
CIS: The Crypto Intelligence System for Automatic Detection and Localization
of Cryptographic Functions in Current Malware

Felix Matenaar
RWTH Aachen, Germany

felix.matenaar@rwth-aachen.de

Andre Wichmann
Fraunhofer FKIE, Germany

andre.wichmann@fkie.fraunhofer.de

Felix Leder
Norman ASA, Norway

felix.leder@norman.com

Elmar Gerhards-Padilla
Fraunhofer FKIE, Germany

elmar.gerhards-padilla@fkie.fraunhofer.de

Abstract

Finding and extracting crypto algorithms in binary code
is often a tedious reverse engineering task. A significant
amount of manual work is required when unknown imple-
mentations are used. This is especially true for malware
that contains variants of existing or even completely new
algorithms. So far, no flexible and generic crypto detection
framework exists that can support analysts in this task. The
framework must be able to handle various heuristics that
each are ideal to detect specific types of cryptographic al-
gorithms. In addition, a suitable set of heuristics must be
selected that can identify a wide range of crypto algorithms
from various classes since the type of crypto implemented
in a binary is not always known.

In this paper, we present the architecture of CIS, the
Crypto Intelligence System, that fulfills the requirements
for such a framework. Furthermore, we evaluate differ-
ent heuristics for the real-world usage in the framework.
The overall evaluation, using real programs, shows that CIS
simplifies the job of an analysts significantly with a high de-
tection and low false positive ratio.

1 Introduction
For the research of malware, and especially botnets, it is

often essential to identify and reverse engineer the crypto-
graphic algorithms that are used [3]. The continuous track-
ing of botnets, like the infamous banking trojans ZeuS [1]
and SpyEye [2], is often impossible without extracting the
communication crypto and keys. Update mechanisms and
mitigation techniques can require the same steps [14].

Similar problems occur in the field of auditing the secu-
rity implementations in commercial applications, especially
if the source code is not available.

This is often a tedious reverse engineering task with a
significant amount of manual effort. Analysts can spent
several days or weeks just to find the relevant algorithms
in programs that can easily exist of hundreds to thousands
of functions with multiple thousands of instructions.

The existing attempts to automate parts of this process
are rather immature. The search for known constants of
crypto algorithms [6, 8] is most common but also limited
to specific algorithms [7]. In addition, these approaches are
not easily applicable to packed code or when the constants
are calculated at run-time only. Other, more generic
approaches are limited by the technology used [13], not
extendable, too slow, or results are too wide to pinpoint the
exact piece of code [4].

A framework for supporting analysts in pinpointing
crypto algorithms needs to be generic with respect to types
of cryptography, extendable to support multiple, comple-
menting heuristics, has a low interference with the binary’s
execution, and needs to be as precise as possible. The lat-
ter requires a high detection rate with low false positives.
In the context of malware it is essential that the framework
also works with packed executables. To this end, the paper
makes the following contributions:

• The architecture of CIS, the Crypto Intelligence Sys-
tem, an extensible crypto detection and localisation
framework is developed

• The framework is complemented with the selection of
suitable heuristics that can generically identify sets of
cryptographic algorithms including variants.

• The most important goal is to support analysts by pin-
pointing the exact crypto algorithm. Therefore, the
framework in combination with the selected heuristics
is evaluated with respect to false positives and success-
ful detections using known applications.



The rest of the paper is organized as follows. Section 2
discusses the problem of localising cryptographic routines
in malware and its implications. Section 3 describes the
architecture of the Crypto Intelligence System. In section 4,
we evaluate different detection heuristics for their use in the
framework. In section 5, we evaluate the benefit for analysts
using real-world applications. Section 6 discusses related
work, and section 7 concludes this paper.

2 Problem Statement
Our goal is to build a general, flexible framework for de-

tecting cryptography in order to lower reverse engineering
cost. We consider two challenges that need to be solved.
First, malware analysis requires reliable and stealthy anal-
ysis techniques to cope with reverse engineering protection
often found in malware. Second, the detection of cryptogra-
phy is not a simple problem since it can be reduced to Rice’s
Theorem [23]. The right type of heuristics have to be used
to lower the effort for analysts.

