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Abstract

Signature-based intrusion detection is a state-of-the-art
technology for identifying malicious activity in networks.
However, attack trends change very fast nowadays, making
it impossible to keep up with manual signature engineering.
This paper describes a novel concept for automatic signa-
ture generation based on efficient autonomous attack classi-
fication. Signatures are constructed for each class from syn-
tactical commonalities and go beyond a single, contiguous
substring. Each part of a signature is combined with po-
sitional information, which drastically improves signature
accuracy and matching performance. We argue that a gen-
eral description of zero-day attacks is immanently restricted
to syntactical features and outline how valid signatures for
novel real-world attacks were successfully generated.

1. Introduction

Intrusion detection systems play an important role in
protecting IT infrastructures against attacks: They enable
networks to identify or even block malicious traffic. Al-
though recent results show a promising progress in the field
of anomaly-based intrusion detection [3], the major part of
production setups relies onmisuse detectionby matching
network traffic against known attack patterns [12], generally
referred to assignatures. A signature is a formal description
of distinct attack features. In this paper, the termintrusion
detection system(IDS) refers to a misuse detection system
that uses a set of signatures to identify attacks in a network.

Misuse detection has the immanent conceptual property
of being reactive: An attack can only be detected after it oc-
curred or, at best, while it is occurring. This implies that un-
known attacks are likely to be missed if they do not match
a general signature. Constructing a signature usually re-
quires detailed knowledge about the attacks. But as new at-
tacks are executed automatically and area-wide, sometimes
within hours after a new vulnerability has been published,
it is not possible to keep up with manually engineered sig-
natures. As a solution we suggest a methodology for gener-
ating signatures from attack traces automatically.

The rest of this paper is organized as follows: The next
section introduces a general methodology for automated
signature generation. Section3 proposes a specific realiza-
tion of a generation algorithm, implemented in thenebula
system, which was designed to perform well even for large
input sets. We evaluate the quality of signatures generated
by nebula in section4. After comparing work related to our
approach with the proposed system in section5, some real-
world applications and scenarios are discussed in section6.
We conclude our work with a final discussion of nebula’s
strenghts and advantages in section7.

2. Methodology

An intrusion signature describes the distinctive features
of a class of attacks. While a signature should begeneric
to catch different variants of an attack, it should also be
specificat the same time to prevent false positives [16].
These two goals are contrary, and a signature generation
system has to perform an adequate classification to find a
good compromise. The classification step (also referred to
asclustering) is one of the two critical parts of a signature
generation algorithm. The second important task is to ex-
tract relevant features from each class.

There are no guidelines that must be fulfilled by a class’
features. For instance, an attack family might contain all
attempts to exploit a particular vulnerablility, in which case
its features are related to the security hole. Or alternatively,
a class might cover attacks with more general characteris-
tics, e.g., traces that contain specific shellcode sequences.
However, it is important to understand that a general signa-
ture generation system is restricted to syntactical features:
Although it would be theoretically possible to include se-
mantic knowledge in a signature, this kind of information
is usually not automatically obtainable for previously un-
known attacks.

The following formalization is a basis for a general def-
inition of syntactic features. Each input is interpreted asa
byte stream (string)∈ Σ+, Σ = {0, 1}8. Based on this, a
generic pattern can be defined:



Definition 1. A patternP := {f1, . . . , fn} is a set of fea-
turesfi ∈ Σ+ which assigns any stringx either to the set
A := {x | ∀f ∈ P : f is substring of x} or to the set
A = Σ∗\A. P is called apattern forA.

More intuitively, P is a set of substrings characteristic
for a certain attack type. However, such a pattern is too
general as it does not contain any positional feature require-
ments. As this kind of information is available in the input
and can easily be extracted during the generation process, it
should be used to build a more specific description:

Definition 2. A signatureσ := {s1, . . . , sn} is a set of
triplessi := (fi, ki, li) which assigns any stringx either to
the setA or to the setA. The set{f1, . . . , fn} is a pattern for
A; ki, li ∈ N denote the minimium and maximum possible
offset of the featurefi in a byte stream∈ A.

