A Practical Approach for Performance-Driven UML
Modelling of Handheld Devices — A Case Study

Lukas Pustina®*, Simon Schwarzer 2, Michael Gerharz?,
Peter Martini #, Volker Deichmann €

Anstitute of Computer Science 1V, University of Bonn, D-53117 Bonn, Germany
®FGAN-FKIE, D-53343 Wachtberg, Germany
“Nokia Siemens Networks, D-40472 Diisseldorf, Germany

Abstract

In this article, we present a performance engineering enhanced modelling methodology
for designing embedded devices and describe the experiences we have gained in applying
this methodology during the design of a DVB-H enabled handheld device. The methodol-
ogy uses UML 2.0 to model the system following a strict separation of architectural and
behavioural aspects of the system. For this purpose we employ the new composite struc-
ture diagram and show its advantages over already established approaches. This methodol-
ogy specially aims on an easy application by non performance experts. From the model, a
multiclass queueing network is generated for the analysis of the system performance. The
configuration of hardware resources and resource demands is done using the standard SPT
Profile which is extended where necessary. This makes queueing theory accessible to sys-
tem designers even if they are not familiar with the underlying mathematics. In this way the
acceptance of developers to use performance engineering in their daily work is increased.
Special attention has been put on an easy evaluation of design alternatives. We describe our
implementation and its seamless integration into a UML 2.0 CASE tool.

Key words: Modelling, UML, Performance Engineering, Performance Evaluation,
Multiclass Queueing Networks, SPT, MARTE, Composite Structure Diagram

* Corresponding author.

Email addresses: pustina@cs.uni-bonn.de (Lukas Pustina),
schwarzer@cs.uni-bonn.de (Simon Schwarzer), gerharz@fgan.de (Michael
Gerharz), martini@cs.uni-bonn.de (Peter Martini), volker.deichmann@nsn.com
(Volker Deichmann).

Preprint submitted to Elsevier 22 March 2008

1 Introduction

When designing hardware platforms, inappropriate design decisions have a strong
impact on the development costs if they result in the need to re-manufacture proto-
types of the envisioned device. A major cause for such re-designs is the discovery
of performance bottlenecks during product performance tests. In order to discover
these bottlenecks already before building prototypes, performance engineering is
a commonly suggested means. A plethora of performance engineering approaches
promise to eliminate the need for costly product re-designs by integrating perfor-
mance evaluations to the front from the first design steps on.

In (1) we described a modelling methodology and the experiences we had gained
from applying performance engineering methods during the development of a DVB-
H enabled handheld device. We outlined the approach taken to model the system,
the transformation of the model into a multiclass queueing network as well as its
evaluation, and provided performance results. As an example for illustrating the
methodology, we showed how to apply the methodology in order to design a gen-
eral platform for a handheld device which has been able to decode terrestrial digital
TV programme (DVB-H) and still had sufficient computing resources for back-
ground tasks.

In this article, we show that by using our methodology, the system designers only
need to agree on which functional components the system will consist of, but post-
pone the decision whether they will be implemented in hardware or software. Our
methodology allows the designers to examine different deployment architectures
while leaving the architectural decomposition and dynamic behaviour unchanged.
We extend the description of the algorithm by pseudocode and demonstrate all
relevant aspects along the DVB-H scenario. The evaluation explicitly covers back-
ground tasks by modelling a worst-case scenario for sending and receiving e-mails.
We discuss the short comings of the SPT Profile and show how they are addressed
by the upcoming MARTE Profile or what is still missing.

Building prototypes of handheld devices is a costly task. Therefore, design deci-
sions need to be justified carefully from the first design steps on. An important
decision with a major impact on the implementation is the choice of the platform.
In essence, it is important to evaluate whether existing one chip handheld plat-
forms are already powerful enough to support a specific application or additional
hardware such as a DSP is required. While further questions, e.g.,, concerning the
influence of the memory architecture, have been studied, this article focuses on this
processor issue.