2.1 The Crypto Detection Problem
When we speak about detecting cryptographic functions

in binary code, it is important to define cryptography first.
A further question is if this problem can be divided into
smaller parts for which there exist alternative ways for de-
tection.

We distinguish between symmetric, asymmetric, and
hash algorithms. Each class has their own set of properties
that must be met in order to be secure. Due to the properties
of each class, some heuristics work better or exclusively on
one type. Other heuristics are more generic with the result
of being less precise.

A common approach is to refine the detection problem to
known crypto algorithms for each class. Previous work on
this topic refers to algorithm-level detection by using pat-
tern matching on well-known constants used in some cryp-
tographic algorithms or by comparing function input and
output with reference implementations [13]. On the one
hand, this supports the analyst by also providing hints on
the specific crypto. On the other hand, it limits the approach
by not detecting new as well as custom tailored algorithms.

In summary, we classify approaches towards detection of
cryptography using a two-fold approach:

• Methods for generically detecting arbitrary crypto al-
gorithms

• Methods for detecting predefined sets of crypto algo-
rithms.

2.2 Framework Requirements
The ability to be able to generically detect various types

of crypto algorithms in combination with the specific usage

scenario must be reflected in the architecture of CIS. The
requirements for such a framework are being

• Able to handle packed and protected programs
• Least invasive to avoid interference with the original
• Provide a range of input for various detection ap-

proaches
• Extendable with respect to generic crypto detections

The majority of malware contains protective measures
against reverse engineering. Most common in this context
is the use of packers. Similar techniques can be part of li-
censing components in regular COTS software. They usu-
ally target either static analysis or specific dynamic analysis
techniques. Therefore, it is usually recommended to use a
hybrid analysis approach [15].

In the same context of evasion, it is important to be
least invasive and thus, harder to detect. Especially certain
types of dynamic analysis approaches are easy to detect,
like debuggers and process modifications. A less invasive
approach has to be used in in order to reduce the chances of
being detected.

Invasiveness is also important in the context of run-time.
Approaches that slow the analysis down by factors of hun-
dreds to thousand can easily result in communication or
watchdog timeouts and interfere with the binary in a way
that it cannot be analyzed dynamically. An important as-
pect in this context is logging. The performance overhead
by logging every details, like every executed instruction,
quickly leads to this magnitude of overhead. In many cases,
though, information can be processed faster on the fly with-
out the this overhead. In other cases, the processing itself
can pose such an overhead that it would have an impact on
the analysis. A generic framework must be able to include
real-time as well as logging and a-posteriori analysis.

Different heuristics require different pieces of informa-
tion. The framework must be able to provide a range of
useful intelligence. This needs to be available to multiple
detection heuristics in order to be extendable. It needs to be
avoided that extensions have to collect the same data twice.
In the context of known crypto detection approaches six
pieces of information are of relevance: instructions, basic
blocks, functions, memory contents, crypto library hooks,
system call tracing.

3 Design
In the following, the architecture of the Crypto Intel-

ligence System (CIS) is described. Its design is directly
derived from the requirements for crypto detection frame-
work as discussed in the previous section. We chose QEMU
[18] as the basis for our framework, as its dynamic binary
translation architecture provides instruction-level analysis
granularity while at the same time retaining a significantly



higher runtime performance compared to instruction emu-
lation used by, for example, Bochs [29]. Another reason for
choosing QEMU is that it is detected less often by malware
than other virtualization environments [26].

The CIS consists of several independent parts. Introspec-
tion enables the system to control the instrumentation pro-
cess with key events like thread creation, runtime loading
of shared libraries or program termination. To gain further
data about the internal behavior of the analysis target which
is fed into the heuristics, the QEMU Tiny Code Genera-
tor (TCG) is used to hook into the binary translated code.
Event treatment is a challenge in dynamic program analysis
because most of the runtime overhead is produced during
the data measurement.

3.1 Instrumentation Features
To fullfill the data requirements of our cryptography de-

tection heuristics, it is necessary to implement more fine-
granular instrumentation features than breakpoints, API-
and Syscall tracing. For being able to identify locations of
certain program behavior, the analysis run must be divided
into code units. We chose both the execution of functions
and single basic blocks as boundaries for our code units
since there are heuristics for both cases. Checking the be-
gin or end of basic blocks can be done reliably. In contrast,
a reliable differentiation between functions assumes certain
calling conventions which do not need to be satisfied by the
analysed program. A combination of call/ret instruction in-
strumentation and stack-frame tracking was implemented to
make this mechanism as reliable as possible.