With this signature definition it is possible to generate
attack descriptions based solely on syntactical information.

2.1. Input Classification

Given a set of attack traces, the first step is to find a clas-
sification that groups similar inputs together. As there are
many different attack types which generally do not share
syntactical commonalities, it is not reasonable to construct
a single signature that covers the whole set. Such a signa-
ture would not only break the claim for being specific, it
doesn’t even exist in cases where the feature sets for dif-
ferent attacks are disjoint. Instead, one signature should
be constructed for each cluster where the granularity of the
generated signatures depends on the degree of commonal-
ity, which is used as classification criterion.

How can the degree of commonality of two attacks be ex-
pressed? A similarity measuring scheme must be limited to
syntactical information, otherwise it would break the gen-
erality of the overall methodology. Information theory of-
fers several ways to check and express the similarity of two
strings. For instance, the amount of information stored in a
string is expressed by itsEntropyor Kolmogorov Complex-
ity. Other techniques rate the similarity of two strings by
comparingN-Gram frequenciesor by computing theirEdit
Distance. Another idea is to calculate and compare hashes
that conserve the similarity of the original inputs [13]. All
these approaches have been successfully used for semantic-
independent input classification (e.g., [1, 2, 3]). The cluster-
ing can be performed independently from the specific sim-
liarity measures as long as the following requirements are
met:

• ∀a, b ∈ Σ+ : s(a, b) ∈ [0, 1] ⊂ R

• a, b are considered equal⇔ s(a, b) = 1

• a, b are considered maximal dissimilar⇔ s(a, b) = 0

In practice it is often beneficial to use dissimilarities in-
stead of similarities. A measure for the dissimilarity of two
input strings can be defined asd(a, b) := 1 − s(a, b). d can
be interpreted as a distance function and often satisfies the
metric conditions (positive definiteness, symmetry, and tri-
angle inequality). A clustering can be calculated from the
distance of the inputs as follows: We assume that all inputs
are given and that a complete distance graph is calculated.
An edge between each two points in the graph is labeled
with the distance of the corresponding inputs. By remov-
ing all edges with a distance greater than a certain threshold
value, the graph splits into several partitions (the remaining
connected components).

Whenever a new input is processed, the distance to all
previously clustered elements is calculated to determine its
nearest neighbor (we will, however, see that this step can
often be aborted early if certain conditions are met). If
the minimum distance is above the threshold, the new in-
put is stored as anoutlier, otherwise it gets assigned to the
neighbor’s cluster. Thus the classification step’s complex-
ity is linear in the number of already clustered inputs in the
worst-case. However, several optimizations are possible in
practice that usually result in a much better average perfor-
mance. Such implementation details will be discussed in
section3.1.

Figure 1. A distance graph’s components

During the classification of a new input, one of the fol-
lowing three different cases can occur: First, the distanceto
all other elements may be above the threshold value. Then
the new string is categorized as an outlier. In the second
case, the classification criterion is met for an existing out-
lier, which then initializes a new cluster together with the
new input. In the remaining case there is (at least) one ele-
ment in an existing cluster with a distance below the thresh-
old, and the new input is assigned to that cluster. If there
are more clusters containing elements with an adequate dis-
tance value, they are merged into one cluster. This situation
is depicted in figure1 where the classification of node 3
merges two clusters into one as it has a sufficiently small
distance to the nodes 1 and 2.

The graph-based approach has two important advan-
tages. One is that two inputs stay combined once they are
grouped together in a cluster. This is a fundamental require-
ment for an efficient online algorithm where input is pro-
cessed piece-wise in a serial fashion and recalculations must



be avoided. Second, the method offers a tradeoff between
generality and accuracy: Few signatures must be more gen-
eral to cover the input set but might perform faster. On the
other hand, more signatures represent a more specific de-
scription of the different attack types and are thus not as
prone to false positives. The size and number of clusters is
controllable via the distance threshold that can be varied in
order to tune the classification result.