There are many approaches to performance engineering in the early phases of
a development process. The majority of these publications propose UML as the
modelling framework and suggest to derive performance models from a perfor-

mance annotated UML system model. Concerning the performance analysis, differ-
ent kinds of performance models have been proposed, e.g., execution graphs used
in (2; 3; 4; 5), petri nets utilised in (6; 7), (extended) queueing networks instru-
mented in (8; 2; 3; 4; 9; 5; 10), or layered queueing networks (LQN) (11; 12). The
authors of (13) give an overview of different methodologies, categorised amongst
others by the kind of performance model used. We follow the suggestion of using
(extended) queueing networks to evaluate the performance of the system and de-
tect performance bottlenecks in the earliest phases of development when a detailed
functional model is not yet available. This meet our challenge closely, since a de-
tailed functional model depends on the decision for or against a DSP supported
platform.

A major benefit of the UML based approach is that queueing theory is hidden from
the developer. In this way, the power of queueing network theory and thus, per-
formance engineering, becomes available to system designers unfamiliar with the
details of this theory.

The rest of this article is structured as follows. Section 2 describes the performance
scenario we evaluate. Section 3 details our framework and outlines its application
in the design of a DVB-H handheld device. We describe the exploration of different
deployment architectures which is eased by using composite structure diagrams. In
section 4 we describe the algorithm that transforms the model into a multiclass
queueing network. All steps of the algorithm are presented in pseudocode along
the case study. Numerical results gained during the design process are presented
in section 5. Finally, section 6 summarises the article and outlines possible future
work.

2 The Evaluation Scenario

We evaluated our methodology with a scenario where we analysed the impact of a
DVB-H enhancement to a handheld device. This section presents an overview of
a reduced version of the evaluation scenario that we use throughout this article to
demonstrate the methodology. A brief introduction into the techniques related to
DVB-H is given.

Digital Broadcasting Video - Handheld (DVB-H) is part of the emerging DVB fam-
ily of standards (14) for the digital transmission of broadcasts and thus, a successor
to analogue TV. DVB-H was designed to deliver TV-like content to handhelds and
mobile phones. Generally, DVB-H content uses time division multiplexing to trans-
port several channels on the same radio frequency. By periodically using the same
time slot for the same channel, the receiving device can reduce the activation of
the receiver to these time slots only and thus, reduce the power consumption. The
content itself is encoded according to the MPEG-4 (15) standard (this includes the

video as well as audio), but the actual algorithm may be chosen by the content
provider.

The Motion Picture Expert Group standard 4 (MPEG-4) is a family of standards
specifying the encoder and decoder (codec) algorithm capabilities for video and
audio compression, the container format for transmission, multiplexing, and syn-
chronisation of audio and video as well as several other standards like testing proce-
dures, reference hardware etc. The audio content is encoded using Advanced Audio
Coding (AAC) which is basically a successor to the widely used MP3 codec and
builds on top of the modified discrete cosine transformation (MDCT). The video
data is encoded by slicing the continuous video signal into discrete pictures called
frames in a determined frequency. Common frame frequencies are 24, 25, and 30
frames/sec. Each frame is separated into so-called Macro Blocks (MB) which are
encoded individually per each frame. MPEG-4 defines three frame types. Intra-
coded frames (I-frames) are standalone pictures and, similar to JPEG pictures,
DCT encoded, quantised, and finally variable-length encoded. In forward Predic-
tive frames (P-frames) each MB is predicted by motion vectors from preceding I-
or P-frames. With Bi-directional predicted frames (B-frames) each MB is predicted
from both, a preceding I- or P-frame and a succeeding I- or P-frame. The prediction
errors of B- and P-frames are encoded in the same way as [-frames. The sequence
of I-, P-, and B-frames is called Group of Pictures (GoP) and can vary according to
the user requirements. According to (16) the decoding process of an MPEG video
frame basically works in four steps. First, the bit stream is variable length decoded
(Decode), the second step is the inverse interpolation (Interpolation), the third
step applies the inverse DCT (DCT), and the fourth step is the motion compensation
(MoComp). We use these four steps as the main software components in this article.

In order to allow for the impact of decoding a DVB-H stream on regular” appli-
cations, we also modelled a use case consisting of sending and receiving e-mails.
This use case was executed in parallel to the decoding processes.

Today’s handheld devices are often based on a combination of a Multipurpose Pro-
cessor Unit (MPU) and a Digital Signal Processor (DSP). A very popular incarna-
tion of this system layout is the Texas Instruments Open Multimedia Applications
Platform (OMAP) (17). It combines an ARM based MPU with a DSP. These two
components exchange data and program code via the memory subsystem, e.g., the
MPU loads a DSP program into the DSP to execute. These components are con-
nected via the AMBA bus, a high performance bus which allows for priority based
scheduling, burst requests, split transactions etc. During our study we had access
to an OMAP developer board to run software and to make measurements. Where
possible, we also used a real mobile phone to gather performance data.