Our core instrumentation features contain instruction
and memory access tracing. The instruction tracing for ex-
ample enables the measurement of percentage use of dif-
ferent instruction categories inside a basic block. This can
be precalculated at translation time and stored together with
the basic block start address as the access key. This tech-
nique makes measurements of instruction spreading very
efficient. The implementation of the memory access trac-
ing covers all instructions reading and/or writing to mem-
ory. The CIS is able to limit the instrumentation to certain
memory pages only. This eliminates the instrumentation
overhead of code whose behavior is already known as this
is the case for system wide shared libraries for example.

3.2 Event Processing
Event processing is a crucial design part in our frame-

work. The CIS includes an extensible event propagation ar-
chitecture to cope with data processing as it is measured. A
modular publish-subscribe like callback mechanism is used
for analysis modules to register for certain program data.
Events like memory accesses and basic block execution is
measured by the low-level instrumentation modules directly
hooking into TCG. Using the callback based API, further
modules can subscribe to such events and aggregate them

Call/Ret SyscallMemory
Access

Breakpoint
Basic Block
Execution

Detect
Function

Boundaries

Constant pattern
search

Instruction
measurement

Entropy
analysis

Caballero
Derived heuristic

API
Hooking

Adjusted Caballero
Derived heuristic

Figure 1. Data Processing from Bottom to Top

all the way up to the result logging for each heuristic. Figure
1 illustrates the event data flow in the CIS for some sample
heuristics.

Many dynamic program analysis frameworks create
trace data at runtime which is then stored persistently. The
actual analysis is then executed in a post-processing step.
On the one hand, this shifts analysis overhead from the crit-
ical runtime into an a-posteriori phase where calculation
time is not a concern. In addition, this enables the applica-
tion of many different analysis algorithms during one single
program run. On the other hand, storing all required data
during runtime can slow down the analysis due to the write
speed of the storage medium, and might even be completely
infeasible as the sheer amount of data and meta-data gener-
ated by instruction tracing for example can be too large to
handle. The great advantage of an analysis during runtime
is the possibility of event aggregation and filtering. Already
analysed parts of the program could for example be condi-
tionally excluded from instrumentation, which as a conse-
quence reduces runtime overhead. Therefore, we use a two-
stage processing approach. In the first stage, which is con-
ducted during the analysis, fast heuristics can be applied.
These need to be able to do real-time processing. The sec-
ond stage, which is conducted a-posteriori after the analy-
sis based on collected data, enables the usage of algorithms
with higher complexity. Our a-posteriori analysis reads a
trace file for each program thread and reconstructs the se-
quence of relevant runtime events. These are then used as
input for the post processing heuristics.

4 Heuristics
The CIS framework provides the foundation for data col-

lection from binary code. In order to be usable in a real-
world scenario, it needs to be complemented by crypto de-



tection. For this purpose, 8 different detection heuristics are
evaluated. In order to support analysts in real-world sce-
narios, not only a suitable frame-work has to be available,
but also a suitable set of detection heuristics needs to be
included in an overall solution.

For this purpose we have selected four existing heuris-
tics. In addition, we developed four new heuristics. Since
the goal of CIS is to generically detect a wide range of cryp-
tographic algorithms, the quality of all heuristics is evalu-
ated in order to select the best set. Our major criterion is
that crypto algorithms can be detected generically. Thus,
we evaluated the quality of the results for three different
classes of algorithms: symmetric, asymmetric, and crypto-
graphic hash algorithms.

In the following, we will first introduce the crypto heuris-
tics and then present the result of our selection process.

4.1 Crypto Detection Heuristics
We have chosen eight heuristics for our evaluation. Ca-

ballero, constant search, absolute entropy, and crypto-API
are well established approaches. Adjusted Caballero, en-
tropy difference, asymmetric, and taint-graph are modifica-
tions of existing approaches developed towards our needs.