2.2. Information Extraction

The elements within a cluster are considered as members
of an attack class and carry the information that is needed to
construct a signature. Our algorithm composes a signature
from common substringsof a cluster’s elements.

Definition 3. Let x = x1 . . . xn ∈ Σ+ be a string of length
n ∈ N. A substringof x is a stringx′ = xi . . . xi+j where
1 ≤ i, j ≤ n ∈ N. A common substringis a substring
common to all strings in a set.

Several common substrings can be combined to acom-
mon subsequence, which is compliant with the above un-
derstanding of a signature if position information is added:

Definition 4. A subsequenceof a stringx = x1 . . . xn ∈
Σ+ of length n ∈ N is defined by an index sequence
1 ≤ i1 < · · · < ik, k ≤ n. The corresponding subse-
quence isxi1 . . . xik

. A common subsequenceis a subse-
quence common to all strings in a set.

A common subsequence ispattern, but it also makes a
signaturethat is compliant with definition2 as each sub-
string has a fixed position in the sequence. A common
subsequence that is taken as a signature is denoted byσ;
a common substring that is part of such a subsequence is
calledσ-segment. We can now reformulate the task as fol-
lows: A signature generator has to extractσ-segments from
an input cluster and assemble a signatureσ from these. The
longer the signature is, the better is its coverage of the corre-
sponding attack class. An optimal result would be alongest
common subsequence(LCS). However, the LCS problem is
NP-hard and thus not feasible in practice [4]. Our method
implements an algorithm for efficient extraction of all com-
mon substrings. The actual signature composition can then
be approximated, again with a tradeoff between accuracy
and algorithmic complexity. A simple LCS approxima-
tion, which has proven to generate sequences of convenient
length, will be introduced in the next section.

The number of all common substrings for a set of inputs
can be huge. A naive approach would be to calculate sets of
all substrings for each input and then intersect them to get
the final list. This would require actually comparing sub-
strings, which is expensive. We developed an algorithm that
computes all common substrings in time and space linear in

the size of the input, namely the length of the concatena-
tion of all input strings, and does not need to perform any
string comparisons at all. The underlying data structure is
ageneralized suffix tree(GST) that represents all substrings
(as a substring is a prefix of a suffix) and takesO(n) time
and space [15]. Once the GST is computed, our algorithm
explores the tree to find those substrings that are common
to all inputs. A side effect of using a GST is that it also
provides the positions on which a substring occurs in the
input strings. This information is needed for the succeeding
sequence assembly. It should be noted that the whole infor-
mation extraction process is possible without string compar-
isons. Section3.2describes how to compose an appropriate
signature from the list of extracted substrings.

3. Implementation – Nebula

In this section we will detail a specific implementation
of the described methodology that is realized in the neb-
ula framework. It allows for setting the focus on different
aspects, like accuracy or performance. Our method empha-
sizes performance in terms of the time needed for a signa-
ture to be generated.

3.1. Attack Clustering

The nebula signature generation framework presumes
that submitted input is already considered malicious. It
does not contain any functionality to rate incoming data
– this task has to be performed outside the system prior
to submissions, e.g., by obtaining input fromhoneypots
like in [6, 16], or by invoking separate traffic classification
componentsflow classifiers[8, 11, 5, 14]. The performance
of the clustering as described in section2.1heavily depends
on the distance metric used. We established the following
selection criteria:

• Accuracy: A metric should be accurate, that is, the
similarity value of two attacks is close to their normal-
ized edit distance. This is a meaningful relation as we
aim for a nearly optimal corresponding string align-
ment (or a long common subsequence, respectively).

• Processing time: The metric should be fast to com-
pute, preferably in time linear in the input size.

