Infrastructure White Box Testing (R) shall be possible
to lessen the burden of testing HPT infrastructure.

As implemented in the current ITS.APE framework, no explicit managing functional-
ity for created or used infrastructure is present. There exist only Status Scripts as part of
every Infrastructure Element defined in a recipe. These status scripts are used to execute
checks on the current infrastructure status and rate them running or not running. To
provide an improvement to the current system, status indicators have to be provided.
This is formulated in requirement Infrastructure Status (R).

The Infrastructure Manager Extension (IME) module replaces the legacy Infrastruc-
ture Generator (IG), it inherits all functionality from its parent class. IME provided
infrastructure services are just a basic set of services and are not suited to cover special
or extravagant HPT scenarios. Company environments can have strict policies that
might not allow for bringing in new infrastructure. As script-based generation of in-
frastructure has advantages in these cases, IME still supports recipes and infrastructure
generation based on scripts. IME is required to refer to managed containers upon re-
quest; artifact deployment operations or track collection are required to interact with
artifact infrastructure. The combination of supporting a backward compatible interface,
script-based generation and a way to address managed containers fulfill the requirement
Compatibility (R).

The referring functionality needs requires information about configuration parame-
ters, container status and all artifact processes using this specific infrastructure. Thereby
the request for Infrastructure Status (R) information is fulfilled.

 Design

IME provides a basic set of infrastructure types that can be used for HPT. IME
supported infrastructure types are chosen according to IT services present in UKSH
and protocols used by these services. The selection of infrastructure types is based
on the requirement Select Services (R). Only types actively used in the UKSH IT
environment are taken into consideration. From these infrastructure types two are
used in the example recipe that is part of the ITS.APE framework: Mail sender and
basic webserver. These two are realized as managed infrastructure to demonstrate
the provided improvement and show compatibility to already existing artifacts. All
selected infrastructure types are described in detail in the subsection ., which provides
justifications for their selection.

A penetration tester must be able to control which kind of infrastructure is created
by the framework. As explained in section .. concerning External Infrastructure and
Internal-manually-setup Infrastructure, different kinds of a company’s environments or
policies request such a control mechanism. This control can be exercised by black- and
whitelisting of infrastructure types; each time an infrastructure element is generated
its type must be checked against these listings and handled accordingly. IME needs to
manage all of its created infrastructure elements. Script-based generated infrastructure
elements are compatible to existing framework parts and are not managed by IME.
At time of creation of a requested infrastructure element IME needs to determine if
requested infrastructure element type is a supported type and if configuration (black-
/whitelisting) allows its creation. If not compliant to the configuration or if the specific
type is not supported, an error must be raised.

Furthermore, generated infrastructure must respect IP address ranges provided by
the penetration tester. All generated containers must not use IP addresses exceeding the
provided range. These two regulations, black- and whitelisting and IP ranges, must be
acknowledged to fulfill the requirement of Respect Restrictions (R).

A Factory Method concept pattern is depicted in Figure . Class instantiation is
deferred to subclasses. An interface to create an object is defined, while the subclass can
decide which class to instantiate.[]

Followed by the initial checks a suitable container for this infrastructure type can
be created. Container creation is handled by the Container Factory module introduced
with this extension. This module realizes a Factory Method concept: Creation of an
infrastructure type specific container is delegated to a specific helper class capable of
fulfilling this demand.

Depending on the requested infrastructure type a specific Container instance is instan-
tiated. This variability provides a suitable way to extend the IME by multiple specialized
containers. New container types can be added by just creating a specialized container
model and by adding this type to the factories selector.

All Specific Containers are subclass of an abstract Container class. Each Container
supports methods for creation, start, stop and destruction; each subclass is required
to implemented them. The container superclass defines different parameters for each
managed container: A container name and the unique container id as generated by
Docker Engine, an identifier of the Docker image used to instantiate this container

 Design

Figure : Factory Method concept pattern to defer class initiation to a subclass. Figure
designed according to [].

as well as the container’s IP address. For bookkeeping purposes each container is
equipped with a list of artifact processes that use its provided service. Nevertheless,
each infrastructure type specific subclass can provide additional suitable methods
and hold needed parameters in additional variables. Figure shows a class diagram
including the parent class used for each specific infrastructure container.

The combination of generation through a factory model as well as the use of a container
model for specialized containers fulfills the requirement for Customizability (R).

Some infrastructure containers can be used by multiple artifact delivery operations.
For example, a generic e-mail sending container can be used by all delivery processes that
do not require special configuration of this e-mail sending container. Thus, if for example
a special sending domain has is configured, a dedicated e-mail sender container must
be instantiated. Further explanation, whether consolidation is possible for a specific
container class is given in the following container specific sections. Creating a new
instance of a container should only happen if no supporting container already exists or
a certain limit of artifact processes linked to a single container is reached. Consequently,
tearing down the specific container should happen if no more linked artifact processes
are known to the IME’s bookkeeping; it is triggered by the deletion of the last linked
process. New artifact processes are added to the bookkeeping, while expired and thereby
redundant processes are deleted. Bookkeeping and garbage collection are designed
to provide a system that fulfills the requirement for low resource use and timeliness
interaction as requested by Suitable Technology (R).

Testing of the IME module can be done via unit tests similar to module tests already
used in the ITS.APE framework. These tests must cover stated restrictions to IP addresses
and allowed infrastructure types. The containers status indication as well as available
functions must be tested. This fulfills the requirement for Infrastructure White Box

 Design

Con
tain

er
{ab

stra
ct}

+ n
am

e: S
trin

g
+ co

nta
ine

r_id
: St

ring
+ se

aso
ns:

Arr
ayL

ist<
Stri

ng>
+ ip

: St
ring

+ d
ock

erfi
le:

Stri
ng

+ b
uild

()
+ st

art(
)

+ st
op(

)
+ d

estr
oy(

)

Ma
il

+ d
epl

oym
ent

_fo
lde

r: S
trin

g
-m

eth
od:

 Ma
iler

Typ
e

-se
nde

r_d
om

ain:
 Str

ing
-sm

tp_
con

fig:
 Ha

shM
ap

+ se
nd(

em
ail:

Stri
ng,

 file
nam

e: S
trin

g)
+ re

load
_co

nfig
()<<e

num
era

tion
>>

Ma
iler

Typ
e

dire
ct

SM
TP

We
bse

rve
r

+ d
epl

oym
ent

_fo
lde

r: S
trin

g
-m

eth
od:

 We
bse

rve
rTy

pe
-co

nfig
_fo

lde
r: S

trin
g

-po
rts:

 Arr
ayL

ist<
Inte

ger
>

+ re
load

_co
nfig

()

DN
S

+ d
om

ains
: Ar

ray
List

<Do
ma

in>
+ re

load
_co

nfig
() Dom

ain

+ d
om

ain:
 Str

ing
+ ip

: St
ring

+ co
nta

iner
: St

ring
+ se

aso
ns:

Arr
ayL

ist<
Inte

ger
>

File
serv

er
+ d

epl
oym

ent
_fo

lde
r: S

trin
g

-m
eth

od:
 File

serv
erT

ype
-co

nfig
_fo

lde
r: S

trin
g

-po
rts:

 Arr
ayL

ist<
Inte

ger
>

+ re
load

_co
nfig

()

<<e
num

era
tion

>>
File

serv
erT

ype
NFS SM

B

MU
X

+ ip
rou

ting
: Ar

ray
List

<Ro
utin

gIn
fo>

+ re
load

_co
nfig

()
+ st

op_
rero

utin
g()

+ st
art_

rero
utin

g()

Rou
ting

Info
+ so

urc
e_ip

: St
ring

+ so
urc

e_p
ort:

 Int
erg

er
+ d

esti
nat

ion
_ip

: St
ring

+ d
esti

nat
ion

_po
rt: I

nte
rge

r
+ co

nta
ine

r: S
trin

g
+ se

aso
ns:

Arr
ayL

ist<
Inte

ger
>

<<u
se>

>

<<u
se>

>

<<u
se>

>

<<use>>

Log
ger

+ p
ort:

 Int
ege

r
+ re

load
_co

nfig
()

Fi
gu

re

:C
la

ss
di

ag
ra

m
sh

ow
in

g
C
on

ta
in
er

su
pe

r
cl

as
s

an
d

it
s

co
nt

ai
ne

r
sp

ec
ifi

c
ch

ild
re

n.

 Design

Testing (R) regarding the IME. Further necessary tests for each of the infrastructure
containers are described in the following sections regarding each created container type.

. Design of Provided Services

The Container class provides a basic container model that can be used to derive special-
ized containers. These containers can meet demands specific to their use case while
compatible to all functions familiar with the parent Container class.

The selected services are all used at the UKSH and are common services of an office
environment. A more detailed justification is given within each separate section here
after. Thereby the requirement of Selected Services (R) is fulfilled.

This section presents designed services and their associated specialized containers.
Each specialized container is supported by a short discussion to justify its selection
over all possible containers. Additionally, each subsection presents the container setup
and how the parent container class is adapted. Different configuration options of each
container are elaborate, as these fulfill the requirement for Customizability (R). At
the end of each section an evaluation method and consolidation options and limits are
presented. Evaluation of each container must be provided to satisfy the requirement
for Infrastructure White Box Testing (R). Consolidation is further used to further
reduce needed resources as multiple HPTs can use a single container. This goes in hand
with the requirement for low resource (R.) use.

.. Mail Service

E-mail is a substantial communication method used in daily office routine. As discussed
in the presentation of services (cf. Chapter .) it is used at the UKSH. The ITS.APE
framework provides a single recipe designed to create a phishing mail campaign. This
recipe uses the script-based approach to create infrastructure, it uses this infrastructure
to send a phishing mail to a test subject. The subject is lured onto a website designed to
steal login credentials. For easy creation of such a regularly used HPT, e-mail sending is
chosen as one of the realized services provided by IME.

Section .. presented the necessary background information about e-mail commu-
nication services from the perspective of an e-mail sender. As described a phishing
campaign consists of two parts: e-mail delivery and a webpage, therefore e-mail retriev-
ing is left out for this scenario.

An e-mail service container class has to extend its parent container class by several
parameters: sender domain name, deployment resources folder, e-mail delivery method
and its correspondent optional SMTP server configuration.

Every e-mail message has to provide a sender e-mail address (From:), this field is part
of the e-mail message itself and can be chosen at will. As described in section .. an
e-mail is sent from a MSA, the sending host’s domain is recognizable by the receiving
server. The sender provided from the e-mail message header (From:) is displayed in

 Design

e-mail clients (e.g. Microsoft Outlook). This sender can differ from the sending host
domain; both can be inspected if the plain e-mail message received including all its
headers is checked. The created e-mail container has to support configuration of this
sending host domain. It is stored with each e-mail container instance.

Created e-mail messages are generated by the Artifact Generator, whereas the De-
ployment Manager is used to provide these artifacts to the infrastructure. The e-mail
container class provides a location for this deployment. The provided folder’s location
is stored with each instance. This separates artifacts and allows for identical naming of
artifact files.

Two kinds of delivery methods are supported by the e-mail container. First, the e-mail
container provides a direct sending service, as such it will act as a full service agent
combining MSA and MTA. Thereby, no additional configuration is necessary as the e-
mail container handles all sending functionality. Second, the e-mail container provides
a MSA which will only forward the e-mail message to a configured MTA. Necessary
configuration including domain, port, username and password have to be provided and
are stored with each e-mail container object. Each object shall only support one type of
delivery method.

The e-mail container provides a function to deliver a single e-mail to a single recipient.
This function needs the recipient’s e-mail address and a location of the prepared e-mail
message. The message is expected in the Internet Message Format including at least
From:, To: and Subject: as defined in []. A bulk sending method is not required as the
ITS.APE framework only supports single artifact presentation.

As the e-mail container can be configured to leverage an MTA, certain configuration
can be required. This configuration is stored in the infrastructure element as part of the
recipe.

Consolidating an e-mail service container is possible but limited by some factors. A
limiting factor is given by the sender domain name as this is fixed at the start of the
container. Only infrastructure elements with no specific or the same sender domain name
setting are suited to use the same e-mail service container. Additionally, if the container
is configured to act as MSA, only infrastructure elements with the same configuration
shall use this container.

Each sent e-mail has to generate a log entry which can be evaluated by the Satellite
system of the ITS.APE framework. This information can be used for evaluation purpose
of the associated HPT and satisfies the requirement for Support Satellites (R) for the
e-mail service container.

Evaluating a described Mail Service, is done by sending an e-mail to a known account.
Received e-mails on this account are checked and the send e-mail is expected to be
delivered in a short time frame. Received e-mail candidates are check to identify if the
e-mail’s sender, subject and content matches the send message and specified sender. This
can be done by stripping the added communication header of the received e-mail and
using the UNIXdiff utility to display differences. The e-mails body has to match, while
the received e-mails header must include the correct subject and sender address.

 Design

.. File Sharing Service

File sharing is commonly used in a cooperate environment. Through network shares
documents and other files can be shared seamlessly and are reachable within the user’s
operating system. The UKSH uses Microsoft Windows as their main client operating
system. File sharing in the UKSH network is realized via the Windows supported
SMB protocol. Microsoft Windows is the most common client operating system [].
Additionally it supports SMB within all of its versions and without the need for extra
software, cf. section ... The SMB equivalent for UNIX systems is NFS, which
is disregarded to focus on the UKSH use case. SMB and CIFS are explained in the
background chapter ...

In general, mounted file shares’ content can be easily modified, while server side
modifications are directly presented to the subject via its file browser. This suites such
file shares for a HPT as no changes at the subject’s computer system have to be performed.
Nevertheless a subject can be presented different kind of artifacts such as potentially
harmful executables or ransomware specific files (e.g. .locky) [].