Caballero: The Caballero heuristic assumes that cryp-
tographic functions rely on arithmetic and bitwise opera-
tions [24]. It considers the ratio of these operations in a
block of code. If the ratio exceeds a certain threshold the
algorithm or code block is assumed to be related to crypto.
In a pre-study, we evaluated different parameters and found
that the approach works best for code blocks of 20 or more
instructions and a threshold of 70% for arithmetic and bit-
wise instructions when not taking ”mov” into account. This
is in contrast to the original approach. Previous work [25]
uses the original heuristic with a threshold of 55%.

Adjusted Caballero: The caballero heuristic includes
a large set of instructions considered to be used in cryp-
tography, like floating point operations. However manual
inspection using reference implementations suggested that
most of these instructions are shift operations, bitwise AND
and OR and XOR. Therefore, we derived a second heuris-
tic that only considers these instructions. This decreases the
likelihood for false positives for graphics libraries and the
like. Since we are reducing the amount of positive instruc-
tions, the threshold is reduced to 40%. This threshold was
selected during another pre-study.

Asymmetric Caballero: The instructions named in the
two Caballero based approaches are usually found in sym-
metric crypto. Asymmetric cryptography relies on differ-
ent instructions. Therefore, a special variant was tuned for
asymmetric crypto. In a pre-study, we found a good detec-
tion if at least 50% of the instructions are of type mul, div,
or add, which is usually related to big number operations.
The minimum block size is 10.

Abolute Entropy: Encrypted data is considered to have
a high information entropy because it can ideally not be dis-
tinguished from random noise. Therefore, the idea to detect
encrypted data using entropy measurements. We designed
a heuristic that calculates the entropy of all memory regions
that were read or written during the execution of a function.
Note that this is slightly different from previous heuristics
that do entropy analysis on files; we compute entropy on
memory regions during program execution. When tracing
the program counter it is possible to exactly pin-point the
code that accesses high-entropy memory regions. We used
the scaled entropy formula from [10] and set the threshold
to 0.7.

Entropy Difference: Encrypted data that enters a pro-
gram is not only accessed by crypto functions, but also dur-
ing copy and other operations. The uniqueness of crypto
functions is that they transform encrypted, high entropy in-
put to lower entropy plain texts or vice versa if the plain text
is of lower entropy. This can be captured when considering
the entropy of memory regions that are read and compare
it to that of memory regions that are written to in the same
code block. This helps to differentiate crypto from regular
copy operations. As for the absolute entropy we used the
scaled entropy formula from [10].

Constant search: A range of crypto algorithms require
specific constants for initialization, especially to hash algo-
rithms. By monitoring for these it is possible to pin-point
and name the algorithms. When linked against full crypto
libraries, programs can contain several of these algorithms
even if they are not used. This can lead to false positives.
In order to avoid this situation, we only consider constants
that used during the execution.

Taint-graph: Another heuristic exploits the fact that
good symmetric algorithms have to fulfill the properties of
confusion and diffusion. This essentially means that a small
portion of the input has a significant influence on a large
portion of the output. By tracking the data-flow in code
blocks and determining the data input and output dependen-
cies, we can capture this relationship. A detailed description
would exceed the scope of this paper. We used an minimum
input size of 4 bytes and assume confusion if these have an
impact on at least 8 memory writes in the same block.

Crypto API: Cryptographic functions don’t necessarily
have to be implemented inside a program. A broad range of
functions is available as part of today’s operating systems.
Therefore, we also monitor the use of such libraries.

4.2 Evaluation

In order to select the most generic heuristics, we evalu-
ated the presented ones towards detection quality as well as
false positives. In the end, four heuristics were found to be
suitable for CIS.



Detection Quality The detection quality was studied us-
ing three different classes of crypto algorithms: symmetic,
asymmetric, and hashes. 16 symmetric crypto algorithms
were the ones implemented in the stegano-suite OpenPuff
[16]. The 3 asymmetric algorithms and 9 hash algorithms
that come as source code in Schneier’s book [17] are used
in addition.

All heuristics are evaluated towards true positives in the
general case. Some of the heuristics have immanent weak-
nesses that makes it impossible for them to detect all algo-
rithms. The constant search does not work on crypto that
doesn’t use any constants. The same applies to programs
that don’t make use of crypto APIs. Actually, none of the
implementations used for the evaluation makes use of APIs.
Thus, it is only included for completeness but didn’t detect
anything. This may be completely different for other appli-
cations.