• Space complexity: An aspect concerning the space
complexity is that the calculation of a similarity value
should not cause much extra cost due to memory man-
agement overhead. Again, at most linear additional
space should be sufficient.



We implemented a procedure based on thespamsumsim-
ilarity hashing scheme. A comprehensive description of the
whole scheme is given in [13]. Spamsum hashes are well-
suited for persistent storage (tries as special data structures
need little space and answer hash queries efficiently and
can be calculated and compared in linear time and space.
For the sake of completeness it must be mentioned that a
spamsum-based distance function does not fulfil the met-
ric conditions: Hash collisions for different inputs violate
the definiteness requirement, i.e. there existx 6= y, but
d(x, y) = 0. However, this is not really a problem in
practice: It suffices if the measure is asemi metric, i.e.
d(x, y) = 0 ⇒ ∀z : d(x, z) = d(y, z), which is the
case for spamsum. Cryptographic hashes can additionally
be considered to distinguish between different inputs even
if a spamsum collision occurs.

The clustering process calculates a nearest neighbor for
each input and therefore performs comparisons with all
other inputs in the worst case. Hence, the growth of the
effort is proportional to the number of already processed at-
tacks, leading to a quadratic overall complexity in the worst
case. The expected number of comparisons is much lower if
we take into account that the remaining elements of a cluster
can be skipped as soon as a new attack gets assigned to it.
To further restrict the processing time per attack, our imple-
mentation makes use of fixed-sized queues to store outliers,
clusters and cluster elements. This has the effect that only
a limited amount of historic knowledge is considered with
the drawback that attacks with a low frequency might al-
ready have been “forgotten” and have no chance to form a
cluster. Another advantage of queues is that a new input can
be compared with more recent attacks by first starting with
the elements at the queues’ heads. Assuming that similar
attacks occur cumulated on the time scale, there is a good
chance that the major part of a cluster can be skipped be-
cause of an early hit.

3.2. Signature Composition

Having a list of all common substrings, i.e. the candi-
dates forσ-segments, different signature assembly strate-
gies are possible. Just concatenating all extracted substrings
is not possible as they are not disjoint as would be required
for a subsequence. Instead we have to choose an appropriate
set of non-overlapping substrings so that they form a prefer-
ably long subsequence common to the input strings. This
task can be formulated as an optimization problem where a
solution is feasible when the cost function, i.e. the lengthof
the corresponding sequence, is maximal. However, as find-
ing a LCS is NP-hard, a practical method must implement
heuristics for an informed search and can not guarantee that
the determined solution is optimal.

Figure 2. A sequence of σ-segment intervals

We chose a greedy algorithm that is simple to implement
and has good performance qualities: The substring list is
preprocessed and sorted by length. An iterative greedy al-
gorithm then takes the longest entry from the list, places
it in the sequence constructed so far and proceeds with the
next list entry. For each segment candidate, all occurences
in the input strings are considered to determine a minimum
offset i and a maximum offsetj. These define an interval
[i, j + l] where the substring is allowed to occur in order to
finally trigger the signature (see figure2). Each candidate
falls in one of the following categories:

1. If this interval overlaps with one that is already set,
the candidate is discarded. Such a situation is visu-
alized in figure3 where two (light-shaded) substrings
already form a sequence and a third (dark-shaded) seg-
ment shall be added. As this third segment lies be-
tween the present ones for attackx and after them in
attacky, there is a syntactical conflict – its position in
the sequence is indeterminable.

2. If a substring’s interval is disjoint with all ranges of
present segments, the segment is added to the se-
quence. This whole step can be performed inO(log n)
time wheren is the number of segments in the prelimi-
nary sequence if the intervals are organized in a sorted
array and onlyO(n log n) time and space is necessary
to build a signature ofn σ-segments.