The File Sharing Service container extends the parent Container class by necessary
configuration options. An instance has to store its artifact deployment folder location.
This location is used by the Deployment Manager to place artifacts generated by the
Artifact Generator, which can be presented to the subject.

Similar to the deployment folder each instance stores a configuration folder location.
At this location predefined configuration files are expected. These files store access
parameters for files and folders present in the deployment folder location. As this access
configuration is directly related to the selected HPT it can be stored as part of the HPT
recipe. If no special configuration is provided full access to the deployment folder is
granted to a single ITS.APE account. This basic configuration of the File Sharing Service
provides a simple resource location accessible within the company’s network. This
resource location can be used if a HPT requires executable or files available to network
clients. An example would be an ITS.APE executable, used to present artifacts, that is
provisioned to a subject’s computer. Provisioning tools can be pointed to the File Sharing
Service container location as a resource of this executable.

Future implementation might support additional protocols. Therefore, each File
Sharing Service stores its specific file sharing protocol in an instance variable.

Consolidating a File Sharing Service container is possible but some restrictions have to
be taken into account. If a basic configuration is used multiple HPTs can use a single
File Sharing Service container. HPT-specific assets are placed in subdirectories within
the deployment folder to avoid possible naming collisions. No consolidation is possible
if a HPT specific configuration is chosen, as two handmade configurations are likely
to cause collisions. For example identical usernames used within two HPT the system
cannot have different password or separate access regulations.

Logging of access to a file share is based on IP address of the requesting client. This
distinct logging is required, indicating single file access as well as folder listings. Respec-

 Design

tive log files are made available to the satellite system. This satisfies the requirement for
Support Satellites (R) for the File Sharing Service container.

Evaluating a File Sharing Service as described can be done by connecting to said service,
storing a file and requesting said file again. If the sent file matches the recieved file the
File Sharing Service is working as intended.

.. Website Service

Besides information resources, for example Wikipedia or similar company internal
systems, productively used applications are realized via a website-based user interface.
Web standards, that ensure compatibility with different operating systems via web
browsers, pave the way for their success. Additionally, changes to such an application
are easily made, as only server side changes are necessary. These changes are directly
reflected at the users interface or the applications workflow. There is no need for client
side updates, installation procedures or manual interaction.

Besides less cumbersome updates, such applications can be reached world-wide if
made accessible from the Internet. While world-wide available, they are prune to
attacks from outside. Authentication is necessary and often realized via a username and
password authentication. Therefore, phishing attacks are often designed to steal such
user credentials. Within the ITS.APE framework a phishing campaign directed to test
subjects for their IT security awareness level towards these attacks is provided. These
attacks require a webserver to present a mocked phishing website to the tested subjects.

Section .. provides necessary background information about HTTP that is used to
communicate between webserver and browser.

The webserver container has to extend the parent container class by a location that
holds the website data. This deployment folder location is stored with each webserver
container instance. Furthermore, a configuration folder location is part of each instance.
This folder should be used to provide configuration assets such as certificates used for
TLS communication (cf. ..). Additionally, a server configuration can be adapted to fit
a specific HPT, it is part of this HPT’s recipe. If no specific configuration is given within
the configuration folder a basic configuration provided by the IME is used.

Modern websites make use of dynamic content generation based on parameters
provided via the website request. Commonly used are script languages such as PHP and
Ruby, it is required to support them.

In general for HTTP communication port 80 is used, a IP based request via port 80
allows only a single website available through a webserver container. The requirement
low resource (R.) use raises the need for consolidation of realized services, if possible.
To allow consolidation, additional ports besides port 80 can be used to provide websites.
Thereby a single container can provide multiple websites.

As presented in section .., websites can be accessed through a secure channel pro-
vided by TLS. Webserver supporting such a secure connection are configured differently,

 Design

as the described basic webserver. They require additional assets, for example certificates
and keys; these have to be provided by the penetration tester.

Without compromising the requested URL via Server Name Indication, no two HTTPS
connections can be realized using the same port []. Therefore, again multiple HTTPS
requiring recipes can only be run within the same container if multiple ports are used.
Each container therefore holds a list of used ports, type of connection (HTTP or HTTPS)
and their associated HPT.

Each website access has to generate a log entry which can be evaluated by the satellite
system of the ITS.APE framework. This information can be used for evaluation purpose
of the associated HPT and satisfies the requirement for Support Satellites (R) for the
Website Service container.

A webserver container can be evaluated by checking the webserver’s status code
answer to a request. In addition the downloaded website can be matched against the
provided one. This can be realized by comparing the checksum of the original and the
received website, it is expected to be identical.

.. Redirect System

Redirection allows for exact artifact delivery, presentation and monitoring of partici-
pating subjects and is required by requirement Redirecting System (R). The ITS.APE
framework is integrated into the company’s network; as such it can interact with all
connected devices and users. The requirements state: only users participating of an
IT security awareness penetration test shall be affected by traffic manipulation R..
Figure shows the integration of the ITS.APE framework into a company’s network
infrastructure.

All presented services are based on the Internet Protocol (IP), this allows for a uniform
handling of redirection. A subject’s IP address is provided by the Subject Tracker module
of the framework and is necessary as stated in requirement R. Redirecting can be
done by targeting only traffic originating from a subject’s associated IP address. All
other traffic is thereby not affected. As described in section ., specific services, such
as website requests, are handled via defined standard ports. This allows for a service-
oriented redirecting of requests.

Artifact delivery is initiated by the scheduler module and realized by the Delivery
Manager module of the framework. The Delivery Manager is used to perform final steps
to present artifacts to subjects. Redirecting a subject’s traffic to present a prepared
phishing website is one possible action. A modification of the Delivery Manager to
inform the internally managed redirecting system of necessary adaption fulfills the
requirement of R.. This notification has to include enough information to identify the
test specific internal infrastructure. Combined with the provided subject’s IP address,
this allows identifying traffic that must be redirected for artifact presentation. Therefore,
requirement R. can be fulfilled.

Besides IP, DNS provides convenient naming of systems and can be used to create IT
security relevant artifacts and is required by R. []. Subject’s DNS requests can be

 Design

identified by the described IP and port based redirecting system. Such requests can be
answered if a subject’s test episode is scheduled and a DNS specific artifact is part of this
test. Such an artifact has to provide a domain name; this domain name is prepared to
be redirected. If a subject’s test episode is due the IP redirecting system has to redirect
the subject’s DNS requests to the internal DNS service. Only the domain specified by
the artifact is redirected to a designated test infrastructure, all other domain requests
are forwarded to the company’s DNS service. Such a system fulfills the requirement for
specific domain redirection as described by R. and R..

Logging of redirected requests can be used to determine if a subject has reacted to
a presented artifact. For example it can be observed if a subject requested a phishing
website. Nevertheless, all redirected requests are forwarded to an infrastructure serving
artifacts. Each of these services, for example a webserver or a file sharing service, have
to fulfill the requirement Support Satellite (R) to support the ITS.APE Satellite System.
No additional information, relevant for the evaluation of a HPT, is acquired by logging
of requests at the redirecting system. The redirect system has to provide a fast and
reliable service for all users and may only forward subject’s request at the time of testing.
Therefore, no logging capability is designed within the redirecting system.

The presented redirection system can be evaluated by using several dedicated ma-
chines. These have to act as participating subject machine, not-participating user ma-
chine and a machine realizing the presented domain and IP redirecting infrastructure
systems. A mocked infrastructure can be used to simulate a managed infrastructure used
for artifact presentation. It is required to shown that all desired requests originating
from the participating subject machine are redirected. HPT relevant requests must be
redirected to the designated infrastructure used for artifact presentation. Furthermore,
it has to be shown that only these requests are redirected. A designated not-participating
user machine can be used to test if a request for configured domain is answered correctly.
This user machine must receive a different IP address, as only participating subject
machines should receive the artifact infrastructure machines IP address.

 Implementation of ITS.APE Infrastruc-
ture Management Extension (IME)

From the presented design the Infrastructure Management Extension (IME) is imple-
mented. It orchestrates generation, configuration and live-time handling of Docker
containers to provide infrastructure to HPTs.

Generation requests based on Infrastructure Elements as provided by Recipes are used
to determine suitable container images and configuration. A bookkeeping functionality
within the IME allows observing each container status and controlling it during a
human penetration test. To save resources a designed naming scheme for infrastructure
requirement descriptions is used. This allows to unite multiple compatible Infrastructure
Elements in a single container.

To provide an easy and seamless integration of extensions for the ITS.APE framework,
a replacement of original modules with extension modules is used. This replacement
is suited best at an early stage during the framework start up process. Therefore, such
extended modules are instantiated at the APE modules initialization.

The developed extension consists of adaption of the mentioned ITS.APE modules and
a complete new module. This module is the main part of the IME as it orchestrates all
container interaction. In addition to necessary changes to existing framework models,
new supporting models are defined as well. These allow for routing subject’s traffic to
created infrastructure to present desired artifacts.

This chapter opens with the presentation of the new container type-based manage-
ment and configuration options provided by the IME. Follow by a detailed explanation
of created models, modules and adaptions to legacy framework components. It closes
with a description of a provided webserver and Mail Service infrastructure supported by
the IME.

. Type-based Naming Scheme

In section . a strict service oriented and class-based design is presented. During the
implementation phase limitations of this design became apparent. Determined container
classes are relevant but limit a penetration tester to prepare infrastructure-automated
HPT including only these container classes. Different and new container classes could be
added by providing new class models and including these models into the IME module.

 Implementation of ITS.APE Infrastructure Management Extension (IME)

Several changes in the existing codebase and a sophisticated knowledge of the provided
extension code would be necessary. Therefore, the class-based container management is
replaced by a more general container idea. In particular, no more changes to existing
extension code are necessary to use any container class.

A Human Penetration Test can be performed using different services, as presented in
section .. These services are available in the UKSH, but future tests might require
different infrastructure. A class-based system requires changes to the IME source code
to add new infrastructure classes. A more general approach with no need for source
code manipulation is based on a configuration-based system. Such a system allows for
an easy adaption to new infrastructure requirements by changes just in a text based
configuration file.

Within the requirements analysis, cf. ., the requirement for low resource consump-
tion (R.) is identified. Furthermore, similar infrastructure requests should be handled
by a single infrastructure service if possible. Variable configurations cannot be used
to determine similar but only identical infrastructure description. To overcome this
limitation an additional parameter is introduced. This parameter is a descriptive type of
an infrastructure requirement. It includes an infrastructure’s base type, desired software
to realize the service and certain add-ons. Service requests can be evaluated against such
an infrastructure’s type to determine if they can be consolidated. Additionally, this type
is used to select a matching predefined container image. Both processes are described in
detail in the following sections. An example for provided infrastructure type is given in
Figure .

Figure : Showing an infrastructure type conform to the presented type-based naming
scheme. It describes an infrastructure’s base type, a realizing software and possible
add-ons.

The base type describes a required service, as identified in section .. These services
are identified in the UKSH and might be extended by additional services for future test.
A typical example for a base type is webserver. Only infrastructure requests with an
identical base type can be consolidated and serviced by a single managed infrastructure.
Identical infrastructure base types are capable of presenting the same kind of artifacts,
for example a website. A base type describes the basic concept of artifact presentation
and must be provided.

A more precise description of an artifact presentation can be given by providing a
concrete software used. As an example, a basic type fileserver might be extended by this
additional parameter to specify Samba as desired software. In this particular example
the selected server software specifies the protocol used for this kind of service. For a

 Implementation of ITS.APE Infrastructure Management Extension (IME)

webserver this might only present a preference for a certain software, for example Apache
or Ngnix. Therefore a penetration tester might provide a software but this parameter
is optional. Such software products are available in certain versions that might not be
compatible to each other. To reflect this within the software parameter, a software’s
version can be specified. A version number is added to the software name string, for
example apache-.. For consolidation purposes the existing containers are checked to
provide at least the stated version. This version check is realized via a longest match in
all software strings of the same basic type. A match is returned if the software version of
the newly requested service is a sub-string of an existing service. Thereby it is ensured
that only software within the same release version or newer is consolidated. The software
parameter is optional and might be provided if needed, it can be further specified by a
version.

As presented in section ., infrastructure services can have a set of different features
such as TLS or PHP support. A single feature or a set of features can be described by the
add-on parameter. For example a dynamic webserver is desired; to support this PHP-.
is added as a add-on parameter. This parameter is checked subsequent to the basic
type and software parameter evaluation. Therefore only services matching basic type
and software are evaluated. Similar to the software parameter a version can be added to
each add-on parameter. The described sub-string matching is performed alike for each
parameter. Only if all specified add-ons can be matched with a selected service, this
service is regarded as valid candidate. Consequently, services with at least the requested
add-ons are a full match. Nevertheless, they might provide additional add-ons which
their originating request required. The add-on parameter is optional, it can consist of a
single or multiple add-ons; each parameter can be further specified with a version.

Table : Table showing results of a consolidation analysis based on the type parameter
of newly commissioned Infrastructure Elements and already existing managed
infrastructure containers.

Table shows the result of such a matching. A commissioned Infrastructure Element is
matched to existing managed infrastructure. The example is reduced to show only the
software component of IE and containers. It is assumed that their base type is identical
and no add-on parameters are provided.

 Implementation of ITS.APE Infrastructure Management Extension (IME)

There can be four matching groups, the software component can be

. identical,
. define a simple similar version,
. a similiar but more specific version or
. a different version.

Depending on the provided IE a consolidation between an existing container and the
commissioned can be done.

The machting of add-ons is done in a similar fashion. For matching add-ons, each
requested add-on of the IE’s type is checked against its counterpart of an existing
container. This is only done if said counterpart exists, otherwise the current container is
removed from the list of possible candidates.

. Configuration of the Infrastructure Management Exten-
sion

This section introduces the configuration of the IME and its containers. As required,
provided extensions have to be compatible to the existing framework R. Furthermore,
they have to support different configurations which must be easily selectable, too (R &
R).