Figure 2 summarizes the detection rates using reference
implementations. Figure 3 is more detailed regarding the
investigated algorithm classes. The Caballero variants have
very good detection on symmetric and hash algorithms
while failing mostly for the asymmetric class. The asym-
metric variant of Caballero improves this a little bit. Con-
stants are usally used in symmetric and hash algorithms and
thus, perform ok on these classes while failing on the asym-
metric class. The same applies for our taint-graph heuristic.
It exploits the confusion and diffusion properties that are
part of the symmetric class.

The absolute entropy heuristic has perfect detection. The
entropy different achieves the same result for the three
asymmetric algorithms but is less successful for the other
classes.

All in all, the entropy approach outperforms the detec-
tion of all others. The two main Caballero variants have a
good detection of more than 80% each. The constant search
also proves to be powerful since a range of algorithms rely
on initialization constants.

False Positives A good detection quality alone is not
enough. A framework that should support an analyst also
requires to limit the amount of false alerts. Thus, we eval-
uated the eight heuristics against seven real-world applica-
tions, displayed in table 4. Limiting the number of applica-
tions enabled us to verify the false positives manually.

We measured false positives for each heuristic using a
collection of known programs in figure 4. The test set in-
cludes network usage and compression. Each program is
analyzed and functions that trigger one of the heuristics but
are non-cryptographic are considered as false positive. The
results show that the constant search heuristic has the least
number of false positives. The adjusted Caballero heuristic
produced only half as much false positives than the original
Caballero heuristic. The reason for this is that the origi-
nal considers much more instructions to be cryptographic

than the adjusted one. This results in larger false positive
rates in the uharc test case in which arithmetic instructions
are used for compression. The entropy measurement pro-
duced the highest number of false positives. While this is
a bad result compared to the other three heuristics one has
to consider the fact that no false negatives were produced in
previous evaluation phase. The entropy difference performs
much better in this context. The taing-graph heuristic has
the highest false positive rate, which shows that the seman-
tics behind data dependencies are hard to grasp. The asym-
metric variant of Caballero is rather average and shares the
same difficulties with the uharc test case with the others. No
program was using crypto libraries, so that the API heuristic
cannot detect anything.

%

20
40
60
80
100 82

Cab
all

ero

88

Adju
ste

d Cab
all

ero

66

Asy
mmetr

ic

83

Con
sta

nts

50

Entr
op

y Diff
ere

nc
e

100

ab
so

lut
e Entr

op
y

64

Tain
t-G

rap
h

0

Cryp
to

API

Figure 2. Detection of reference implementations

Detection ratio of crypto heuristics
Symmetric Asymmetric Hash

20

40

60

80

100
81

33

100

Cab
all

ero

81

0

100

Adju
ste

d Cab
all

ero

31

0

56

Con
sta

nt
sea

rch

100100100

Abs
olu

te
Entr

op
y

38

100

44

Entr
op

y dif
fer

en
ce

69

0

56

Trai
nt-

gra
ph

0

67

0

Asy
mmetr

ic

0 0 0

Cryp
to-

API

Figure 3. Class specific detection quality

4.3 Heuristic Selection
Based on the presented results, we select the original Ca-

ballero, the adjusted Caballero, the absolute, and the con-
stant search for the CIS framework. The two Caballero
based approaches are a good trade-off between detection



Program C
ab

al
le

ro

A
dj

us
te

d
C

ab
al

le
ro

C
on

st
an

ts

A
bs

ol
ut

e
E

nt
ro

py

E
nt

ro
py

D
iff

er
en

ce

Ta
in

t-
G

ra
ph

A
sy

m
m

et
ri

c

C
ry

pt
o-

A
PI

Functions
curl 0 1 0 10 3 42 2 0 532
notepad 0 0 0 2 2 1 0 0 34
calc 0 1 0 5 2 6 0 0 91
wget 1 3 0 12 3 13 5 0 347
nslookup 1 1 0 5 3 0 0 0 49
uharc 27 10 3 17 9 12 17 0 301
telnet 0 1 0 9 3 4 0 0 64
Absolute 29 17 3 60 25 78 24 0 1418
Percent 2.0 1.2 0.21 4.2 1.76 5.5 1.69 0.0 100

Figure 4. False positives using regular programs

and false positives. The absolute entropy has the highest
percentage of false positives but has also detected all crypto
functions. The false positive ratio of only 4.2% is still ac-
ceptable since it still reduces the functions that an analyst
has to investigate significantly. The constant search is the
complement. It has a very low false positive rate and can
pin-point the exact algorithm if known constants are used.
The only limitation is that not every crypto algorithms uses
constants.