Figure 3. A syntactical conflict

The iterative construction has the advantage that filters
can be applied during substring examination. For exam-
ple, it might be reasonable to skip very short substrings,
which often carry no real descriptive features of a certain
attack family, but are rather noise that results from an insuf-
ficient number of inputs and would be eliminated by further
samples. Another restriction would be to only include sub-
strings with an entropy above some threshold as these are
more likely to contain characteristic information. An ex-
ample for a low-entropy string is the NOP sled part in a



1 alert tcp any any -> $HOME_NET 8800 (msg: "nebula rule 2000001 rev. 1";
2 content: "GET / HTTP/1.0|0d 0a|User-Agent\: DFXPDFXPAAA|eb 03|Y|eb 05 e8 f8 ff ff ff|II"; offset: 0; depth: 51;
3 content: "A0A"; distance: 23; within: 91;
4 content: "XP8"; distance: 1; within: 21;
5 content: "Oy"; distance: 18; within: 525;
6 content: "|0d 0a|Authorization\: Basic UVVGQlFVRkJRVUZCUVVGQlFVRkJRVUZCUVVGQlFVRkJRVUZCUVVGQlFVRkJRVUZCUVVGQlFVRkJRVUZCUVVGQlF
7 VRkJRVUZCUVVGQlFVRkJRVUZCUVVGQlFVRkJRVUZCUVVGQlFVRkJRVUZCUVVGQlFVRkJRVUZCUVVGQlFVRkJRVUZCUVVGQlFVRkJRVUZCUVVGQlFVRkJ
8 RVUZCUVVGQlFVRkJRVUZCUVVGQm5TOEFFSkNRa0pBejBtYUJ5djhQUWxKcUFsak5MandGV25UdnVFUkdXRkNMK3E5MTZxOTE1Ly9uUWtKQ1FrSkNRa0p
9 DUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWt
10 KQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1F
11 rSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkN
12 Ra0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0p
13 DUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWt
14 KQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1F
15 rSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkN
16 Ra0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrSkNRa0pDUWtKQ1FrST0=|0d 0a 0d 0a|"; distance: 58; within: 1845;
17 sid: 2000001; rev: 1;)

Figure 4. An auto-generated snort signature

buffer overflow exploit trace, which is generally not very
descriptive for the particular attack and therefore should
be excluded. Our implementation makes use of both filter
types and allows for easy extensions. The signature qual-
ity improves automatically by publishing new revisions for
growing clusters, i.e. when more information about an at-
tack family is available.

3.3. Signature Translation

The de facto standard in network intrusion detection is
the open-source IDS frameworksnort [12]. It defines a
rule language that allows the specification of attack char-
acteristics as used in our concept via thecontent key-
word. Absolute position information can be specified via
offset anddepth, and relative offsets withdistance
andwithin, respectively. As both binary content and po-
sitional information are stored in the GST, all data needed to
translate aσ-segment into a snort rule part is available from
the data structures used. Figure4 shows an example (with
line breaks for better readability). The signature matchesa
buffer overflow attack against a web server on port 8800/tcp
and was auto-generated from real attack traces. The firstσ-
segment describes the start of aHTTP GET request and a
User Agent parameter that contains a typicalGetPCse-
quence of assembler instructions. The segments in line 3 to
5 are noise and were included in the signature as it was gen-
erated without a minimum substring length restriction. The
last segment contains a large string delivered as argument
to theAuthorization parameter and is properly suited
as a signature feature because of its length. The translation
layer is independent from the rest of the method and thus
easily extensible to support other formats as well.