3 The Performance Engineering Approach

In our example, we modelled a handheld device capable of decoding an MPEG-
4 video and audio stream while still supplying enough performance capacities to
allow additional work like writing e-mails or reading text messages. The usage
of UML as modelling language in the context of performance analysis has been
proposed by several authors (8; 6; 4; 18; 19; 7; 11; 9; 3; 5) and thus, may be consid-
ered the de-facto standard. Therefore, we adopt the idea of generating performance
models from a set of UML diagrams for performance analysis in early stages of
development. UML 2.0 enhances the semantics of existing diagrams and provides
new diagram types. Especially, sequence diagrams offer new features and the new
composite structure diagram can be used to model the interconnection of instances.

In the following, the system architecture describes the components decomposition
and the dynamic behaviour. In contrast, the deployment architecture specifies the
processing resources and assigns them components to host and execute. Further, it
specifies the topology of interconnections between the components.

In the beginning, we set three requirements for our modelling approach in order
to ensure the practical applicability of our methodology. These requirements are
(1) support of iterative system composition and non-invasive integration of perfor-
mance annotations into the system model in order to enable developers to use their
modelling approaches and allow all non performance engineers to work unaffected
without bothering with the performance annotations. (2) a coherent model which
supports the reuse of already modelled parts of the system (e.g., classes as object-
s/instances). (3) a strict separation of the system and the deployment architecture.
In this way, an easy exchange or modification of the deployment architecture is
possible without re-modelling the behaviour. This, in turn, enables an easy com-
parison of different platform design alternatives. We put special emphasis on this
requirement, because in early stages of development it is crucial to explore differ-
ent platform designs. In these stages it is often uncertain whether a component will
be implemented in hardware or software.

Following these requirements, the UML model of the MPEG-4 enabled handheld
device is split into two logical parts. First, the functional system aspects are de-
scribed in the system model (cf. sec. 3.1) and second, the performance aspects are
specified by performance annotations (cf. sec. 3.2). Using only annotations, the
performance aspects are integrated in a non-invasive manner in the sense that the
system model remains reasonable without the performance annotations. Following
this clear separation, it is possible to maintain the system model independently from
the performance aspects. Section 3.3 describes how the model and the performance
annotations can be used to specify and analyse a specific performance evaluation
scenario in a straightforward way without the necessity to modify the system model
or the performance annotations. This is achieved by defining a set of use cases (the

scenarios of interest) and workloads for each scenario. Furthermore, by specifying
which part of the system to analyse, it is possible to evaluate the performance of the
whole system or of subsystems only. The specification of the performance scenario
and the corresponding workloads with the help of use case diagrams is a widely
used and accepted practice (4; 5; 8).

In order to keep the model easily understandable, we only present high level dia-
grams. Apart from the configuration shown in this article, our study also included
components like memory buses, air interface, display as well as transmission errors,
a detailed MPEG decoding behaviour etc.

3.1 System Modelling

In our scenario we investigated an OMAP board with an MPU and a DSP. These
two components are connected and operate on the received data according to the
decoding algorithm driven by an operating system or application. To model such a
system, three steps are necessary. The components of the system, their architectural
layout, and the algorithms running in the system have to be specified. This separa-
tion into component, architecture, and behaviour modelling is also suggested in the
literature and in (20).

Figure 1 shows the system components of the current system abstraction level.
We used a class diagram to model these components in UML. The MPU, Memory,
and DSP classes specify the processing hardware components. The System class
corresponds to the operating system and the application running the decoding pro-
cess. The video frame decoding and audio block decoding are modelled by the
VideoDecompression and AudioDecompression classes. The classes Decoder,
Interpolation, DCT, and MoComp represent the most demanding parts of the MPEG
decoding algorithm which are executed for each received frame. The class DCT is
used as an abstraction for the MDCT and DCT used by the video and audio de-
coder (cf. sec. 2). We also used the class diagram to specify the public methods of
all classes which will be reused.

package U2Q_model Handheld Components {1/3}

MPU

System

EMailApp

Decoder

Interpolation

DsSP

AudioDecompression

+decompBlock()

+launch()

+send()