To provide a configurable control, whether IME should be used, the ITS.APE configu-
ration is extended. This configuration is stored in a human readable JSON file which
can be edited via a simple text editor. An infrastructure category includes an IME
subcategory used to exclusively configure the Infrastructure Management Extension. In
this subcategory the penetration tester can define infrastructure types to be handled
by the IME. This listing represents a whitelisting of infrastructure types that IME is
allowed to generate and manage. Each time the infrastructure generation process is
initiated by the APE module, a commissioned Infrastructure Element’s type is checked. If
its type matches a whitelisted type, it is marked as an internally managed Infrastructure
Element. A non-script-based generation is only initiated if the Infrastructure Element’s
type matches to at least one whitelisted type.

Furthermore, the configuration file Infrastructure category is extended by an External
Infrastructure category. This listing represents a blacklisting of infrastructure types
that must not be generated by IME. The penetration tester can use this blacklisting
configuration to ensure compliance to the company’s policies. Again, before each
infrastructure generation IME checks whether an Infrastructure Element’s type generation
is prohibited. If so, the Infrastructure Element’s External Infrastructure instructions have
are presented to the penetration tester (refer to section ..). These instructions are
part of the Generate Script that is executed accordingly.

The realized implementation of containers used by IME require a configuration of
predefined containers. These container descriptions are stored within the framework
configuration file, more precise within the Infrastructure category under the descriptor
Internal Infrastructure Generators. Each generator consists of a name, chosen according to

 Implementation of ITS.APE Infrastructure Management Extension (IME)

the later presented naming-scheme, the Docker image, a script path and a list of ports.
The folder provided in the script path variable has to include all infrastructure-specific
scripts. Especially relevant are arm, disarm, deploy, undeploy scripts as these are used to
control interaction between the container and generated artifacts.

Figure shows an valid configuration for the IME. It is an excerpt of the full ITS.APE
configuration file focusing only on the relevant sections used by the IME’s models
and modules. The configured whitelisting three allows for three managed base types:
mailsender, webserver and interal. There are two predefined infrastructure containers
which can be used to provide managed infrastructure. Each container has additional
parameters set, these specify the container’s baseimage, location of the infrastructure
specific scripts and ports designated for this container’s service. This configuration uses
two ways to state such ports:

. State a single port or
. define a port range.

The IME tries to use all stated ports within the port range including start and end port.
Unavailable ports, due to missing authorization, and already used ports are recognized
by the IME and not used when creating a requested managed infrastructure.

Figure : An excerpt of the ITS.APE configuration. Showing the IME relevant settings
including with whitelisted infrastructure types and two predefined managed
infrastructures with their parameters.

 Implementation of ITS.APE Infrastructure Management Extension (IME)

. Internal Infrastructure Manager Module (IIM)

The Infrastructure Management Extension relies heavily on bookkeeping and decision
making based on the commissioned Infrastructure Element. This section describes the
Internal Infrastructure Manager module which manages the internally managed infras-
tructure. As mentioned, a naming scheme for infrastructure types is used to determine
whether multiple Infrastructure Element requests can be consolidated and served by a
single container. This new naming scheme is presented in section ..

Different to the legacy Infrastructure Generator module, the IIM module does not
execute scripts to generate infrastructure but provides a management utility for ITSAPE
Containers. This newly created container model is presented in section ..

To provide said management functionality a single IIM instance is initialized during
the starting process of the framework. This instance is created in the APE module, the
main class of the framework. Further management is handled by this single instance,
as this instance holds information about all managed infrastructure. Said IIM instance
requires instantiation with a Config Manager module object and a Subject Tracker module
object. The Config Manager provides access to necessary information defined in Recipies.
For routing purposes it is necessary to gain knowledge over a subject’s IP address, this
functionality is provided by the Subject Tracker.

.. Properties

For bookkeeping two hash maps and a single array are used. The single array stores all
configured predefined containers; they are provided via the ITS.APE configuration. One
hash map is used to store generated infrastructure containers. Each key within this hash
map represents a type of container as described in section .. With each key an array
of type specific containers is stored and can be accessed from different model methods.
The described hash map is depiced in Figure .

The second hash map is used to store active routing information. Artifacts are brought
out onto generated infrastructure and made accessible to subjects. This presentation
of artifacts is precise, as only participating subjects must be able to access artifacts.
Additionally, access must only be possible if a subject’s personal HPT is scheduled.
The presented IIM supports multiple HPT serviced by a single managed infrastructure.
Routing is further used to ensure presentation of personalized artifacts to their respective
subjects.

At initialization of the IIM instance all predefined containers are loaded by the
load_predefined_containers() method. The configuration provided by the Config
Manager is used to create these prepared containers. Each container is created with its
container image name, configured scripts and ports. Container images can be available
in the local image repository or are pulled from Docker Hub automatically.

The preparation allows checking if the defined container image is available and
prepares a container object for later use. An error is raised during this process if neither

 Implementation of ITS.APE Infrastructure Management Extension (IME)

source can provide the requested image. Thereby, a missing container image cannot
cause failure during a running HPT.

Figure : Internal Infrastructure Hash Map as used by the IME. Each key is used to reference
containers of a specific base type.

.. Methods

The IIM provides methods to create, destroy, arm and disarm its internally managed
infrastructure. Besides Human Penetration Test specific infrastructure it controls special
internal infrastructure used for redirecting. The following presents the different methods
and their provided function.

Generate Infrastructure

Each HPT requires certain infrastructure to perform the testing. If said infrastructure re-
quirements are compatible with the provided IME configuration, such an infrastructure
can be managed by IME. The generate(elem) method of the IIM requires an Infrastruc-
ture Element provided as parameter upon calling it. All IEs from a single Recipe are
identical, multiple HPTs can use a single Recipe. Consequently, identical IEs can be
commissioned for generation. While their provided service is identical, each of these
Infrastructure Elements must only present artifacts to its associated subjects. Further-
more, each IE provides traces via generated log entries or similar methods to allow for
later evaluation purposes. Making each IE instance used for a specific Recipe is therefore
essential. Therefore, a provided IE is given a unique Managed ID:

elem.managed_id = SecureRandom.uuid.

Each Infrastructure Element has a type. This parameter is used during several decision
processes within the IIM. At start up, when no containers are running, this parameter

 Implementation of ITS.APE Infrastructure Management Extension (IME)

is used to check against predefined containers provided by the IME configuration.
The matching_predefined_containers method is used. This matching is performed
according to the naming scheme introduced with this extension and is explained in
detail in section .. The matching results in an array of suitable containers. Additional
parameters might be respected in a future version of the IME as described in chapter .
A suitable predefined container is chosen and its build method is called providing the
IE.

Henceforth commissioned containers are not build if consolidation with an existing
container is possible. This addresses especially the requirement for low resource (R.)
consumption. For new commissioned Infrastructure Elements, all running containers are
checked to decide whether or not an already running container is suited for consolidation.
This is realized via the check_for_matching_container(containers, elem) method,
it is provided with all running containers and the commissioned Infrastructure Element.
Again this check is based on the introduced naming scheme.

As last action following a container build up or consolidation, the newly managed
infrastructure is added to the bookkeeping hash map using its specific type:

@internal_infrastructure_hashmap[container_type] � chosen_container.

Additionally, the managed parameter of the now serviced IE is changed to true.

Arm Infrastructure

As depicted in Figure and described in section .., artifacts must be presented to
their specific subject. IIM provides an arm method to start artifact presentation for a
provided Test Episode and its respective Test Season: arm(episode, season). Given this
information all Subject instances and the corresponding containers and are determined.
Via the Subject instance the framework Subject Tracker can provide the subject’s IP
address. The IP address is used for routing the subject’s requests to the test infrastructure.
Additionally, external ports are taken from the IE parameters and internal ports are
taken from the respective container’s bookkeeping. The internal port is chosen by the
ITS Container model during its generation process, this process is explained in section
... With this information a Routing Information object is created; it requires all
previously stated information:

RoutingInfo.new(recv_ip, recv_port, src_ip, src_port).

This object handles creation of routing rules to redirect a scheduled subject to the
HPT infrastructure.

Followed by this preparation the respective ITSAPE Container is started via its start
method. Subsequent the Routing Information is used to establish necessary routing by
calling its arm method. In a final step the IIM’s Routing Information hash map is updated
to include the now effective routing:

@routing_rules[episode.id] = routing_infos.

 Implementation of ITS.APE Infrastructure Management Extension (IME)

Disarm Infrastructure

Depending on the schedule artifact, presentation can be stopped; this is done by dis-
arming the said artifacts. The IIM provides a designated disarm method to fulfill the
complement of the presented arm method. Provided with a Test Episode and its re-
spective Test Season, necessary information is provided to determine the corresponding
container and the redirected subject. The associated Routing Information object can be
determined by the provided Test Episode id. This allows to remove the created and active
routing rule via a the disarm method provided by the Routing Information class. An
additional Subject Tracker request is not performed, as it might provide a more resent
response in conflict to the established routing rule. As a last step stored the hash map of
Routing Information is updated to reflect the removal of the no longer active rule:

@routing_rules.delete(episode.id).

Destroy Infrastructure

In general, if a HPT is finished, set up infrastructure must be torn down to respect the
requirement for low resource (R.) consumption. As multiple IE, originating from
different Human Penetration Tests, can be consolidated and serviced by a single container,
management is necessary. Calling the destroy method of the IIM providing an IE from
said finished HPT results in a forwarded destroy call to the IE servicing container. To
perform said forwarding, a lookup for the servicing container is performed, utilizing the
managed id stored in the IE. If any other IE is still using provided service the container is
not torn down. Consequently, only the bookkeeping hash map is updated, removing the
IE to container association:

@internal_infrastructure_hashmap[type].delete(container).

Type Matching Based on Naming Scheme

The IIM provides methods to perform name matching according to the naming scheme.
These evaluation methods are similar for predefined and existing containers, both
require an array of Infrastructure Elements and a single Infrastructure Element as input.

Providing existing containers and checking against a requested infrastructure
service results in a list of compatible containers this check starts with the
check_for_matching_container(infrastructure_array, elem) method. The initial
list of containers is trimmed down to only include containers with the same basic
type, follows by identical software. The software’s version is checked to match ac-
cording to the beginning substring rule explained in section .. This second check
is performed by the software_check(container_software, ie_software). Resulting
containers are further checked to provide requested add-ons and add-on versions via
the addon_check(container_addons, ie_addons) method.

If no corresponding container is found a new container instance is spawned. This
uses predefined containers provided via the configuration and a single Infrastructure

 Implementation of ITS.APE Infrastructure Management Extension (IME)

Element. To select a suited container from all available predefined containers the single
Infrastructure Element’s type is checked against each predefined container’s type. The
process is performed similar to checking for existing containers.

. ITSAPE Container Model

This section describes the use of Docker containers to provide managed infrastructure by
the IME. The implemented IME uses the Docker API which provides needed features to
configure, start, stop and manage Docker containers. A Ruby Gem is used to instantiate
Docker container objects [].

While Docker container specific information can be requested from such an object, it
is necessary to store ITS.APE relevant information too. The ITSAPEContainer model is
therefore used to represent a container instance to the IME. This model is similar to the
designed Container model presented in Figure .

In contrast to the idea of separate class-based containers, the actual implementation
uses a single basic container model to realize different container types. The model stores
all container related information as well as the actual Docker Gem container object.

.. Properties

An instantiated ITSAPEContainer stores different information used during its lifetime.
The Docker Gem container object can only manipulated by ITSAPEContainer internal
functions. This is done to have a single point of interaction with outside functionality
provided by Docker.

An exchange of the used Docker Gem therefore can easily be done by modifying only
the ITSAPEContainer module. Furthermore, adaptions to changes introduced by an
updated Docker Gem can be realized in an easy manner, too.

For convenience, other Docker management tools besides the framework can be used
to observe Docker containers. Therefore, each container instance stores its Docker
container id. This allows identification of a used container via the Docker CLI and
mentioned tools.

As explained in section ., a Docker container is based on a Docker image generated
by a Dockerfile or pulled from Docker Hub. The specific container image name is stored
with each ITSAPEContainer instance and used to generate the actual Docker container.
As explained in section ., each predefined container stated in the framework config-
uration provides information about its Docker image. Given this configuration IME
matches an Infrastructure Element’s type to the Docker image used to provide requested
infrastructure. The used Docker image name is stored within the ITSAPEContainer data
model.

All managed Infrastructure Elements are stored within their respective ITSAPECon-
tainer instance. Information provided by an IE allow for requests to legacy framework
parts.

 Implementation of ITS.APE Infrastructure Management Extension (IME)

Possible request include:

. Subjects, served by this specific IE,
. Test Episodes, scheduled to deliver Artifacts via this IE and
. Test Seasons, holding the Recipe including the IE’s template itself.

To support assignment of multiple Infrastructure Elements to a single Docker container
instance, several preliminaries have to be fulfilled. The configuration provides a list of
ports, these can be include single ports or a range of ports that are used for the specified
type of ITSAPEContainer. This information is stored with each container object and used
when an Infrastructure Element is assigned to this container. With each assignment a
port from the provided ports is chosen and assigned to serve the newly added IE. A list
of already assigned ports is updated and used to ensure individual allocation of each
available port. Additionally, it is checked on a file system basis whether the chosen port
is available or already assigned to a process. If no freely available port could from the
defined ones can be chosen an descriptive error is risen.

Multiple IE can require the same port reachable for the subjects. For example, a HPT
can have two webservers which serve different websites to a subject. Each webserver
requires accessibility from the outside via port 80, as this is the standard HTTP port. The
redirecting system of the IME is used to support this. The consolidation functionality
of the IME and ITSAPEContainer is used to provide two webservers by a single Docker
container. Each webserver is assigned its own internal port chosen from the predefined
port list. Thereby, each Infrastructure Element can be addressed specifically by the
redirecting part of the IME.