4. Evaluation

A well-known data set for IDS evaluation is the IDEVAL
corpus. It contains traces of benign as well as malicious
network activity that belong to different categories. Earlier

work analyzed its aptitude as training set for intrusion detec-
tion systems [10] and checked whether the results for syn-
thetic data can also be applied to real data [9]. It was shown
that the IDEVAL corpus is not comparable to real network
traffic. Hence we decided to create our own test set. We
tested our system against a corpus of 6631 unique attacks,
observed with twohoneytraphoneypots in different produc-
tion networks. The traces were collected at any first of Au-
gust, September, and October 2007. All traces were man-
ually analyzed and labeled according to the type of attack.
55 different labels have been identified. However, some la-
bels represented sub-classes of a common group and were
marked correspondingly (e.g., the labels for two groupsa

andb of a supergroupc were denoted byc.a andc.b). 34 la-
bels represent clusters with more than one attack, the other
21 labels denote clusters of only one element.

4.1. Cluster Quality

As the performance of signatures depends on both the
quality of the classification and on the segment assembly
routine, the clustering was evaluated separately. A classifi-
cation of the labeled corpus was performed for varying sim-
ilarity thresholds in 5 percent steps, starting with 5 percent.
Additionally, the marginal cases for 1 and 99 percent were
computed. Two criteria were used to rate the results: The
accuracyof a corpus partitionP is defined as

a(P ) :=
|{clusters}|

∑
clusters |label : label ∈ cluster|

∈ [0, 1]

and is the reciprocal value of the average number of dif-
ferent labels per cluster. If a partition isaccurate, i.e. has
an accuracy value close to 1, the clusters are well separated
and nearly congruent to the partition defined by the labels.
Further, thesensitivityexpresses the amount of outliers that
actually belong to a cluster and were not correctly assigned.
It calculates as

s(P ) := 1−
|{outlierlabels} ∩ {clusterlabels}|

|{outlierlabels} ∪ {clusterlabels}|
∈ [0, 1].



Figure 5. Accuracy and sensitivity

The closer to 1 this value is, the less outliers are classified
incorrectly. Summing up, a partition is better, the higher its
accuracy and sensitivity is. Figure5 shows that the sensi-
tivity is relatively static for the evaluated corpus while the
accuracy performs a significant refinement around 70 per-
cent and nearly reaches the maximum of 1 for a 99 percent
threshold. This suggests to choose the similarity threshold
as high as possible but at least above 65 percent. How-
ever, the value should be restricted also: Figure6 shows the
number of clusters and outliers for an increasing threshold.
Starting from 90 percent, both numbers grow exponentially
because attack families begin to split into subclusters. That
means that in practice queue limits would be hit sooner,
rendering the system more insensitive for low-frequency at-
tacks while the effort per input would be huge. Combining
the results from both evaluations, we suggest a similarity
threshold of 70 percent.

Figure 6. Cluster and outlier quantities

4.2. Signature Quality

To evaluate the signature quality, the tests we performed
were threefold. First it was cross-checked that a signature
covers all attacks it was generated from. If this was not the
case, the algorithm would be either erroneous or incorrectly
implemented. Our system worked as expected. In a second
test, signatures were generated as if the test inputs were sub-

mitted by live sensors. The signature base was then matched
against the whole corpus to measure the false positive rate.
Table1 shows the list of clusters (labels), their size and the
number of hits for the corresponding signature. As there
are 34 clusters in the corpus, 34 different signatures were
generated, each from the attacks of one cluster.