+recv()
+mimeEncode ()
+mimeDecode ()
+saveAttachment ()
+loadAttachment ()

+decode_|_Frame()
+decode_B_Frame()
+decode_P_Frame()
+decode_AudioBlock()

+interpolate_|_Frame ()
+interpolate_B_Frame()
+interpolate_P_Frame ()

DCT

MoComp

Memory

VideoDecompression

decodeFrame

+decompFrame()

+inverse_|_Frame()
+inverse_B_Frame()
+inverse_P_Frame()
+inverse_AudioBlock()

+compensate_|_Frame ()
+compensate_B_Frame()
+compensate_P_Frame()

Fig. 1. Class diagram of handheld device components

In (4; 5; 8) deployment diagrams are used to model the mapping of software com-
ponents to hardware. The authors of (10) suggest to use the component diagram
for topology modelling. (4; 5; 10) rely on naming conventions to link behavioural
entities with processing resources. (8) directly integrates the processing resource
assignment into behavioural diagrams by exploiting the SPT Profile stereotype
PAhost. In contrast to these approaches, we employ the composite structure dia-
gram, because it allows us to semantically reuse classes as instances as its elements.
In UML terminology, the elements (components) of a composite structure diagram
are interpreted as objects which are instances of the specified classes. Thus, the
class and interface definitions modelled as mentioned above may be reused. Com-
ponents are interconnected by links and support the usage of the specified inter-
faces. Of course, multiple instances of the same class may be interconnected.This
has the advantage that reassigning a component to another processing resource re-
quires only changes at one place in the model by moving the component from
one composite structure diagram to another. It is not necessary to modify the be-
havioural diagram and thus, this fulfils requirement (3). Another advantage of the
composite structure diagram is its support for hierarchies of diagrams (see below).
Classes can be decomposed into their internal parts by specifying the internal struc-
ture with another composite structure diagram. In this way, a hierarchy of compos-
ite structure diagram evolves. This approach can be used to iteratively refine the
system model towards a sophisticated model.

Figures 2(a) and 2(b) show the internal structure of the handheld device and the MPU
component. A data exchange path between the MPU and DSP classes in figure 2(a) is
realised via the Memory component that enables both components to communicate.
Note that the Memory component represents also the internal AMBA bus and thus, is
also specified as an active component. In order to analyse the impact of distributing
the MPEG decoding parts to either the MPU or DSP, it is only necessary to refine
the MPU and DSP classes by refinement composite structure diagrams. In figure 2(b)
only the Decoder is assigned to the MPU. A similar diagram would be used to
assign the other software components to the DSP.

class Handheld Root_CSD {1/1}

mpu : MPU dsp: DSP
class MPU MPU {1/1}

\ / «2<PAhost>> vd : VideoDecompression
mem : Memory {PArate=3.815} System : System
4 v '\ad:AZdioDecompressiOn

“’<’<PAhost>> B‘ > A dec : Decoder

{PAdemand=("msr","dist",("normal",1.0,0.01))} atdliser Action emailapp : EMailApp

(a) Architecture of the device (b) Refinement of the MPU class

Fig. 2. Composite structure diagrams of the handheld and the MPU

Figure 3(b) presents a tree showing the composite structure diagram hierarchy for
the architecture described above. We call the top level diagram (Handheld_CSD in

this case) the root composite structure diagram (root CSD). From the root CSD all
other composite structure diagram are reachable in the hierarchy.

(" Handneld_CSD — MPU — MPU

MPU b UserAction) — UserAction

— UserAction) L System) — System

— System) — EMailApp — EMailApp

— EMailApp) t— VideoDecompression) — VideoDecompression
[VideoDecompression) " AudioDecompression) — AudioDecompression)

— AudioDecompression) L Decoder) L Decoder

b Decoder) L~ DSP) — DSP

— Interpolation) — Interpolation — Interpolation

L pCT) -~ pcT L MoComp

— MoComp) L MoComp L DCT

(a) CSD hierarchy with (b) CSD hierarchy with (c) CSD hierarchy with
MPU only MPU and DSP MPU, DSP, DCT

Fig. 3. Composite structure diagram hierarchies

This method of describing the system topology does not distinguish between hard-
ware and software, but consists only of processing resources (cf. sec. 3.3). During
early stages of development it is not clear which part of the system is going to be
implemented in hardware and which in software. This method allows the develop-
ers to postpone these decisions to a later design phase. In this way, the software
designers only need to decide of which components their software architecture will
be composed of. After evaluating different architectures, the hardware and software
designers opt for a specific design, e.g., the DCT might be either implemented in
software for the MPU or DSP, or even be integrated as a special purpose chip. With
our methodology, these three design alternatives can be represented by just moving
the DCT class from the MPU to the DSP or to the root CSD (cf. sec. 3; requirement
(3)). The resulting composite structure diagram hierarchies for these three design
alternatives can be seen in figures 3(a), 3(b), 3(c).