A Docker containers IP address is stored with the associated ITSAPEContainer instance.
Again, this is used by the redirecting system of the IME. Additionally, each container
instance provides information about its realized Infrastructure Element type and all
information provided by the predefined container description.

.. Methods

The ITSAPEContainer model provides different function used by the IME. New container
instances can be created via the build method, while this might not be necessary as
consolidation of multiple IE is supported. Basic functions as start and stop allow to start
and stop the underlying Docker container. A destroy function is called during the tear
down process at the end of a HPT, which deletes the associated Docker container. As
required by Infrastructure Status (R), status information is updated for each of these
steps.

Generate or Consolidate One or More Containers

Three functions are designed to handle the initialization, building and consolidation
process. During initialization, predefined containers are prepared for use as manageable
infrastructure. A check ensures that the configured container’s base image is available:

image_exists = Docker::Image.exist?(@baseimage).

 Implementation of ITS.APE Infrastructure Management Extension (IME)

Unless it is present within the local container image repository the IME tries to fetch
if from Docker Hub. If no image can be found or pulled from Docker Hub an error is
risen.

Before the IME calls the build function of the ITSAPEContainer it is decided whether
an already in-use container can fulfill the requested container requirements. The type-
based naming scheme is used for this. This process results in a list of suited containers,
a single one is chosen. Chapter describes possible future option to provide a more
sophisticated selection.

If an existing container is capable of fulfilling the requested infrastructure the consoli-
date function of the chosen container is called: consolidate(elem). This consolidation
process selects a port from the mentioned predefined ports via the select_port()

method. It is checked whether this port is free to use by the port_open?(port) method.
This check is based on the lsof command provided with said port:

!system("lsof -i:#{port}", out: '/dev/null').

If no resources are associated to a port and necessary access rights are provided the
stated command returns immediately; the selected port is added to the in-use port list.
If the selected port is in use or can not be required the presented process is repeated for
the next port until a free port is found. If no free port is available an error is raised.

If no running container is found that suits the requested infrastructure a predefined
container is used. The ITSAPE Container model provides a build(elem) method suited
to fulfill this task. These methods creates the actual Docker container via die Docker
API Gem using the predefined Docker image name:

@container = Docker::Container.create(

'Image' => @baseimage,

'HostConfig' => {'Privileged' => true, 'NetworkMode' =>'host' }

).

The resulting Docker container id is stored as a property of the current ITSAPE Con-
tainer instance. It is used for referencing the Docker container in subsequent interaction.

Docker container can be operated in Host-mode which allows for a direct commu-
nication between an outward facing interface and a Docker container. Each network
interface is made available to a Docker container in a pure and unaltered form. This
connection mode is chosen to skirt the need for extra routing configuration as a result of
an additional container network. The hosts first available public IP address is chosen
and stored within the ITSAPE Container instance:

Socket.ip_address_list[1].ip_address.

As this parameter might vary between two HPT it should be provided in form of a
Test Season parameter added in a future release of the legacy framework and Recipe
model. Additional parameters within a Test Season could be used to further specify a
Recipe used. The current framework status does not support such parameters, therefore
a best effort selection is made. As with the consolidate(elem) method the serviced IE

 Implementation of ITS.APE Infrastructure Management Extension (IME)

gets assigned a single port from the available ports. The selected port is added to the
in-use port list and the infrastructure specific generate script is executed.

Start a Container

Each container can be started calling the ITSAPE Container instance providing the
respective IE. The Docker container is started, via start(elem), and the associated
infrastructure arm script is executed: execute_script(@arm_script, environment).

Necessary information are provided via environment variables. The used interface’s
IP address and the IE internal port are used to configure software of an infrastructure
container as a webserver. The temporary artifact location, containing generated artifacts
based on participating subject information, is used as resource for artifact presentation.
The IE unique id is used to allow for identification of artifacts from different Human
Penetration Tests.

Deploy Artifacts to a Container

For artifact deployment the framework uses the legacy Deployment Manager module to
execute the Recipe’s deploy script. The script’s purpose is to provide prepared artifacts
to infrastructure used for the respective HPT. This approach is part of the framework’s
lifecycle if the Infrastructure Management Extension is used. The framework is provided
with a Recipe based deploy script that is capable of relocating prepared artifacts. Addi-
tionally, each Infrastructure Element provides a deploy script as well. The latter is able to
place prepared artifacts into the correct location inside the infrastructure container.

Both deploy scripts rely on environment variables set by the framework and providing
information about the prepared artifacts and infrastructure in question. Beginning with
the Recipe’s script, the scripts are executed subsequently.

Remove Artifacts from a Container

A Human Penetration Test can be stopped at any time, the ITSAPE Container model is
required to support this. Therefore, the model provides an undeploy(elem) method
called with the respective IE. As other IE might be serviced by the associated container
as well, only presentation of artifacts from the specific Test Season must be stopped.

Additionally, as presented in Figure and section ., artifacts can be scheduled to be
active during a certain timeframe. At at the end of such a scheduled timeframe these
artifacts have to be removed from the infrastructure. The presented undeploy method is
used to achieve this.

If the container is in running state, the container specific undeploy script is executed.
All information to remove created configurations and associated artifacts of the respec-
tive IE is provided via environment variables. Especially the IE unique id is used to
allow for identification of artifacts and configuration files.

 Implementation of ITS.APE Infrastructure Management Extension (IME)

As a final step it is checked whether the undeployed IE has been the last IE associated
to this container. If this is the case, no other IE is serviced by this container, therefore the
Docker container is stopped. This addresses especially the requirement for low resource
(R.) consumption.

Tearing Down a Container

As final stage in a HPT lifecycle, created infrastructure is torn down. This is done via
the destroy(elem) method of an ITSAPE Container. Provided with an IE, this method
removes said IE from the container’s internal bookkeeping. This can result in an empty
ledger and no other IE associated to this container. Given this case, the actual Docker
container is deleted.

. Extended Legacy Framework Modules & Models

Changes to framework modules are performed to enable the integration of the IEM.
New functionality, to provide a separate processing for managed infrastructure, is
added to the Infrastructure Generator. Followed by infrastructure generation, artifact
generation and deployment are performed by the Artifact Generator and Deployment
Manager. This process can be left unchanged as necessary operations are handled by
the Recipe’s deployment script. Said script has only be adopted to subsequent call an
infrastructure specific deployment script. The process of arming an infrastructure is
performed by the Delivery Manager. The IME needs this information to enable necessary
routing for artifacts presentation. This section describes necessary modifications to the
legacy framework modules and models.

.. Modifications to the APE Module

All modules are required in the framework’s main module: the APE module. This
module is edited to load the extended Delivery Manager and extended Infrastructure
Generator module. Both require paths are changed to load said extended versions. These
modules are subclasses of the legacy framework modules and thereby still support
script-based generation and manipulation of infrastructure. Differences between these
legacy modules and extended ones are shown in the next sections.

Instantiation of the Infrastructure Manager and Delivery Manager are adapted. The
extended Delivery Manager requires an Infrastructure Manager instance. To instantiate
the extended Infrastructure Manager class its new name is used.

The installation process of the IME therefore is simple:

. The IME provides three folders which have to be symbolically linked into the
framework installation.

. Four lines of code must be edited in the APE module to install the IME into an
existing framework setup.

 Implementation of ITS.APE Infrastructure Management Extension (IME)

. A valid configuration of predefined infrastructure including corresponding
infrastructure-specific scripts must be provided. Examples are implemented
and presented in section ..

Figure : Output provided by diff utility between the modified APE module and its legacy
framework implementation.

.. Modifications to Infrastructure Generator (IG)

The Infrastructure Generator module is loaded by the APE module. The legacy module
is adapted to allow the use of the IME. Using the legacy module code basis ensures
compatibility to script-based infrastructure generation.

The extended Infrastructure Generator (eIG) realizes the selection of manageable infras-
tructure. Each commissioned Infrastructure Element is checked for its infrastructure type
first. Based on the provided configuration, it is decided whether a Infrastructure Element
is processed by script-based processing or be the IME. If a commissioned type matches a
manageable type, subsequent processing of this Infrastructure Element is handled by the
IME. Otherwise, legacy script-based processing is performed.

At the end of a HPT, infrastructure must be torn down. The legacy Infrastructure
Generator uses a destroy script, provided by the penetration tester, to stop and shutdown
created infrastructure. Scrip-based infrastructure is still handled via said script. Man-
ageable Infrastructure Elements are forwarded and their tear down process is handled by
IME.

Changes between the legacy Infrastructure Generator and its modified version are
shown by the diff utility in Figure . The Internal Infrastructure Manager module
is made known to the eIG module and added as ii to the Infrastructure Generator
initialization signature: initialize(cm, dm, ape, mon, ii). The legacy IG is require,
as eIG is based on the legacy IG. Further, the managed IE with its extended initialization
signature is required. A class variable is added providing access to the IIM. A method to
check whether a provided IE is a manageable IE is added: is_manageable_type(elem).
Generate and destroy are extended to call their IIM counterparts if said check returns
returns positive.

 Implementation of ITS.APE Infrastructure Management Extension (IME)

Figure : Output provided by diff utility between the extended Infrastructure Generator
(eIG) and its legacy framework implementation.

.. Modifications to Delivery Manager (DM)

The Delivery Manager is used to call arm and disarm scripts, they are executed by
script-based infrastructure. Arm and disarm methods are provided with a Test Episode
instance which provides not enough information to decide whether or not managed
infrastructure is involved. Therefore, all arm and disarm events are forwarded to the
IME. Within the IME further analysis of involved components is performed. Only within
the bookkeeping of the IME the relation between a created container and its season is
available. This relation is used to determine all containers which must be started and
which routing operations are required.

To support script-based infrastructure as well, the described interaction with the
IME is performed additionally to the legacy execution of arm and disarm scripts. For
managed infrastructure these script might just return without performing any action.

Changes between the legacy Delivery Manager and its modified version are shown
by the diff utility in Figure . The Internal Infrastructure Manager ii is added to the
Delivery Managers initialization signature: initialize(mon, cm, ii). A class variable
is added providing access to the IIM. The legacy arm and disarm methods are extended
by a single line of code respectively. Performing an arm/disarm call providing Test
Episode, Test Season and Recipe to the corresponding IIM methods.

 Implementation of ITS.APE Infrastructure Management Extension (IME)

Figure : Output provided by diff utility between the extended Delivery Manager and
its legacy framework implementation.

.. Modifications to Infrastructure Element (IE)

Infrastructure Elements are provided with a Recipe and are dynamically created by the
Config Manager. Every Test Season holds a recipe id to identify a configured Recipe. Only
when this Recipe’s information is requested an actual Infrastructure Element is created.
Within the current framework no persistent Infrastructure Element handling exists.
Script-based infrastructure is controlled via generic scripts, they facilitate environment
variables to specify their operations. Infrastructure Elements are created on the fly and
are needed to provide said scripts and static information used by these scripts.

For example, if a HPT is set up, infrastructure is generated. The Config Manager uses
the defined recipe id to identify the correct Recipe and an Infrastructure Element instance
is generated. Infrastructure is created based on ports defined within an Infrastructure
Element’s properties using the IE’s generate script. After the generation process this
Infrastructure Element instance are no longer used and abandoned.

While performing an arm operation Infrastructure Elements are required again as they
provide necessary arm and disarm scripts. Consequently, new Infrastructure Element
instances are created to provided these scripts. As a result, changes to IE instances used
within the generation process are not present within the IE instances used in the arm
and disarm process.

With managed infrastructure this concept is no longer viable. Managed infrastructure
is created at one point and further managed during its operation time. A clear relation
between an Infrastructure Element, requested by a specific Test Season of a HPT, and its
managed container is needed. The Infrastructure Element model is therefore extended to
include additional managed infrastructure relevant information.

A managed parameter indicates whether this IE is managed by IME. The managed id is
used to provide a unique identifier, for a specific IE. It is needed as Recipes are intended
for multiple use and identical IE can be commissioned for infrastructure generation. If
a container is matched to an IE, the container’s id is stored in a container id property.
Managed IE are stored within the IME to enable consisted management.

 Implementation of ITS.APE Infrastructure Management Extension (IME)

Figure : Output provided by diff utility between the managed Infrastructure Element
and its legacy framework implementation.

Changes between the legacy IE and managed IE model are shown by the diff utility
in Figure . New properties and their accessors are added. A new initialize signature
(initialize(elem)), extended to expect a legacy IE, allows for a direct initiation of a
managed IE.

Based on the stored season id and type, the IME can correlate a provided IE from an
arm operation to an IE stored during infrastructure generation. Thereby, the correct
container can be identified and necessary routing operations can be performed.

. Routing via Redirect System

With generated infrastructure personalized artifacts can be presented to a subject. This
presentation is performed according to scheduled time slots, these slots may respect
working hours and are configured by the penetration tester. The framework provides arm
and disarm methods to start and stop artifact presentation. Script-based infrastructure
is entirely controlled via scripts, which are used to prepare and enable all necessary
operations needed to present an artifact to a subject.

 Implementation of ITS.APE Infrastructure Management Extension (IME)

For managed infrastructure this task is handled differently. As a single infrastructure
can be used for multiple artifacts, special attention must be provided to ensure subject
specific presentation. Routing of IP packages is used to redirect subject requests to a
designated artifact infrastructure bearing the correct prepared artifacts. Domain names
can be used to create special artifacts designed to test a subjects security awareness in
regard to web and mail addresses []. The following presents the implementation of
the IP routing and domain name system of the IME.

For routing purposes a designated Docker container is created with its network
configured as host mode. This network mode allows the container to directly access
the host’s network stack. To be able to manipulate routing via iptables the container
is started with the parameter privileged=true. A container setup is chosen to have an
encapsulated environment, all routing operations are executed in this designated Docker
container.