Table 1. Signature hits vs. cluster size
Size Hits Label

16 16 2

2 2 3

146 146 4.2

3 3 5.3

4 114 6.1.2

110 110 6.2

5 5 7

115 115 8

12 12 10

32 32 11

16 16 12

7 7 13.1

3 3 13.2

27 27 13.3

13 13 13.4

9 9 13.5

37 37 14.1.1

Size Hits Label

48 50 14.1.2

7 7 14.2

6 6 14.3

2 2 14.4.1

10 10 14.5

17 17 14.6

12 13 16

38 40 17.1

2 0 17.2

46 46 20

6 6 21.2

5 5 22.3.1

102 102 22.3.2

32 34 27.1

2 2 27.2

3 3 28

9 9 29.1

The light-shaded lines of table1 contain cases where the
signature matched all cluster elements plus other unrelated
attacks. The most sigificant difference was measured for
label 6.2.1, but there is an explanation for it: The clus-
ters 6.1.2 and 6.2 share a common superclass – they are
slightly different variations of an attack. The signature for
6.1.2 also matches all 110 attacks of the other class (but not
vice versa), resulting in a match count of 114. A fully auto-
mated classification would construct a common cluster for
both labels and consequently produce a single signature that
matches the whole superclass. The same reason holds for
the other cases, with the exception of label 16 where the sig-
nature produced a true false positive. Expressing the false
positive sensitivity without considering the previous expla-
nations results in a rate of 11.48 percent. Taking into ac-
count that our framework does not distinguish between sub-
classes of a superclass when it performs the clustering step
autonomously, there is only one real false positive, result-
ing in a rate of 0.1 percent. The dark-shaded line shows a
case where the constructed signature did not match its clus-
ter elements, resulting in two false negatives. That was due
to technical properties, the signature could not be processed
with snort. In fact, false negatives would be an indication
for an error in the system itself, so a rate of 0 confirms the
correctness of the method.



In a final experiment, the evaluation corpus was split into
two, each half containing the attacks from one sensor. Then,
a set of signatures was generated for each part and run
against the other. Our system was able to successfully de-
tect about 80 percent of all unknown attacks, which is quite
good, given that splitting the corpus led to relatively small
training sets. Our experience is that the signature quality
and the detection rate improve significantly for an increas-
ing number of inputs.

5. Related Work

Several systems have been proposed to automatically
generate signatures for self-spreading worms. An exam-
ple is Autograph[5], which monitors a network for traffic
patterns typical for spreading worms. Input from sources
that are identified asscannersis then fed into the signa-
ture generation engine. The generator uses a method called
Context-based Payload Partitioning(COPP) to extract sub-
strings from the traffic and manages a list to identify the
most frequent ones which are then taken as a signature ba-
sis. This procedure is comparable to nebula’s substring ex-
traction as only syntactical information is evaluated. How-
ever, the dependancy on the scanner detection component
restricts the kind of signatures that can be generated as less
frequent attacks are likely to remain unrecognized.

A similar method was proposed by Singh et al. [14].
Their systemEarlybird, also developed in 2004, uses Rabin
fingerprints to count string prevalences. Once the counter
for a certain byte sequence hits a threshold, a different
counter is initialized to store the number of host pairs for
corresponding sessions. A high number is assumed to indi-
cate a spreading worm, and the corresponding sequence is
transformed into a signature. Earlybird also includes a de-
tection component that performs rudimentary session track-
ing: A signature is always matched against the latest 40
bytes. A window of such a small size is obviously not suf-
ficient for longer signatures and reveals another restriction.

Polygraph, a system developed by Newsome et al. in
2005, monitors network traffic for worm-specific behav-
ior and maintains asuspiciousand ainnocuousflow pool
[11]. Three different signature types are supported:con-
junction signatureswhich consist of an unordered set of
substrings (calledtokens), token-subsequence signaturesin
which the list of tokens is ordered, andBayes signatures.
An important contribution is the conclusion that signatures
which consist solely of a single substring are insufficient
[11]. While Polygraph’s high-level concepts are similar to
our ideas, the method has a worse complexity and cannot
implemented in an online algorithm: The running time for
token extraction isO(sn2) for s inputs of lengthn and the
classification step is quadratic ins and must be performed
from scratch for each new input.

A system developed by Li et al,Hamsa, addresses the
performance issues with Polygraph by using a suffix array
for token bookkeeping [8]. It is similar to our approach
in the way that identification of dangerous traffic is seen
as an outside task. Hamas, like Polygraph, maintains two
datasets, one with known benign and one with suspicious
traffic. A signature is an unordered set of tokens that are
chosen based on the assumption that worm flows will con-
stitute a significant fraction of the suspicous pool. Sub-
strings that occur often are thus interpreted as invariant parts
in traffic produced by a spreading worm. As exactly one
signature is generated from the list of tokens, Hamas can-
not distinguish between many independent simultaneous at-
tacks and thus produces overly generalized signatures. Fur-
ther, the complexity of the signature generation process is
not only dependent on the input size but also on the number
of signature tokens. Nebula’s generation algorithm outper-
forms Hamsa as it is strictly linear in the input size only.