5 Evaluation
The previous chapter presented how each heuristic per-

formed during the true positive and false positive tests. For
a final evaluation regarding the practical applicability of the
CIS, the first four heuristics from figure 2 were chosen due
to the previous results.

To perform the evaluation of the framework’s practical
applicability, we chose five off-the-shelf programs that are
known to include cryptography: Curl HTTPS, Aescrypt,
File Encrypter, Aphex Crypter, AES File Crypter. The goal
was to figure out how well the CIS integrates into the over-
all reverse engineering of cryptography. Criteria for this test
set included the program code size not to be overwhelming
to limit the amount of verification time. In addition imple-
mentations of all three algorithm classes as mentioned in
section 2 had to be used in the program set.

5.1 Practical Applicability
We first gathered all locations of cryptographic functions

in the test set by hand. Then the CIS was used to carry out
an automated analysis. Both results were manually com-
pared. A comparison of the amount of true positives to the
number of false positives for each heuristic is illustrated in
figure 5.

As in the previous section, the absolute entropy measure-
ment found every cryptographic function that was included.
However, compared to other heuristics, a large amount of
false positives were produced which considerably slowed

down the manual verification. The Caballero heuristic and
the adjusted one produced similar results as in the heuristic
test phases, whereas the constant search resulted to be the
most reliable. All three functions that were not detected did
not include any constants to be found. However, one false
positive was produced during execution. We found out that
this was the only case where only one single constant pat-
tern was found in a code region. Therefore adding a thresh-
old for a minimum number of constant patterns to detect
would have mitigated this problem regarding our evalua-
tion.

5.2 Evaluation Conclusion
The evaluation shows that the CIS framework is a good

tool for supporting analysts to finding cryptographic rou-
tines. In combination with the right heuristics it pin-points
cryptographic algorithms with high precision while meet-
ing all requirements set. A combination of heuristics can be
used to fine-tune the trade-off between detection and false
positives.

The evaluation confirmed our decision to create an ad-
justed Caballero heuristic. It created only half as much
false positives while maintaining true positives. The con-
stant search heuristic resulted to be reliable and applicable
for algorithms for which constants can be found. We con-
sider the applicability of the entropy heuristic to be subjec-
tive due to its extreme behavior regarding false and true pos-
itives. We suggest this heuristic to be used in cases where
the verification cost of higher false positive rates is accept-
able in exchange to a higher probability.

The evaluation shows that our framework is capable
of meeting the required run-time performance overhead
boundaries, which are not presented in detail in this paper.

The combination of runtime- and a-posteriori analysis
enabled the application of all heuristics in a single run with-
out the need to generate huge trace files which slow down
execution or might be too large to store at all. Only the
entropy measurement needed a-posteriori analysis. Using
solely the other heuristics would eliminate the need to per-
sistently store data besides the analysis results. Consider-
ing previous approaches which used up to several hours for
the a-posteriori analysis of one single program run, this is a
great performance achievement[25].

As a side note, we implemented an IDA Pro integration
so that CIS can easily integrate into the existing reverse en-
gineering workflow and to support the analyst as good as
possible.

6 Related Work
A wide range exists in the area of binary code analysis

in general, and malware in particular. Most of the work



Results

Maximum amount of cryptographic functions: 13

true Positives:

false Positives:
20

40

60

80

11
3

Cab
all

ero

10 5

Adju
ste

d Cab
all

ero

10
1

Con
sta

nt
sea

rch

13

65

Abs
olu

te
Entr

op
y

Figure 5. Evaluation using off-the-shelf programs

focuses on observing the semantic behavior of the malware
related to API calls [22]. A focus on crypto exists in only
few approaches.

PIN [19] and Valgrind [20] are user-space dynamic in-
strumentation framworks that change and monitor and the
code during run-time. This impact reduces the analyzable
sample and are easy to detect.