.. IP

The IME uses iptables for redirecting IP traffic, the routing functionality is realized
through the Routing Info model. The model requires information about the container’s
IP address and the artifact specific port. Further, the subject’s IP address and port of the
request is needed to only redirect relevant traffic. If not configured otherwise, TCP is
regarded as default transport protocol. It is the protocol used by all presented artifact
services, refer to section .. Optionally, a domain name can be provided, too. The
handling of a the Domain Name System is explained in the next section.

Figure : Iptables command to enable subject-specific routing. These commands are stored
and executed during an arm operation by the Routing Info model.

At generation of a managed IE, it is checked whether routing is required. Sending
e-mail messages for example does not require traffic redirection, while a website artifact
does. If an IE has port parameters set these are taken as an indicator to provide
redirecting of subject requests to said IE. Ports specified by an IE are regarded as
external ports. Requests, originating from the subject’s IP address to an external port, are
redirected if a subject’s test is scheduled for presentation. These requests are forwarded

 Implementation of ITS.APE Infrastructure Management Extension (IME)

to the respective container serving this test’s IE. The IE specific internal port is chosen
based on the provided container configuration and explained in detail in section ...

Equipped with these information a iptables rule is created. Two commands to create
and delete this rule are stored within the Routing Info object. Via the arm and disarm
methods the respective command is executed and routing but into effect. Figure
shows commands used to produce these arm rules. First all DNS traffic is routed to
the company’s DNS and its origin is masqueraded. Scheduled subject’s DNS requests
are accepted to be handled by the local ITS.APE DNS server provided with the routing
system. Additionally, subject request’s for a specific service are redirected from their
external port, for example port 80 for HTTP requests, to the associated Docker container
internal port. Disarm rules are the respective counterpart of the added rules, therefore
executed with an -D flag. If all tests are finished the client’s DNS server can be changed
back to their original configuration.

.. DNS

The described Routing Info model can be provided with a domain name. This domain
name is configured by the penetration tester as a parameter within an Infrastructure
Element as part of a Recipe. The routing setup expects all subject clients to use the
ITS.APE host machine for domain name resolution (DNS).

Figure : Dnsmasq configuration template used by the routing system.

The redirecting system’s container provides a dnsmasq server to support DNS requests.
Only if a subject’s test is scheduled and armed a subject’s DNS requests are handled by
the redirect system. Additional iptables rules, to ensure this DNS request routing, are
created and stored along the artifact specific routing rules, they are depicted in Figure

 Implementation of ITS.APE Infrastructure Management Extension (IME)

. Only requests for domains specified within armed IEs are answered by the dnsmasq
server while all others are forwarded to a configured default DNS server. This could be
the standard DNS server used within the evaluated company.

The answer of a request send by a subject for an armed domain is answered with the
IME host IP address. This ensures that sub-sequent traffic designated for this domain
name is send to the IME and can be routed by iptables.

The dnsmasq’s configuration used by the redirecting system is depiced in Figure .
Static entries for provided domain names ($domain_name$) resolve for the framework’s
host IP address ($host_ip$). Every other request is forwarded to the company’s DNS
servers ($company_dns_1$ & $company_dns_2$).

. Generalized Service Infrastructure

Infrastructure Elements describe a specific need of service to present artifacts. This can
be a webserver, a mail sending service or other services as presented in section .. As
required by Suitable Technology (R), a provided extension to manage infrastructure
needs to demonstrate its functionality by using its implemented system. Therefore
two of the mentioned services are provided with this implementation. The mail sender
service and webserver service are chosen, as these are the same services as provided by
the script-based Testrecipe.

While not provided with this thesis, realizing a file sharing service could be done using
a SMB/CIFS Docker image available from Docker Hub. For example, to publicly share a
folder using SMB protocol the jenserat/samba-publicshare can be used. Some adaptations
to the image’s smb.conf are required; the designated internal ports and corresponding
folder have to be added to the configuration, this can be done with the infrastructure
specific deploy script. Artifacts are added via this script, too. Routing of SMB traffic can
be done via the implemented routing system.

The IME requires manageable infrastructure to provide infrastructure specific script
which are executed at a certain phase of a HPT. This section introduces the concept of
said scripts. And closes with the description of the provided two services.

.. Infrastructure Specific Scripts

With the script-based solution each Infrastructure Element has a script for each lifecycle
state of an artifact. An artifact lifecycle is depicted in Figure . At total there are six
script to allow for artifact and infrastructure manipulation:

. A generate script to generate infrastructure for artifact delivery,
. a deploy script to provide artifact to this infrastructure,
. an arm script to start artifact presentation,
. a disarm script to stop artifact presentation,
. an undeploy script to remove artifacts from infrastructure and
. finally a destroy script to tear down created infrastructure.

 Implementation of ITS.APE Infrastructure Management Extension (IME)

Each of these scripts is created to suit exactly one special Recipe. They are specifically
designed for infrastructure created via the generate script and the artifacts generated. As
penetration testers are free do design their Recipes and scripts, interoperability between
infrastructure and scripts from different Recipes can not be assumed. Further, the
framework is not aware of already existing infrastructure even if two HPTs use the same
Recipe.

With managed infrastructure it is a set goal to reuse already available infrastructure
if possible. This reuse has two aspects, on the one hand infrastructure can be used
by two different HPTs in general. For example two HPTs using different Recipes but
both require a webserver. On the other hand a single managed infrastructure can serve
two HPTs using the same Recipe but are set up to test different sets of subjects. With
the script-based solution such scenarios could not be handled at all or would require
cumbersome manipulation to existing scripts.

The IME is designed to support the general idea of the artifact lifecycle including
Recipes and scripts. This is achieved by having each infrastructure container providing
infrastructure specific scripts similar to the presented artifact specific scripts. At total
four scripts must be provided with each container:

. A deploy script executed in a subsequent call by the artifact deploy script. It
handles file transfer and adaptions of artifacts, for example adding an artifact’s
season to its file name.

. An arm script used to execute certain final operations to deliver an artifact. For
example using sendmail to send an e-mail message to a subject.

. A disarm script used to stop presentation of an artifact. For example disable a
website.

. An undeploy script used to remove a specific artifact from a container. It can be
used if a subject does no longer want to participate in a HPT.

A generate script is obsolete as managed infrastructure is handled by the IME. Similar,
a destroy script is is no longer needed as tear down of containers is managed too. Each
predefined container has to provide these infrastructure specific scripts to comply with
IME requirements.

.. Mail Service

To provide a e-mail sending service, as described in section ., a suitable Docker image
is used. A Dockerfile is provided to create the image, which is added to the local Docker
repository. To respect the requirement for low resource (R.) consumption, a base
image designed to have a small footprint is chosen: phusionbaseimage []. Sendmail
is chosen as delivery software for e-mails. It provides an easy way to deliver e-mail
messages via the command line.

To send messages via sendmail a host name is required within the sendmail machine.
This is taken care of by a script designated to set a host name. The sendmail configuration
must be rerun to recognize this change. Said script and the sendmail configuration
program are run during creating of the Docker container. Additionally, the ITS.APE

 Implementation of ITS.APE Infrastructure Management Extension (IME)

Satellite is copied to the container including all required keys and certificates to establish
a secure connection to the framework’s Track Collector. Based on the infrastructure’s
base type, its software and the chosen host name, the infrastructure type is set to:
mailsender_sendmail_its.ape

The created predefined container does have a fixed host name as specified in the
mentioned script. The selected host name is be used as add-on parameter within the
container’s type. If a penetration tester wants to have a specific host name set for e-mails
of a HPT, he can specify the host name in the script and modify the container’s type
accordingly. A Recipe with an IE using its specified container’s type as Mail Service lets
the IME select the correct predefined container.

The Mail Service container uses the infrastructure specific scripts to prepare for
mail delivery. Via the container’s deployment script, generated artifacts are placed in a
designated folder. Each e-mail message required in a single text file containing at least
a FROM: line who’s content can be set at will. The actual message follows there after.
Additionally, The deployment script renames each message file to include the subject’s
unique subject id and the specific test season the subject is part of. These information
are needed to support that a subject can be part of two HPTs at the same time, while
each HPT provides different message artifacts.

To send an e-mail, the infrastructure specific arm script is used, it expects all com-
missioned e-mails in said designated folder. The IME’s arm method executes the infras-
tructure specific arm script. It expects several parameters provided via environment
variables: an e-mail address, the armed season’s id and the subject id. The later items
are used to identify a specific message file from the available artifact files. By calling
sendmail with the e-mail address and the selected message an e-mail is finally send.
Each sent e-mail generates a log entry in a log file which is provided to the ITS.APE
satellite.

A special disarm script is not needed as the artifact is no longer under the service’s
control after being send. An undeploy script is provided, which requires calling with
a subject’s id and a season. Using these two parameters a specific message file can be
identified and removed from the container.

.. Website Service

To provide websites an Apache 2.2 webserver image equipped with PHP 5.6 is chosen.
Apache and PHP are commonly used to provide dynamic websites, further the Testrecipe
uses a website build with this setup in mind. During creation of said image the ITS.APE
Satellite is copied to the container including all required keys and certificates to establish
a secure connection to the framework’s Track Collector.

The infrastructure specific deploy script copies generated artifact files to the web-
server’s document folder. Additionally, it creates a season specific configuration file
in the Apache sites-available folder. The configuration’s file name has to include the
season id for identification. This configuration file defines a Virtual Host bound to the
container’s IP address an the port designated to this specific IE chosen by the IME. The

 Implementation of ITS.APE Infrastructure Management Extension (IME)

configuration includes the season specific document folder it is as the virtual host’s
Document Root. Required parameters such as IP address, port and season id are provided
via environment variables.

The container’s arm script enables created configuration via executing the Apache
specific aensite tool. The tool is provided with the configuration file’s name which
includes the season id. Said id is provided via environment variables. At last the Apache
service is forced to reload its configuration.

To disable a season’s armed website the disarm script is used. It uses the adissite
tool to remove a season’s specific configuration. Again the season’s id is provided via
environment variables. A forced reload of the Apache service is used to effectuate the
reduced configuration.

An undeploy script can be used to remove all created configuration and artifact files of
a season. It requires the specific season id provided via environment variables.

The Apache webserver is configured to log each website access to a log file which is
provided to the ITS.APE satellite.

 Evaluation

The implemented Infrastructure Management Extension (IME) is designed to simplify
the use of the ITS.APE framework to perform Human Penetration Tests. The following
chapter evaluates the implemented system and its components.

The system is evaluated against the identified requirements listed in section ..
Modules’ and models’ functionalities are tested via unit tests while the implemented
redirecting system and provided website and Mail Service containers are tested within a
small testing environment.

. Conform with formulated Requirements

A requirements analysis is performed to identify necessary and important features a
managed infrastructure system has to have, cf. .. In the following each identified
requirement is discussed and it is shown how the design and implemented software
system realizes these demands.

The ITS.APE framework is used in the UKSH network; therefore an overview of the
used software components is used to identify relevant IT services, this acknowledges
requirement Select Services (R). Five service items are identified and three can be
used directly to present artifacts to a subject. Two are needed to support an automated
presentation. These items are:

. Website Service,
. Mail Service,
. File Sharing Service.

Additionally, a redirecting system based on:

. IP and
. host names.

For each of the identified services a design of the service, its functionality and possible
configurations are given. If possible and relevant for the UKSH test environment,
a configuration to enhance a service’s confidentiality is provided. This fulfills the
requirement for Customizability (R) for these services.

Besides the designed services, the implemented extension provides a configurable
generic interface to add new services. This interface uses a text based configuration

 Evaluation

editable with a simple text editor. A presented naming scheme is used to support any
kind of service as long as necessary predefined infrastructure and corresponding deploy,
arm, disarm and undeploy scripts are provided. Thereby a highly reusable system is
given. Providing a new service for use with the IME can be done with a small set of
parameters set in the ITS.APE configuration file. The implemented software can be
extended by any number of possible services without the need to change the extension’s
or ITS.APE framework’s source code. This exceeds the set goal of the requirement for
Customizability (R) which required five distinct services.

The presented extension uses Docker containers to provide managed infrastructure
used for HPTs. Containers in general are capable of providing required functionality
as do full virtualized machines. In contrast to full virtualized machines their required
resources in terms of file space and processing power are small as they can use already
existing libraries and system functions. Moreover, generation and launching of a con-
tainer can be done much faster than creating a full virtualized machine. Configuration
of container images is done via a text based Dockerfile, which provides an easy way
to define a reusable image. With the use of the Docker Engine a broad collection of
existing service images are usable through the Docker Hub. The selection of Docker and
a container-based solution fully acknowledges the requirement for Suitable Technology
(R). Again, with the available image base provided by Docker Hub a large spectrum of
possible infrastructure services can be realized with small effort. The provided Website
Service and Mail Service and their infrastructure specific scripts and configurations can
be used as reference.

By including the ITS.APE satellite into the Dockerfile of service infrastructure, the
requirement to Support Satellites (R) is fulfilled. Appointed to the correct log file the
satellite system provides necessary tracks to the ITS.APE framework. Thereby evaluation
of a subject’s actions towards an artifact can be done.

By design containers provide a low resource footprint. Additionally the IME tries
to match compatible infrastructure demands to be served by a single infrastructure
container. Whenever an infrastructure demand is no longer valid the framework’s
infrastructure destroy function is called. With legacy script-based infrastructure the
tear down process is performed by scripts, these could include instructions to manually
modify network settings such as DNS entries or firewall rules. This process is automated
with the use of IME and relies on the internal bookkeeping to check whether any other
service demand exists. For the service demand in question the created iptable rules
and DNS entries are removed by the IME’s routing system. Unless there is any existing
demand from other HPTs, used infrastructure is torn down and the associated container
is deleted. This fulfills the requirement for Garbage Collection (R) completely.