All four systems were designed with a focus on catching
worms. They contain restrictions that limit their use to this
area. However, the basic ideas provide an excellent basis for
further research and expose the relevant aspects of signature
generation systems. Examples for systems that also work
on honeypot data areHoneycomb, which was developed by
Kreibich and Crowcroft in 2003 as one of the earlier works
in the field [6], and Nemeanby Yegneswaran et al. from
2004 [16]. However, signatures produced by Honeycomb
consist of a single longest common substring which is less
accurate than multi-token signatures. Nemean requires pro-
tocol knowledge, which is generally not available.

6. Real-World Applications

In a classical setup, a signature generator computes sig-
natures from network traffic in a fully automated fashion
and installs them for immediate use. But activating filter
rules in a production network without any kind of user in-
fluence can be dangerous as it might also affect legitimate
functioning, although it is arguable that this can be the only
way to contain a new threat at an early stage. However, our
experience shows that the application area of nebula is not
restricted to this field. The system can also be used in an
ad-hoc fashion to extract structural information from input
data. An example is our analysis of exploits produced by the
Conficker worm [7]. We provided a nebula system with 175
different exploit traces produced by the worm’s A variant.
It took 7.8 seconds to generate a signature for these on a 1.2
GHz Pentium IV. The signature contained an eye-catching
segment which turned out to be static shellcode. Using neb-
ula as a structure extraction tool revealed that this part does
not change, and saved a lot of time finding a well-suited
pattern. Based on this knowledge, manually fine-tuned sig-
natures could be published within minutes. With the help of



nebula, similar structural analysis has been performed with
success on completely different data like malware samples
or even source code. This is possible because there are no
constraints regarding the format of input data.

Because of its availability as an open-source tool, neb-
ula found its way into the package repository of Fedora
Linux. Larger projects like theNetwork of Affined Honey-
pots(NoAH), which is part of a European research program,
are evaluating the tool for their early warning framework.
The code has already been downloaded 884 times from our
project site athttp://nebula.carnivore.it.

7. Conclusion

In this paper we proposed a general methodology for
generating intrusion signatures from syntactical informa-
tion in attack traces. The first step is to identify and cluster
similar inputs so that the resulting clusters represent groups
of similar attacks. After that, common features are extracted
from the elements of a cluster. These features are finally
assembled to a signature. Positional and ordering infor-
mation is included for the individual parts of a signature,
which provides more accuracy than signatures produced by
the systems proposed in [5, 11, 14, 8]. Our implementation
was optimized to publish new signatures as fast as possible.
The input classifier has a quadratic space and time worst
case complexity, the signature composition algorithm has a
running time inO(n) for n input bytes.

Nebula is able to compute signatures for previously un-
known attacks by requiring no other knowledge than syn-
tactical structure. It is, to our knowledge, the only system
that does not make any demands on the format of the data
submitted by contributing sensors. We argue that including
other than syntactical information renders a signature gen-
erator incapable of processing arbitrary unknown input.

One design goal was to create a flexible framework with
as few restrictions as possible. The underlying method-
ology sketches the borders for a specific implementation
with independent components. This modular design allows
for easy adaptation of single parts to a concrete scenario
without affecting the others. The code was made public to
the community under an open-source license. Signatures
have been generated automatically for novel threats, e.g.,
the exploit used by the Conficker worm. Real-world expe-
riences show that nebula’s value as an ad-hoc tool for semi-
automated structure analysis is one of its major strengths.
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