The final part of the system model, the dynamic behaviour, is modelled using se-
quence diagrams. This is a well-established approach for modelling the message ex-
change between different entities in a system similar to (4; 5; 2; 11; 10) which use
either generic message sequence charts or also UML sequence diagrams. Again,
our methodology reuses the class definitions of the system components as class
instances exchanging messages in this diagram type. The messages are directly re-
lated to public methods of the particular classes (cf. sec. 3.1). Note that objects
exchanging messages do not need to be directly connected in the system topology,
but may communicate through intermediate components as well (cf. fig. 2(a)). In
this case, it must be ensured that a communication path exists in the system topol-
ogy and routing information must be gathered in order to establish a path between
the sender and the receiver. This is discussed in more detail in sec. 4.1.

The sequence diagram of UML 2.0 incorporates interaction frames which may be
used to model complex control flows. These interaction frames include alt-frames

(alternative execution), loop-frames (repeating execution), ref-frames (inclusion
of other sequence diagrams) et al. The par-frame defining parallel execution with
forks or joins, is excluded in our methodology, because there is no equivalent repre-
sentation in queueing networks. (10) suggests to use so called “Extended Queueing
Networks” to incorporate parallelism. This approach could be easily integrated into
our simulative evaluation (cf. sec. 4.3). However, a valid way to model parallelism
is to use several use cases in a performance scenario (cf. sec. 3.2 and 3.3) resulting
in multiple workloads each with its own jobs.

Figure 4 presents a simplified sequence diagram corresponding to the video decod-
ing process. Depending on the frame type (cf. sec. 2) the corresponding actions are
run with different performance demands (cf. sec. 3.2). A similar diagram may be
drawn for audio decoding.

interaction VideoDecompress SD_VideoDecompress {1/1}
sys:System vd:VideoDecompression || dec:Decoder ip:Interpolation det:DCT mc:MoComp
T T
«»
<<PAstep>>
decompFrame() {PAdemand=("assm","dist",("normal",1.0, 0.01))}

| alt

“:.:< PAstep>>
{PAprob=0.076,0.307}

decode_|_Frame()

interpolate_|_Frame(

inverse_|_Frame(compensate_| Frame()

decode_P_Frame(

interpolate_P_Frame inverse_P_Frame,

compensate_P_Frame(

decode B_Frame(interpolate_B_Frame

inverse_B_Frame,
= compensate_B_Frame(

“e< PAstep>> AN “ie PAstep>>
{PAdemand=("msr","trace","decodeBframe.txt")} {PAdemand=("msr","trace","dctBframe.txt")}
I I T I I I
<<PAstep>> <<PAstep>>
{PAdemand=("msr","trace","interpolateBframe.txt")} {PAdemand=("msr","trace","mocompBframe.txt")}

T T T T T T

Fig. 4. Sequence Diagram of Video Decompression — this diagram contains only a subset
of the necessary annotations

3.2 Performance Annotations

This section shows how to incorporate performance aspects, namely performance
demands and performance capacities, into the system model in a non-invasive man-
ner such that the system model remains usable without the performance information
(requirement (1)). As widely proposed, we use the "UML Profile for Schedulabil-
ity, Performance, and Time” (SPT Profile) (21) for performance annotation. Even
though this profile was designed for UML 1.x, it can be easily used in UML 2.0 as
well or modified to fit our needs which is also done by several authors e.g., (22; 10).

The beta version of the new profile "Modeling and Analysis of Real-Time and Em-
bedded Systems” (MARTE) (23) is meant to replace the SPT Profile and is ought to
fully support UML 2.0. Among other topics it focuses on the modelling of software
and hardware aspects as mentioned in (24).

Two steps are necessary to describe the performance aspects of a system. First,
each component’s capacity has to be modelled. Second, the resource demand of the
dynamic behaviour has to be specified.