The IME is designed to respect the legacy script-based generation of infrastructure.
By adapting the framework’s Infrastructure Generator and Delivery Manager modules
necessary program flow control is obtained to integrate this extension. Keeping the
already existing functionality of said modules, script-based infrastructure generation is
maintained. The modules’ unit tests are extended to test the added introduced function-
ality needed for managed infrastructure. The achieved passed status for these extended
unit tests proves the successful implementation of required Compatibility (R) to ex-

 Evaluation

isting infrastructure deployment methods. While full compatibility is achieved, the
IME supports black- and whitelisting of infrastructure types. Blacklisted types of infras-
tructure requests are never handled via the IME, but a script-based approach is chosen.
Whitelisted types of infrastructure might be managed by IME if matching configuration
of predefined infrastructure is provided. Each commissioned Infrastructure Element is
checked to comply with these list-based restrictions.

The IME hosts all containers on the framework’s host machine. No additional IP
addresses are used other than IP addresses assigned to the host’s machines network
interfaces. This fulfills the requirement to Respect Restrictions (R).

The IME’s redirecting system uses iptables and dnsmasq to redirect the subject’s
requests to the specific artifact infrastructure. Configuration is provided via the Recipe’s
Infrastructure Element and its parameters. Requests to specified ports and host names
are redirected for participating and scheduled subjects. The framework’s Subject Tracker
module is used to determine a subject’s IP address. No manual interaction is necessary to
activate the redirecting process of managed infrastructure. This improves script-based
infrastructure which can present the penetration tester instructions to manually activate
redirecting of scheduled subjects. The IME’s redirecting system thereby fulfills the
requirement set up by Redirecting System (R). A small test environment as described
in .. is set up to manually test the functionality of the implemented redirect system.
The setup of this environment and testing procedure is described in section ..

The main module of the IME, the Internal Infrastructure Manager, provides two meth-
ods to gain knowledge about the managed infrastructure status. First, Information about
an Infrastructure Element can be requested. This method returns the IE’s type, managed
status, its unique managed id, its associated container id and the Docker container
status. Second, a method which expects an IE’s type and Docker container id. This
method returns the Docker container running state. These two methods provide the
requested status information as described in requirement Infrastructure Status (R).
They even exceed the requested status information and allow for a more detailed report
about requested managed infrastructure.

The implemented modules and models are tested via RSpec tests. All legacy mod-
ules and models are provided with unit tests; these tests are extended to cover made
extensions. The designed naming scheme is tested heavily to show generic compatibility
to possible infrastructure types. This fulfills the requirement for White Box Testing
(R). The following sections present the performed unit testing including said naming
scheme.

. Type-based Naming Scheme

Consolidation is based on type-based naming scheme performed by the IME. These tests
are designed to check whether correct matching for compatible infrastructure types is
achieved. Further, tests ensure that incompatible infrastructure types produce no match.
They are part of the IME modules unit test and confirm a correct implementation of the
described naming scheme.

 Evaluation

A test scenario in which a commissioned IE is matched to an existing container is
created. First, a base type matching is tested, only identical base types are consolidated.
Second, an identical base type is assumed and matching based on the software parameter
is performed. For this matching each combination shown in Table is tested.

At last, it is assumed that a container with matching base type and software parameter
is present. For a single add-on a similar version testing is performed. To test correct
behavior when multiple add-ons are provided additional test cases are necessary. The
placing of an add-on within the add-on parameter should not matter. Therefore, these
tests use multiple add-ons with all possible placement combinations in said parameter.
Each add-on can provide a specified version which must be accounted to the correct
add-on. This is tested by using version-specific and version-agnostic add-ons throughout
this test.

The implemented IEM passes all described tests. While these tests consist of numer-
able test cases, it can not cover every possible combination of base type, software and
add-on parameter. A functional code coverage of the responsible matching methods
is achieved, this proofs the generic concept of selecting consolidatable containers is
implemented in the correct way.

. Configuration

Providing an easy and usable configuration is a requirement identified in section ..
All models and modules introduced by IME rely on a configuration provided via specific
entries in the ITS.APE configuration file. Thereby all necessary parameters can be
adjusted with a simple text editor and within a single file. The configuration provides
an interface for defining generic predefined managed infrastructure containers.

Testing all possible configurations is not possible due to the generic fashion of sup-
ported configurations. A similar configuration as shown in Figure is used as a mocked
configuration for all unit tests. All models and modules introduced by IME are tested
using this configuration. Every of the performed unit tests are passed, thereby said
configuration is shown to be functional.

. Internal Infrastructure Module

The IIM orchestrates all managed infrastructure; its bookkeeping functionality is the
core for consolidating and controlling managed infrastructure. The provided unit test’s
checks of functions and processes of the implemented module are explained in the
following.

With initializing the IIM instance, predefined containers are loaded. Therefore a
configured container type is requested and expected to be generated by the IIM. To
test correct behavior of a missing configuration, generation of an unconfigured IE is
expected to cause an error.

 Evaluation

For generation of a commissioned IE, it is tested whether a container can be build
and started. If a requested image is not available from the local repository, it is pulled
from Docker Hub. This is tested with the hello-world container provided by Docker and
requires an Internet connection.

Created infrastructure is torn down at the end of a HPT. Therefore the provided
destroy function is tested by creating and subsequently tearing down a container. The
test is passed, if said container is no longer listed as available container by the Docker
Engine.

The IIM’s arm method starts a created container for artifact delivery. Again a container
is generated and it is checked if after calling the arm method said container is in running
state. As a counterpart the disarm method stops a created container. Similar a started
running container is generated and expected in a stopped state after calling the disarm
method.

In addition to starting a managed infrastructure, arming it requires certain routing
operations. Namely, correct Routing Info instances for the provided Test Episode and Test
Seasonare expected. Testing the armmux and disarmmux methods of the IIM expects said
preparations to be performed correctly.

To fulfill the requirement Infrastructure Status (R) a get_info method is provided
by the IIM. To test this method a new managed infrastructure is created. Its status after
creation, arming and disarming is checked and expected to provide correct information
about the managed infrastructure status. With tearing down this managed infrastructure
the associated IE is expected to reflect its legacy unmanaged state.

Testing full artifact delivery would have to test functionality of a provided predefined
container and its scripts. This kind of integration test is not performed within this
module’s unit test.

. ITSAPE Container Model

The ITSAPE Container model represents the IME interpretation of an infrastructure
container. It performs direct communication between the IME and the Docker API.

Each of the IIM module and its tests facilitates ITSAPE containers. Conform imple-
mentation of the container’s function is expected. A unit test of the ITSAPE Container
model ensures the model’s compliance.

The test expects correct initialization of a container. The provided preparation of
predefined container images is expected to provide a container with correct properties.
Generation and destruction of the associated Docker container is expected for the
build(elem) and destroy(elem) methods. Start(elem) is expected to produce a running
Docker container. Consolidate and disarm methods are expected to produce script
execution of the container specific scripts. The status method has to provide the
associated Docker container status.

 Evaluation

. Extended Legacy Framework Modules & Models

Each of the extended framework’s modules and models are provided with a RSpec unit
test. These tests are extended to maintain test coverage of their legacy functionality, for
example script-based infrastructure generation. Thereby compliance to legacy processes
as well as support for managed infrastructure generation can be shown.

For the Extended Delivery Manager, its initialization test is adapted to reflect its
extended signature: DeliveryManager.new(@monitoring, @configuration_manager,

@infrastructure_manager). Arm and disarm methods are expected to produce call-
backs to the IIM module.

Similar the initialization test of the Extended Infrastructure Generator is adapted to
correspond to its changed signature:
InfrastructureManagmentExtension.new(@configuration_manager,

@deployment_manager, @ape, @monitoring, @internal_infrastructure).

The generation of infrastructure is tested, and callbacks to the configured white-
and blacklist are expected. Further callbacks to the Configuration Manager requesting
internal infrastructure configuration details are anticipated.

For the Infrastructure Element model it is tested to provide all new properties.

. Evaluation of Routing via Redirect System

The redirecting system is evaluated by preparing the webserver infrastructure containers
as described in ... The ITS.APE host machine’s network interface is configured to
IP address 192.168.1.12. Three additional computers connected to the test machines
network are used for the performed test scenario. Alice’s machine is assigned the IP
address 192.168.1.3, Bob’s machine is assigned the IP address 192.168.1.25 and both
are part of a planned IT security awareness test. Charlie represents a non-participating
user, his machine is assigned the IP address 192.168.1.99. The standard DNS server’s IP
address of this network is: 8.8.8.8.

An IT security awareness test is planned, therefore subject and user machines are
configured to use the ITS.APE host as their DNS server. All machines are expected to
have access to the Internet, the ITS.APE ITS.APT public website is reachable. A test
scenario of four stages is evaluated:

. Subject and user machines are expected to be configured correct. All can access
the Internet; the ITS.APT public website (its-apt.de) is reachable. A to be used
phishing website cannot be reached via its domain: phising-website.itsape.

. Alice is scheduled for an active Human penetration test, therefore she should be
able to reach the prepared phishing website: phising-website.itsape. Bob and
Charlie are expected to have no access to this website from their machines. All
machines are expected to have access to the Internet, the ITS.APE ITS.APT public
website is reachable.

 Evaluation

. Alice’s test period is over, she is expected to have no longer access to the phishing
website from her machine. Bob’s test is active, he should be able to reach the
prepared phishing website: phising-website.itsape. Charlie is expected to have
no access to this website with his machines. All machines are expected to have
access to the Internet, the ITS.APE ITS.APT public website is reachable.

. Testing is finished, the prepared phishing website must not be reachable from any
machine. All machines are expected to have access to the Internet, the ITS.APE
ITS.APT public website is reachable.

Figure to show the results of accessing both websites from Alice’s Bob’s and
Charlies systems. All machines can access the Internet and reach the ITS.APE website
during all test stages. Only Alice and Bob can access the prepared website artifact
from their machines. This access is limited as requested within different stages of this
evaluation. Alice is only able to access the phishing website during test stage two, Bob
can request the website artifact only during test stage three and Charlie is never able to
reach the prepared website.

Figure to show the ITS.APE host iptable configuration of during each test stage.
Figure & show the dnsmasq configuration during active during the test stages.

The iptable rules presented in section .. are effective and allow for correct pre-
sentation of artifacts to subjects. Other users are not affected in their daily work and
schedule-conform presentation is possible.

. Evaluation of Generalized Service Infrastructure

Both provided infrastructure containers are set up and their specific use case in a HPT is
used to evaluate their functionality. The mail container is used to send an e-mail which
could be a phishing e-mail as part of an IT security awareness test. A phishing e-mail
could contain a link to a prepared phishing website used to further probe a subject’s
reaction to a website. A typical phishing website is used to evaluate the webserver
container.

.. Evaluation of Mail Service

To evaluate the e-mail sender’s infrastructure the provided Dockerfile is used to build
an itsapemailer container. A container instance of this image is started and a folder with
mail files is linked. The container’s sendmail program is used to send an e-mail to a
valid e-mail address. Used commands are depicted in Figure .

The e-mail message body was received within the same minute, the mail body is
depicted in Figure . It contains correct sender, subject and message. Sendmail used a
TLS secured connection to deliver the provided message.

 Evaluation

Figure : Test Stage . & .
Requesting its-apt.de from Al-
ice’s, Bob’s and Charlie’s machine
in test stage one is successful.

Figure : Test Stage . & .
Requesting
phising-website.itsape

from any machine in test stage two
results in an error.

 Evaluation

Figure : Test Stage .
Requesting its-apt.de from
Alice’s, Bob’s and Charlie’s ma-
chine in test stage two is successful.

Figure : Test Stage .
Requesting
phising-website.itsape

from all machines; only Alice is
able to perceive a phishing website
artifact designed in [].

 Evaluation

Figure : Test Stage .
Requesting its-apt.de from Al-
ice’s, Bob’s and Charlie’s machine
in test stage three is successful.

Figure : Test Stage .
Requesting
phising-website.itsape

from all but Bob’s machine in test
stage three results in an error. Bob
is now able to perceive a phishing
website artifact.

 Evaluation

Figure : Test Stage . & . Dnsmasq’s
configuration is not containing
any static entries.

Figure : Test Stage . & . The
dnsmasq configuration re-
sponds to a name request for
phising-website.itsape with
the containers IP address.

Figure : Test Stage . & . All DNS requests are routed to the networks standard DNS
server 8.8.8.8 via PREROUTING rule 1, 2 and POSTROUTING rule 1.

 Evaluation

Figure : Test Stage . All DNS requests are routed to the networks standard DNS server
8.8.8.8. DNS requests from Alice (192.168.1.3) are forwarded to the ITS.APE
DNS server. HTTP requests (Port 80) from her machine are forwarded to the
ITS.APE webserver container on port 8555.

Figure : Test Stage . All DNS requests are routed to the networks standard DNS server
8.8.8.8. DNS requests from Bob (192.168.1.25) are forwarded to the ITS.APE
DNS server. HTTP requests (Port 80) from his machine are forwarded to the
ITS.APE webserver container on port 8555.

 Evaluation

Figure : Commands to send an e-mail with the provided mail sender container, which is
first build and started.

Figure : RFCMessage body of received test e-mail.

.. Evaluation of Website Service

The provided webserver image is created in the same way as the mail server infrastruc-
ture. An instance of this container is started exposed to port 8555, a folder is linked into
the container. Said folder contains a phishing website used as an artifact presented in
[].

From a different computer within the same network a curl process is invoked. It
requests a website from the containers machine, said website is expected to be the
provided phishing website. A HTTP response status code 200 is expected.