In order to avoid this, newer approaches employ virtuali-
sation, which allows to control the operating system in addi-
tion to the program. The analysis framework that is closest
to our own is TEMU of the bitblaze framework [5], which
also extends QEMU. Further VM introspection approaches
are based on hardware assisted virtualization[21].

The importance of detecting and finding cryptographic
routines in malware is well recognized by the research com-
munity. Work in this area can roughly be categorized into
static and dynamic analysis techniques.

One static analysis technique is to search for constants
used in certain cryptographic algorithms. Several tools exist
for this task [6, 7, 8]. Also work has been done to find the
actual keys used for cryptography. This can be carried out
e.g. for memory images [27].

In a work from Caballero et al., dynamic analysis is
used to generate an instruction trace for offline analysis [9].
While the main focus is autoamtic reverse engineering of
protocols, they also present a technique to identify what
they call encoding functions, which also includes compres-
sion and obfuscation functions.

The automatic extraction of decrypted network traffic is
studied in [10]. Different heuristics, based on function spe-
cific features, like loops and constants, is combined with
memory taint tracking. This allows to identify candidates
for crypto functions and extract the data that was touched
during their execution. A similar idea is used in [11] to
get the clear text from encrypted network data. Wang at al.
make the assumption that the data will be decrypted shortly
after it is received. This should be detectable by a high
cumulative amount of arithmetic and bitwise instructions,

which then should drop again when the decrypted data is
processed afterwards. While their aim was not to find the
decryption routine itself, the idea could be adapted to locate
the decryption routine. This idea is supported by findings in
[12].

In [13], several heuristics for detecting cryptographic
routines are evaluated using a single analysis framework.
While the topic is very similar to ours, they had a stronger
focus on algorithm identification. [30] introduces further
identification methods.

7 Conclusion
Finding and extracting cryptographic functions in binary

code is often a hard reverse engineering task that requires
a lot of manual effort. Still, it is an essentially important
analysis step in the fight against malware. Likewise, it is
relevant for the binary audit of regular applications.

While different detection heuristics have been proposed
and evaluated in frameworks tailored specifically for the
heuristics in question, there has not yet been made the ef-
fort to generally characterize the crypto detection problem
and develop a framework capable of integrating arbitrary
crypto detection heuristics. This paper tries to make a first
step into this direction by deriving important requirements
any crypto detection framework should fulfill, and presents
the Crypto Intelligence System architecture. The CIS is ex-
tendable and can support a range of different heuristics in
a single run. At the same time it retains a good run-time
performance that minimizes the impact on the object under
investigation.

The framework is complemented by a selection of crypto
detection heuristics that are evaluated for their applicability
to the general detection problem.

The evaluation using real-world programs shows that
CIS is a good means to support the analysts with this te-
dious task by providing good precision in the results and by
integrating well in the overall analysis process.

Building upon these foundations, the CIS will be used
to evaluate and compare other crypto detection heuristics
in future work. This includes fine-tuned versions of the
existing heuristics. In addition to that, more FP tests and
real-world use cases with malware help to strenghten the
supportive character of CIS.

References
[1] Binsalleeh, H. and Ormerod, T. and Boukhtouta, A.

and Sinha, P. and Youssef, A. and Debbabi, M. and
Wang, L.: On the analysis of the Zeus botnet crimeware
toolkit. In: IEEE Eighth Annual International Confer-
ence on Privacy Security and Trust (PST), pp. 31–38
(2010).



[2] Brand, M.: Forensic Recovery and Analysis of the
Artefacts of Crimeware Toolkits. In: Proceedings of the
9th Australian Digital Forensics Conference (2011).

[3] Leder, F., Werner, T., Martini, P.: Proactive Botnet
Countermeasures–An Offensive Approach. Coopera-
tive Cyber Defence Centre of Excellence Tallinn, Es-
tonia(2009).

[4] Leder, F., Martini, P., Wichmann, A.: Finding and Ex-
tracting Crypto Routines from Malware. In: Proceed-
ings of the 2nd IEEE International Workshop on Infor-
mation and Data Assurance (WIDA’09), Phoenix, Ari-
zona, USA (2009).

[5] Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I.,
Kang, M., Liang, Z., Newsome, J., Poosankam, P., Sax-
ena, P.: BitBlaze: A new approach to computer security
via binary analysis. In: Journal of Information Systems
Security, pp. 1–25, Springer (2008).