3.2.1 Component Capacity

Similar to the system topology, the specification of the capacity of each component
is an important and at the same time difficult part of the design decisions. In or-
der to evaluate different topologies, the composite structure diagram was selected
for topology modelling, because of its flexibility and the ability to easily exchange
and compare it with other topologies. Thus, it is sensible to define the capacity
of components in the corresponding composite structure diagram as well. In this
way, the configuration of the components is as exchangeable as the topology it-
self. Therefore, a designer is able to exchange entire parts of the architecture at
once. The alternative approach to incorporate the performance capacity into class
diagrams would require to change the model at two different places in order to al-
ter the architecture, i.e., the architecture in composite structure diagrams and the
capacity in class diagrams. To model the component capacities, the SPT Profile
tagged value PArate is used as part of the <<PAhost>> annotation as a relative
speed value. PArate=1 is taken as default if no annotation is provided. These val-
ues specify the relative speed factor between all components in the same diagram
or hierarchy level respectively. Additionally, the scheduling policy may be speci-
fied with the PAschdPolicy tagged value and is set to FIFO by default. Note that
using the composite structure diagram for capacity modelling violates requirement
(3) as described above (cf. sec. 3.1) and is also not supported by the SPT Profile.
However, the benefit of a simple architecture modification outweighs the violation
and it seems to be reasonable to allow for this annotation in the upcoming MARTE
Profile.

Figure 2(a) shows the application of this annotation where the component DSP gains
a relative speed-up of 2 compared to the two other components MPU and Memory.

When modifying the relative speed of the MPU, it is sensible that as a consequence
the refining components (e.g., the DCT) should speed up as well. Therefore, a mod-
ification of a single component’s capacity should automatically propagate to its
sub-components. In order to obtain absolute speeds for each component in the con-
text of the whole system, the PArate values must be multiplied along their path
through the composite structure diagram hierarchy.

The suggested application of the PArate tag might lead to ambivalent design de-

10

cisions. In general, a relative speed-up applies to every software part that is moved
to a component with a higher PArate. However, only a special computing inten-
sive kind of algorithms may benefit from the DSP. A designer who is unaware of
this fact might be tempted to move every part of the software system to the DSP
including even the operating system. Therefore, it is necessary to be able to restrict
the annotated speed-up to stereotypes only, e.g., the DSP might be annotated with
PArate=1/10 in general and with PArate=2 for the stereotyped decoding parts of
the software. Only classes carrying the specific stereotype would then experience
a speed-up while others would even be slowed down. Unfortunately, this is not
supported by the SPT Profile, but might be an enhancement of future successors.
We are planning to allow for this stereotyped speed-up in future versions of our
methodology.

3.2.2 Resource Demand

During the second step of incorporating the performance annotations into the model,
each message exchange representing the execution of an action in the receiving
object is annotated with the SPT Profile PAdemand tagged value as part of the
<<PAstep>> annotation. The demand is represented by a triple consisting of a
source modifier specifying how the demand was captured (e.g., measured or as-
sumed), a type modifier giving the type of the value (e.g., average value or distri-
bution), and a time value which is the actual service time and can also be expressed
by a probability distribution (for further details refer to the SPT Profile(21)).

In order to use measured data directly, we introduce the non SPT Profile conform
type modifier t race which takes a filename as value. In this way, real world mea-
sured service times can be fed into the performance evaluation without the need
to transform them into distributions first. During the evaluation, the service times
are then adapted according to the PArate values calculated along the composite
structure diagram hierarchy (cf. sec. 4.3). In this way, the developers can study
how the real world service times change when they modify the system. Neverthe-
less, the transformation to distributions might still be sensible depending on other
performance information and necessary for an analytical evaluation.

Figure 4 depicts this annotation. Please note that this figure only contains the neces-
sary annotations for the decompression of B-frames for convenience. Both, stochas-
tic distributions (decompFrame) as well as trace based (decode_B_Frame et al.), are
shown.

We suggest to use the PAdemand tagged value also for objects in the composite
structure diagram, in order to specify a default demand. In this way, the designers
do not need to specify the demand of each single message exchange which leads
to more convenient modelling, e.g., the latency to access memory is often the same
and thus, does not need to be specified multiple times. Further, this default demand

11

is used, if messages are exchanged via intermediate components (see above).