A browser is used to request the website; it is displayed as expected and shown in
Figure . The received website’s hash sum is compared with the known phishing
website’s hash sum. Both hash sums are identical and therefore website artifact delivery
with the provided website infrastructure is proven to be functional. The curl command
and hash sum comparison are shown in Figure . The container’s Apache access log
file is checked to reflect the recent request. Figure shows that the expected request is
recorded.

 Evaluation

Figure : The received phishing website usable as artifact in a HPT.

Figure : Commands used to request and compare the provided website.

Figure : Apache access log of the webserver container.

 Summary & Future Work

This master thesis presented an extension for infrastructure provisioning for the ITS.APE
framework. The provided extension simplifies the work of the penetration tester to
perform a Human Penetration Test (HPT). Required Infrastructure can be defined via
text based configuration and generated containers are consolidated if possible. Com-
pared to the legacy script-based infrastructure generation process, a resource-efficient
management is provided. Furthermore, the extension consists of a routing system which
supports automated traffic redirection for test element presentation.

To provide necessary background, this thesis presented the idea of Human Penetration
Testing (HPT) and set out goals of the ITS.APT project. The Social-Engineer Toolkit (SET)
was identified to provide only rudimentary tools, useable to perform a HPT. IT services
present in an office environment are identified and their network protocols are presented.
A comparison between different virtualization techniques provides feasible background
for later design decisions. Detailed descriptions of ITS.APE framework components are
given and allow to identify relevant models and modules used to provide this thesis’
extension.

A requirement analysis is performed and resulted in ten requirements to meet for the
desired extension.

An extension design based on software design patterns and conform to the identified
requirements was developed and presented. It includes the design of a redirect system,
used to ensure test conform exposure of subjects to test elements. Furthermore, designs
of three concrete services, used for HPTs, were provided and explained.

During implementation of the designed class-based system, the idea for a more generic
system came up. The former system was revised and a type-based infrastructure scheme
was designed. The type-based implementation was finalized and supports the definition
of infrastructure via a configuration file. Additionally, it allows for a resource saving
consolidation of similar generic infrastructure demands by a single container.

The implemented extension is capable of managing HPT infrastructure with a full sup-
port of legacy script-based infrastructure management. Configuration can be handled
via black- and whitelisting of managed infrastructure types. A simple configuration,
which requires only four parameter stated in a text based configuration file can be used
to define new managed infrastructure. Managed infrastructure is based on Docker con-
tainers, implemented through a replaceable container class. If compatible commissioned
infrastructure demands are consolidated with already running containers. Containers

 Summary & Future Work

support adding and removing of test elements of a specific HPT, even for consolidated
containers. The implemented redirect system uses IP and DNS based routing, it is
capable of routing specific subjects to designated infrastructure based on a provided
schedule.

Two manageable infrastructure compositions were provided and tested to show their
utilization in a HPT test scenario. The implemented routing system was evaluated to
provide precise traffic manipulation of subject’s traffic. It was further tested to form no
obstacle to other user’s Internet use. Evaluation of the implemented extension confirmed
compliance to the formulated requirements. This includes RSpec unit tests of imple-
mented and extended legacy models and modules, a fully described test environment
and test results of performed test cases. The following outlook on future work concludes
this master thesis.

Future Work

A broad spectrum for future development in context of HPT and the ITS.APE framework
exists, starting from new kinds of artifacts beside the presented e-mail and website type.
These new artifacts might require additional infrastructure types. Especially, provision-
ing of executable or other file types as offered by the designed and described File Sharing
infrastructure container allows for new kind of artifacts. Other infrastructure could
be used to target subjects not only via their computer but for example by sending SMS
which include a phishing link. For the provided webserver container a modified version
to support secured request provided by TLS could be created. Automated generation of
certificates and keys could be made part of the container script.

Future development of the framework and IME could improve port and IP provision-
ing. Therefore, available ports have to be provided to define a predefined container
within the configuration of IME. This hard requirement could be softened to support
automatic selection of an internal port by the framework. A check whether this port
is freely available and a conform handling of subsequent redirecting operations are
necessary. If a HPT is performed in a large company network separation might be
desired. The IME uses the first interface’s IP address for its communication, a future
version could use a configured IP interface and IP address instead. This IP address could
be stored in the test’s Test Season and thereby a specific IP address could be used for
each HPT instance.

The current implementation uses always the first container from the list of suited
containers, but additional parameters could be used to make a more sophisticated se-
lection. An improvement to the consolidation process could involve re-consolidation.
The implemented process only checks for possible consolidations for a newly commis-
sioned infrastructure onto running containers. A complex type of infrastructure is very
unlikely to find a suitable match, therefore a new container is generated and used. In
addition to the existing check, a check for consolidation of running containers into
other running containers could be added. This check must ensure a seamlessly artifact
delivery throughout the relocation of served Infrastructure Elements.

 Summary & Future Work

The IME prepares and runs all infrastructure on the ITS.APE host system. Within a
future version designated container hosts might exist. An adapted ITSAPE Container
module can interact with remote Docker containers, which would allow for load balanc-
ing this system and could also support external containers. These external containers
are placed in the penetration tester’s controlled colocation center. Consequently, only a
reduced version of the ITS.APE framework would be required at the tested company’s
location.

The designed routing system could be extended to support deep packet inspection.
Thereby a single satellite installed in this enhanced routing system could track all
subject reactions. As all company’s DNS traffic is expected to be handled via the routing
system this might be a violation of privacy rights.

The presented IME is easily integrated into the existing framework, yet source code
manipulation is required. A generic extension system, easily configured via a configura-
tion file, could pave the way for new extensions. Extensions based on the principle of
exchanging and extending legacy framework modules could be provided with just one
configuration line.

Bibliography

[] A minimal Ubuntu base image modified for Docker-friendliness: phusion/baseimage.
https://phusion.github.io/baseimage-docker/; last accessed . September
. Sept. .

[] Akamai - IPv Adoption visualization - Data last updated: ... https://www.
akamai.com/de/de/our-thinking/state-of-the-internet-report/state-of-

the-internet-ipv6-adoption-visualization.jsp; last accessed . June .
June .

[] Bagnulo et al. Stateful NAT: Network Address and Protocol Translation from IPv
Clients to IPv Servers. RFC . IETF, Apr. . url: https://tools.ietf.
org/html/rfc6146.

[] Sheffer et al. Summarizing Known Attacks on Transport Layer Security (TLS) and
Datagram TLS (DTLS). RFC . IETF, Feb. . url: https://tools.ietf.
org/html/rfc7457.

[] Amit Singh - kernelthread.com - "An Introduction to Virtualization". http://www.
kernelthread.com/publications/virtualization/; last accessed . June .
June .

[] P. Borgnat et al. “Seven Years and One Day: Sketching the Evolution of Internet
Traffic”. In: INFOCOM , IEEE. Apr. , pp. –. doi: 10.1109/INFCOM.
2009.5061979.

[] Robert Braden. Requirements for Internet Hosts – Communication Layers. RFC .
RFC Editor, Oct. . url: http://www.rfc-editor.org/rfc/rfc1122.txt.

[] Peter F. Brown and Rebekah Metz Booz Allen Hamilton. Official OASIS Standard:
Reference Model for Service Oriented Architecture .. .

[] Bundesamt für Sicherheit in der Informationstechnik - Allianz für Cyber-
Sicherheit - "Cyber-Sicherheits-Umfrage ". https : / / www . allianz - fuer -
cybersicherheit . de / ACS / DE / _ / downloads / cybersicherheitslage /

umfrage2015_ergebnisse.pdf?__blob=publicationFile&v=4; last accessed
. June . June .

[] Can I use... Support tables for HTML, CSS, etc Website - "HTTP/ protocol". http:
//caniuse.com/#search=http2; last accessed . June . June .

[] Christopher Hertel - Implementing CIFS: The Common Internet File System, Published
Aug , by Prentice Hall. http://www.ubiqx.org/cifs/; last accessed .
June . June .

https://phusion.github.io/baseimage-docker/
https://www.akamai.com/de/de/our-thinking/state-of-the-internet-report/state-of-the-internet-ipv6-adoption-visualization.jsp
https://www.akamai.com/de/de/our-thinking/state-of-the-internet-report/state-of-the-internet-ipv6-adoption-visualization.jsp
https://www.akamai.com/de/de/our-thinking/state-of-the-internet-report/state-of-the-internet-ipv6-adoption-visualization.jsp
https://tools.ietf.org/html/rfc6146
https://tools.ietf.org/html/rfc6146
https://tools.ietf.org/html/rfc7457
https://tools.ietf.org/html/rfc7457
http://www.kernelthread.com/publications/virtualization/
http://www.kernelthread.com/publications/virtualization/
http://dx.doi.org/10.1109/INFCOM.2009.5061979
http://dx.doi.org/10.1109/INFCOM.2009.5061979
http://www.rfc-editor.org/rfc/rfc1122.txt
https://www.allianz-fuer-cybersicherheit.de/ACS/DE/_/downloads/cybersicherheitslage/umfrage2015_ergebnisse.pdf?__blob=publicationFile&v=4
https://www.allianz-fuer-cybersicherheit.de/ACS/DE/_/downloads/cybersicherheitslage/umfrage2015_ergebnisse.pdf?__blob=publicationFile&v=4
https://www.allianz-fuer-cybersicherheit.de/ACS/DE/_/downloads/cybersicherheitslage/umfrage2015_ergebnisse.pdf?__blob=publicationFile&v=4
http://caniuse.com/#search=http2
http://caniuse.com/#search=http2
http://www.ubiqx.org/cifs/

Bibliography

[] darkhttpd Project Website. https://unix4lyfe.org/darkhttpd/; last accessed .
June . June .

[] Network Working Group Deering & Hinden. Internet Protocol, Version (IPv)
Specification. RFC . IETF, Dec. . url: https://tools.ietf.org/html/
rfc2460.

[] Docker Inc. - "Docker Engine". https://www.docker.com/products/docker-
engine; last accessed . June . June .

[] Docker Inc. - "Docker Hub". https://hub.docker.com/explore/; last accessed .
June . June .

[] Docker Inc. - "Docker Remote API". https : / / docs . docker . com / engine /

reference/api/docker_remote_api/; last accessed . June . June .

[] Network Working Group Durand et al. IPv Tunnel Broker. RFC . IETF, Jan.
. url: https://tools.ietf.org/html/rfc6146.

[] FastMail Pty Ltd. "SSL vs TLS vs STARTTLS". https://www.fastmail.com/help/
technical/ssltlsstarttls.html; last accessed . June . June .

[] Alessandro Finamore and Konstantina Papagiannaki. “Is the Web HTTP/ Yet?”
In: Passive and Active Measurement: th International Conference, PAM ,
Heraklion, Greece, March -April , . Proceedings. Vol. . Springer. ,
p. .

[] Erich Gamma et al. Design Patterns: Elements of Reusable Object-oriented Software.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., . isbn:
.

[] GitHub - Social-Engineer Toolkit. https://github.com/trustedsec/social-
engineer-toolkit; last accessed . June . June .

[] Github swipely/docker-api - "A lightweight Ruby client for the Docker Remote API".
https://github.com/swipely/docker-api; last accessed . June . June
.

[] Google IPv - Statistics. https://www.google.com/intl/en/ipv6/statistics.
html; last accessed . June . June .

[] Charles David Graziano. “A performance analysis of Xen and KVM hypervisors
for hosting the Xen Worlds Project”. In: ().

[] Crispin - Network Working Group. INTERNET MESSAGE ACCESS PROTOCOL
- VERSION rev. RFC . IETF, Mar. . url: https://tools.ietf.org/
html/rfc3501.

[] Dierks & Allen - Network Working Group. The TLS Protocol - Version .. RFC
. IETF, Jan. . url: https://tools.ietf.org/html/rfc2246.

[] Galbraith & Saarenmaa - Secure Shell Working Group. SSH File Transfer Protocol -
draft-ietf-secsh-filexfer-. RFC. IETF, July . url: https://tools.ietf.org/
id/draft-ietf-secsh-filexfer-13.txt.

https://unix4lyfe.org/darkhttpd/
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://hub.docker.com/explore/
https://docs.docker.com/engine/reference/api/docker_remote_api/
https://docs.docker.com/engine/reference/api/docker_remote_api/
https://tools.ietf.org/html/rfc6146
https://www.fastmail.com/help/technical/ssltlsstarttls.html
https://www.fastmail.com/help/technical/ssltlsstarttls.html
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/trustedsec/social-engineer-toolkit
https://github.com/swipely/docker-api
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/id/draft-ietf-secsh-filexfer-13.txt
https://tools.ietf.org/id/draft-ietf-secsh-filexfer-13.txt

Bibliography

[] Hoffman - Network Working Group. SMTP Service Extension for Secure SMTP over
Transport Layer Security. RFC . IETF, Feb. . url: https://www.ietf.org/
rfc/rfc3207.txt.

[] Klensin - Network Working Group. Simple Mail Transfer Protocol. RFC . IETF,
Oct. . url: https://tools.ietf.org/html/rfc5321.

[] Myers & Rose - Network Working Group. Post Office Protocol - Version . RFC .
IETF, May . url: https://tools.ietf.org/html/rfc1939.

[] Newman - Network Working Group. Using TLS with IMAP, POP and ACAP. RFC
. IETF, June . url: https://tools.ietf.org/html/rfc2595.

[] Postel - Network Working Group. Simple Mail Transfer Protocol. RFC . IETF,
Aug. . url: https://tools.ietf.org/html/rfc821.

[] Rescorla - Network Working Group. The Transport Layer Security (TLS) Protocol
Version . draft-ietf-tls-tls-). RFC. IETF, May . url: https://tools.
ietf.org/html/draft-ietf-tls-tls13-13.

[] Resnick - Network Working Group. Internet Message Format. RFC . IETF, Oct.
. url: https://tools.ietf.org/html/rfc5322.