[6] PEiD Krypto Analyzer (KANAL) Plugin. http://
www.peid.info/plugins/, last visit: Apr. 2012

[7] Guilfanov, I.: FindCrypt. Hex Blog (2006). http://
www.hexblog.com/?p=27, last visit: Apr. 2012

[8] Loki: SnD Crypto Scanner plugin for OllyDbg and Im-
munity Debugger.

[9] Caballero, J., Poosankam, P., Kreibich, C., Song, D.:
Dispatcher: enabling active botnet infiltration using au-
tomatic protocol reverse-engineering. In: Proceedings
of the 16th ACM conference on Computer and commu-
nications security, pp.621–634 (2009).

[10] Lutz N: Towards revealing attacker’s intent by auto-
matically decrypting network traffic. Master’s thesis,
ETH, Zurich, Switzerland, Jul. 2008.

[11] Wang Z., Jiang X., Cui W., Wang X.: ReFormat: Au-
tomatic reverse engineering of encrypted messages. In
European Symposium on Research in Computer Secu-
rity, Saint-Malo, France (2009).

[12] Leder F., Martini P. : Ngbpa next generation botnet
protocol analysis. Emerging Challenges for Security,
Privacy and Trust, 24th IFIP International Information
Security Conference, Pafos, Cyprus, May 2009.

[13] Gröbert, F., Willems, C., Holz, T.: Automated Identifi-
cation of Cryptographic Primitives in Binary Programs.
In: Recent Advances in Intrusion Detection, pp. 41–60,
Springer (2011).

[14] Leder, F., Werner, T.: Know Your Enemy: Containing
Conficker. Honeynet Project KYE series, March 2009

[15] Moser, A., Kruegel, C., Kirda, E.: Limits of Static
Analysis for Malware Detection, Proc. of the 23rd An-
nual Computer Security Applications Conference, 2007

[16] Oliboni, C.: OpenPuff - tool for steganog-
raphy (2011), http://embeddedsw.net/doc/
OpenPuff_Help_EN.pdf

[17] Schneier, B.: Applied cryptography (2nd ed.): proto-
cols, algorithms, and source code in C, John Wiley &
Sons, Inc., 1995

[18] Bellard F., QEMU, a fast and portable dynamic trans-
lator, Proc. of USENIX Annual Technical Conference,
2005

[19] Luk C., Cohn, R., Muth, R.,Patil, H., Klauser, A.,
Lowney, G., Wallace, S., Reddi, V., Hazelwood, K.:
Pin: building customized program analysis tools with
dynamic instrumentation, 2005

[20] Nethercote, N., Seward, J.: Valgrind: a framework for
heavyweight dynamic binary instrumentation, 2007

[21] Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether:
malware analysis via hardware virtualization exten-
sions, 2008

[22] Pfoh, J., Schneider, C., Eckert, C.: Nitro: Hardware-
based System Call Tracing for Virtual Machines, 2011

[23] Rice, H. G.: Classes of Recursively Enumerable Sets
and Their Decision Problems. Trans. Amer. Math. Soc.
74, 358-366, 1953.

[24] Caballero, J., Poosankam, P., Kreibich, C., Song, D.:
Dispatcher: Enabling Active Botnet Infltration using
Automatic Protocol Reverse-Engineering, 2009

[25] Groebert, F., Willems C., Holz., T.: Automatic Identi-
fication of Cryptographic Primitives in Software, 2010

[26] Zhu, D. Y., and Chin, E. Detection of vm-aware mal-
ware, 2007

[27] Shamir, A., Van Someren, N.: Playing Hide and Seek
With Stored Keys, Lecture Notes in Computer Science,
1998

[28] Wang, T., Wei, T., Gu, G., Zou, W.: TaintScope: A
Checksum-Aware Directed Fuzzing Tool for Automatic
Software Vulnerability Detection

[29] Lawton, Kevin P., Bochs: A Portable PC Emulator for
Unix/X, Sept. 1996

[30] Joan Calvet, Jos M. Fernandez and Jean-Yves Mar-
ion; Aligot: Cryptographic Function Identification in
Obfuscated Binary Programs, 2012