3.3 Performance Scenario

The engineer’s perspective on the model changes during the development process
due to different aspects of the system to analyse. Therefore, it is crucial to allow the
developer to focus on and to analyse only certain parts of the system. This includes
architectural as well as behavioural aspects.

A performance scenario is a set of use cases and corresponding architectural system
parts. Each use case is represented by a sequence diagram. The starting point of a
single use case is its root step which is the first annotated message. It does not
necessarily need to be the first message specified, but depends on the designer’s
interest. Architectural system parts are described by composite structure diagrams
hosting the participating components (cf. sec. 3). Additionally, the performance
scenario contains the workload definition for each use case. These workloads are
defined by the <<PAopenLoad>> or <<PAclosedLoad>> annotations as suggested
by the SPT Profile. Since these two workload annotations only specify stochastic
distributions, the users are forced to transform measurements to distributions first,
before they can incorporate them into their models. This has two drawbacks. First,
the way how the distributions have been derived is lost and second, this makes the
model harder to understand sometimes.

Therefore, we introduce a non SPT Profile conform workload definition called
<<PAtraceLoad>> which allows us to specify a trace file similar to the trace based
service times (cf. sec. 3.2.2). This workload triggers the arrival of jobs according
to a time table gathered from simulations or measurements. In this way, we can
easily switch from assumed to realistic arrival rates without modifying the system.
In conjunction with trace based service times, trace based workload allows for an
on-the-fly evaluation of real world data. In this way, real time measurements of an
existing system can be incorporated into the design of the not yet existing successor
system.

Figure 5 shows a use case diagram with two use cases (AudioDecompression,
VideoDecompression) using both types of workloads. Each use case is described
by a sequence diagram, e.g., see figure 4 for the VideoDecompression use case.

The architecture is described by composite structure diagrams in a sub-tree of the
hierarchy that contains all participating components. The processing composite
structure diagram (processing CSD) of a performance scenario is the composite
structure diagram which, together with its refinement CSDs, describes the topol-
ogy of the components participating in the selected use cases. Thus, it is possible
to evaluate only a part of the whole system by selecting a subset of the use cases
and a processing CSD representing the first hierarchical layer of the topology of

12

package U2Q_model i Performance_Scenario_1 {2/3}

]] mé<PAopenLoad>>
AudioDecompress VideoDecompress {PAoccurrence=("unbound","normal”,60000000.0,1.0)}

“ Z<PA1raceLoad>> “ee PAopenLoad>> IT

“ Z<PAopenLoad>>

{File="audioTraceLoad.txt"} {PAoccurrence=("unbound","normal",400000,0.001)} {PAoccurrence=("unbound","normal",60000000.0,1.0)}

Fig. 5. Use case diagram of the performance scenario for audio and video decompression

the system part. The processing composite structure diagram is the root node of
this sub-tree to which all components are mapped during the queueing network
generation (cf. sec. 4). At this stage of development, we do not distinguish between
hardware and software (cf. sec. 3.1), but the designers choose which components
should process and execute the use cases.

For example, if the engineers are only interested in the performance of the algo-
rithm parts running on the MPU, they choose the MPU composite structure diagram
(cf. fig. 2(b) and fig. 3) as the corresponding processing CSD without the need to
specify this mapping in a new diagram.

4 Transformation to Queueing Networks

This section presents the algorithm that combines the system model and perfor-
mance annotations with the performance scenario and generates a multi-class queue-
ing network representing the use cases of the particular performance scenario. This
queueing network may be evaluated analytically or by simulation depending on
its characteristics. If the queueing network is in product form and thus, fulfils the
BCMP rules(25), an evaluation with the incorporated analytical solver is possible.
Since we want to use captured inter-arrival and service times (cf. sec. 3.2.2), a sim-
ulative evaluation must be employed. Therefore, we focus on the transformation for
simulations in this article only. In (26), we published a detailed description of the
transformation algorithm for analytical evaluation.

A queueing network consists of interconnected queueing centers which process in-
coming jobs from one or several workloads. The processing is characterised by a
workload dependent, stochastically distributed service time. The interconnection
may include branches and feedbacks forming a loop. In order to distinguish be-
tween different visits of a job to the same queueing center, multiclass queueing
networks assign a job class to each job (27).