[] SNIA CIFS Technical Work Group. Common Internet File System (CIFS) Technical
Reference Revision: . - SNIA Technical Proposal. SNIA-DRAFT. SNIA, Feb. .
url: https : / / www . thursby . com / sites / default / files / files / CIFS - TR -
1p00_FINAL.pdf.

[] Heise Security - Locky. http://www.heise.de/security/meldung/Erpressungs-
Trojaner- Locky- schlaegt- offenbar- koordiniert- zu- 3104069.html; last
accessed . July . July .

[] ICANN, nanog mailing list, Leo Vegoda. "Five /s allocated to RIRs – no unallocated
IPv unicast /s remain". https://mailman.nanog.org/pipermail/nanog/2011-
February/032105.html; last accessed . June . June .

[] University of Southern California Information Sciences Institute. INTERNET
PROTOCOL - DARPA INTERNET PROGRAM - PROTOCOL SPECIFICATION.
RFC . IETF, Sept. . url: https://tools.ietf.org/html/rfc791.

[] IPv.com Inc, Kaushik Das. "IPv - The History and Timeline". http://www.ipv6.
com/articles/general/timeline-of-ipv6.htm; last accessed . June .
June .

[] Mockapetris - ISI. DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION.
RFC . IETF, Nov. . url: https://tools.ietf.org/html/rfc1035.

[] ITS.APT: IT-Security Awareness Penetration Testing D. - "State of the Art in IT
Security Awareness Testing". https://tools.net.cs.uni-bonn.de/git/its-
wg/itsapt/tree/master/AP1%20-%20Menschliche%20Faktoren; last accessed .
June . May .

[] ITS.APT: IT-Security Awareness Penetration Testing - D.: ITS-APE-FRAMEWORK-
KONZEPT. https://tools.net.cs.uni-bonn.de/git/its-wg/its.apt/tree/
master/framework/itsapt; last accessed . June . May .

https://www.ietf.org/rfc/rfc3207.txt
https://www.ietf.org/rfc/rfc3207.txt
https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc1939
https://tools.ietf.org/html/rfc2595
https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/draft-ietf-tls-tls13-13
https://tools.ietf.org/html/draft-ietf-tls-tls13-13
https://tools.ietf.org/html/rfc5322
https://www.thursby.com/sites/default/files/files/CIFS-TR-1p00_FINAL.pdf
https://www.thursby.com/sites/default/files/files/CIFS-TR-1p00_FINAL.pdf
http://www.heise.de/security/meldung/Erpressungs-Trojaner-Locky-schlaegt-offenbar-koordiniert-zu-3104069.html
http://www.heise.de/security/meldung/Erpressungs-Trojaner-Locky-schlaegt-offenbar-koordiniert-zu-3104069.html
https://mailman.nanog.org/pipermail/nanog/2011-February/032105.html
https://mailman.nanog.org/pipermail/nanog/2011-February/032105.html
https://tools.ietf.org/html/rfc791
http://www.ipv6.com/articles/general/timeline-of-ipv6.htm
http://www.ipv6.com/articles/general/timeline-of-ipv6.htm
https://tools.ietf.org/html/rfc1035
https://tools.net.cs.uni-bonn.de/git/its-wg/itsapt/tree/master/AP1%20-%20Menschliche%20Faktoren
https://tools.net.cs.uni-bonn.de/git/its-wg/itsapt/tree/master/AP1%20-%20Menschliche%20Faktoren
https://tools.net.cs.uni-bonn.de/git/its-wg/its.apt/tree/master/framework/itsapt
https://tools.net.cs.uni-bonn.de/git/its-wg/its.apt/tree/master/framework/itsapt

Bibliography

[] ITS.APT: IT-Security Awareness Penetration Testing - Software Framework Repository.
https://tools.net.cs.uni-bonn.de/git/its-wg/its.apt/tree/master/

framework/itsapt; last accessed . June . June .

[] ITS.APT: IT-Security Awareness Penetration Testing - Teilvorhabenbeschreibung und
weitere interne Dokumentation. https://tools.net.cs.uni-bonn.de/git/its-
wg/itsapt/tree/master; last accessed . June . May .

[] ITS.APT: IT-Security Awareness Penetration Testing - UKSH Report on Services.
https://tools.net.cs.uni-bonn.de/git/its-wg/itsapt/tree/master; last
accessed . June . May .

[] Kostya Kortchinsky - Immunity, Inc. - "CLOUDBURST - A VMware Guest to Host Es-
cape Story". https : / / www . blackhat . com / presentations / bh - usa - 09 /

KORTCHINSKY/BHUSA09- Kortchinsky- Cloudburst- SLIDES.pdf; last accessed
. June . June .

[] Mills - COMSAT Laboratories. Internet Name Domains. RFC . IETF, Sept. .
url: https://tools.ietf.org/html/rfc791.

[] Naik - Network Working Group Leach. A Common Internet File System (CIFS/.)
Protocol - Preliminary Draft. RFC-DRAFT. IETF, Dec. . url: https://tools.
ietf.org/html/draft-leach-cifs-v1-spec-01.

[] Lighttpd Project Website. https://www.lighttpd.net/; last accessed . June .
June .

[] Linux Containers Project - "Linux Containers - LXC - Introduction". https://
linuxcontainers.org/lxc/introduction/; last accessed . June . June
.

[] Linux VServer Project - "Linux-VServer.org Homepage". http://linux-vserver.
org/Welcome_to_Linux-VServer.org; last accessed . June . June .

[] M. R. Endsley: Toward a Theory of Situation Awareness in Dynamic Systems. In:
Human Factors: The Journal of the Human Factors and Ergonomics Society ().
.

[] Thomas Maqua. “TITLE”. not yet published. Master’s Thesis. Germany: University
of Bonn, .

[] Metasploit - Penetration Testing Software. https://metasploit.com/; last accessed
. June . June .

[] Microsoft.com, MSDN - Microsoft SMB Protocol and CIFS Protocol Overview. https:
//msdn.microsoft.com/en-us/library/windows/desktop/aa365233(v=vs.85)

.aspx; last accessed . June . June .

[] Microsoft.com, MSDN - [MS-CIFS]: Common Internet File System (CIFS) Protocol.
https://msdn.microsoft.com/en-us/library/ee442092.aspx; last accessed .
June . June .

[] Microsoft.com, MSDN - [MS-SMB]: Server Message Block (SMB) Protocol Versions
 and . https://msdn.microsoft.com/en-us/library/cc246482.aspx; last
accessed . June . June .

https://tools.net.cs.uni-bonn.de/git/its-wg/its.apt/tree/master/framework/itsapt
https://tools.net.cs.uni-bonn.de/git/its-wg/its.apt/tree/master/framework/itsapt
https://tools.net.cs.uni-bonn.de/git/its-wg/itsapt/tree/master
https://tools.net.cs.uni-bonn.de/git/its-wg/itsapt/tree/master
https://tools.net.cs.uni-bonn.de/git/its-wg/itsapt/tree/master
https://www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf
https://www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/draft-leach-cifs-v1-spec-01
https://tools.ietf.org/html/draft-leach-cifs-v1-spec-01
https://www.lighttpd.net/
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
http://linux-vserver.org/Welcome_to_Linux-VServer.org
http://linux-vserver.org/Welcome_to_Linux-VServer.org
https://metasploit.com/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365233(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365233(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365233(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ee442092.aspx
https://msdn.microsoft.com/en-us/library/cc246482.aspx

Bibliography

[] Bill Miller and Dale Rowe. “A Survey SCADA of and Critical Infrastructure
Incidents”. In: Proceedings of the st Annual Conference on Research in Information
Technology. RIIT ’. Calgary, Alberta, Canada: ACM, , pp. –. isbn:
. doi: 10.1145/2380790.2380805. url: http://doi.acm.org/10.
1145/2380790.2380805.

[] Net Applications: NetMarketShare.com - "Desktop Operating System Market Share".
https://www.netmarketshare.com/; last accessed . June . June .

[] Netcraft Ltd.: May Web Server Survey. http : / / news . netcraft . com /

archives/2016/05/26/may- 2016- web- server- survey.html; last accessed
. June . June .

[] Belshe et al. - Network Working Group. Hypertext Transfer Protocol Version
(HTTP/). RFC . IETF, May . url: https://tools.ietf.org/html/
rfc7540.

[] Blake-Wilson et. al - Network Working Group. Transport Layer Security (TLS)
Extensions. RFC . IETF, June . url: https://tools.ietf.org/html/
rfc3546.

[] Fielding et al. - Network Working Group. Hypertext Transfer Protocol – HTTP/..
RFC . IETF, June . url: https://tools.ietf.org/html/rfc2616.

[] Thomson et al. - Network Working Group. DNS Extensions to Support IP Version .
RFC . IETF, Oct. . url: https://tools.ietf.org/html/rfc3596.

[] OpenVZ Project - "OpenVZ Virtuozzo Containers Wiki". https://openvz.org/
Main_Page; last accessed . June . June .

[] Oracle Inc. - "Oracle Solaris Zones". https://docs.oracle.com/cd/E18440_01/
doc.111/e18415/chapter_zones.htm#OPCUG426; last accessed . June .
June .

[] Sage Premier. Human Factors: The Journal of the Human Factors and Ergonomics
Society. Sage, .

[] Rescorla - Network Working Group - "Draft - The Transport Layer Security (TLS)
Protocol Version ." - June , . https://tlswg.github.io/tls13-spec/
#rfc.section.1.2; last accessed . June . June .

[] Dierks & Rescorla. The Transport Layer Security (TLS) Protocol Version .. RFC
. IETF, Aug. . url: https://tools.ietf.org/html/rfc5246.

[] rubyonrails.org: Guides - Active Record Basics. http://guides.rubyonrails.org/
active_record_basics.html; last accessed . June . June .

[] Andrew S. Tanenbaum and David J. Wetherall. Computer Networks. th. Upper
Saddle River, NJ, USA: Prentice Hall Press, . isbn: .

[] TrustedSec - Social-Engineer Toolkit. https://www.trustedsec.com/social-
engineer-toolkit/; last accessed . June . June .

[] TrustedSec - Social-Engineer Toolkit - David Kennedy - SET User Manual Made for
SET .. https://github.com/trustedsec/social-engineer-toolkit/blob/
master/readme/User_Manual.pdf; last accessed . June . June .

http://dx.doi.org/10.1145/2380790.2380805
http://doi.acm.org/10.1145/2380790.2380805
http://doi.acm.org/10.1145/2380790.2380805
https://www.netmarketshare.com/
http://news.netcraft.com/archives/2016/05/26/may-2016-web-server-survey.html
http://news.netcraft.com/archives/2016/05/26/may-2016-web-server-survey.html
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc3546
https://tools.ietf.org/html/rfc3546
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc3596
https://openvz.org/Main_Page
https://openvz.org/Main_Page
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426
https://tlswg.github.io/tls13-spec/#rfc.section.1.2
https://tlswg.github.io/tls13-spec/#rfc.section.1.2
https://tools.ietf.org/html/rfc5246
http://guides.rubyonrails.org/active_record_basics.html
http://guides.rubyonrails.org/active_record_basics.html
https://www.trustedsec.com/social-engineer-toolkit/
https://www.trustedsec.com/social-engineer-toolkit/
https://github.com/trustedsec/social-engineer-toolkit/blob/master/readme/User_Manual.pdf
https://github.com/trustedsec/social-engineer-toolkit/blob/master/readme/User_Manual.pdf

Bibliography

[] Bellis - Nominet UK. DNS Transport over TCP - Implementation Requirements. RFC
. IETF, Aug. . url: https://tools.ietf.org/html/rfc5966.

[] Universitätsklinikum Schleswig-Holstein (UKSH) Website. http://www.uksh.de/
Das_UKSH.html; last accessed . June . June .

[] ITU T X.. Information Technology Open System Interconnection Basic Reference
Model: The Base Model. July .

https://tools.ietf.org/html/rfc5966
http://www.uksh.de/Das_UKSH.html
http://www.uksh.de/Das_UKSH.html

	Introduction
	Human Penetration Testing (HPT)
	IT-Security Awareness Penetration (ITS.APT) Project
	Related Work

	Background
	Service Environment
	Protocols
	Internet Protocol version 4 & 6 (IPv4 & IPv6)
	Domain Name System (DNS)
	Server Message Block (SMB) / Common Internet File System (CIFS)
	Simple Mail Transfer Protocol (SMTP)
	Hypertext Transfer Protocol (HTTP)
	Protocols over SSL/TLS (HTTPS, SMTPS)

	Virtualization
	IT-Security Awareness Penetration Testing Environment (ITS.APE)
	ITS.APE framework goals
	Modules
	Models
	Technology
	Human Penetration Test Workflow

	Design
	Requirements Analysis
	Virtualization Technique
	ITS.APE Infrastructure Generator Extension
	Design of Provided Services
	Mail Service
	File Sharing Service
	Website Service
	Redirect System

	Implementation of ITS.APE Infrastructure Management Extension (IME)
	Type-based Naming Scheme
	Configuration of the Infrastructure Management Extension
	Internal Infrastructure Manager Module (IIM)
	Properties
	Methods

	ITSAPE Container Model
	Properties
	Methods

	Extended Legacy Framework Modules & Models
	Modifications to the APE Module
	Modifications to Infrastructure Generator (IG)
	Modifications to Delivery Manager (DM)
	Modifications to Infrastructure Element (IE)

	Routing via Redirect System
	IP
	DNS

	Generalized Service Infrastructure
	Infrastructure Specific Scripts
	Mail Service
	Website Service

	Evaluation
	Conform with formulated Requirements
	Type-based Naming Scheme
	Configuration
	Internal Infrastructure Module
	ITSAPE Container Model
	Extended Legacy Framework Modules & Models
	Evaluation of Routing via Redirect System
	Evaluation of Generalized Service Infrastructure
	Evaluation of Mail Service
	Evaluation of Website Service

	Summary & Future Work