The transformation algorithm consists of four steps as depicted in fig. 6. For each
use case specified in the performance scenario, the chain of actions is identified
which basically describes the flow of execution triggered by the reception of mes-

13

0NN AW~

sages in the sequence diagrams. Thereafter, each action is mapped to the compo-
nent performing the action by evaluating the composite structure diagram hierar-
chy. This information is used to generate the queueing network for this specific use
case. Steps 1-3 are repeated for each use case until finally, in step 4, all individ-
ual queueing networks are merged to the resulting queueing network covering the
whole performance scenario.

yes

more use cases?

no

1. Identify chain 2. Map actions to 3. Generate queueing
of actions components network for use case

for each use case

4. Combine use cases to
resulting queueing network

Fig. 6. The four steps of the transformation algorithm

4.1 Identifying the Chain of Actions

In the first step each sequence diagram associated with the involved use cases is
transformed into what we call a chain of actions (cf. listing 1 for a pseudocode
representation described in more details below).

function IdentifyChainOfActions(SequenceDiagram or InteractionFrame u)
List ChainOfActions
foreach element in u do
case Message:
if not directlyConnected (element.source ,element.destination) do
foreach action in findRoute (element.source ,element.destination) do
action .demand = PAdefaultDemand (action.CSDcomponent)
add(ChainOfActions ,action)

done
done
action = new Action ()
action .demand = element.PAdemand

add (ChainOfActions ,action)
case InteractionFrame:
case Alt:
add(ChainOfActions ,new Alt (IdentifyChainOfActions (element)))
case Loop:
add (ChainOfActions ,new Loop(IdentifyChainOfActions (element)))
done
return ChainOfActions
done

Listing 1. Identifying chain of actions

Every message in a sequence diagram corresponds to an action in the receiving
object triggered by the reception of that message. Thus, the algorithm sequentially
walks through the sequence diagram and creates an action for every message recep-
tion. Additionally, for each message the resource demand is identified according to
its <<PAStep>> annotation (cf. sec. 3.2.2; lines 11-13). Loops and alternatives are

14

independent elements in the chain of actions and are processed individually (lines
14-18). They are resolved in a later step (cft. 4.3).

As mentioned in sec. 3.1, our methodology supports both direct and indirect mes-
sage exchange. In case of an indirect message exchange, i.e., when the communi-
cating components do not share a direct link in the system topology, a route from
the source of the message to its destination component must be determined, be-
cause resources are consumed on these components as well. Note that the designer
must ensure the existence of such a route. In general, such a route may be discov-
ered using common routing algorithms such as Dijkstra, Bellman-Ford, or a simple
breadth first search. The components of the composite structure diagrams corre-
spond to nodes inside a graph for which the links are defined by the connections
between the components. A drawback of this approach is that the selected route
might not necessarily be the desired one if several alternative routes exist (even if it
is optimal under a specific metric). To leverage this situation, additional information
could be incorporated into the model to guide the algorithm in discovering the de-
sired route, e.g., by specifying required and implemented interfaces in intermediate
components. However, this additional information would violate the non-invasive
principle since it modifies the system model (requirement (1)). Therefore, we apply
the graph approach.

If a message is exchanged indirectly, a route is determined and the implicit actions
on the intermediate components are additionally inserted into the chain of actions in
front of the message target. Since these intermediate components are not annotated
with a use case specific demand in the currently processed sequence diagram, the
default resource demand as defined in (cf. sec. 3.2.2) is used instead (lines 5-10).

The corresponding chain of actions for the use case described by the sequence dia-
gram in fig. 4 is depicted in fig. 7. In this example, the Interpolation, DCT, and
MoComp are assigned to the DSP which results in the incorporation of the interme-
diate component Memory necessary for the message exchange between MPU and
DSP (cf. fig. 2(a)). The default demand is taken from this CSD which is distribution
(normal(1.0,0.01)) in case of the Memory component.

4.2 Mapping Actions to Components

Step 2 of the transformation algorithm takes the elements from the chain of actions
and maps each of them to its executing component which may be derived from the
hierarchy of composite structure diagrams (cf. listing 2).

As the resource consumption is analysed on the level of the processing CSD, all
components in sub-diagrams have to be mapped to their father component in the
processing CSD (cf. 3; line 26). Additionally, in order to configure the queueing
network properly, the capacity of each processing resource has to be determined.

15

o3 o -m —

Decoder | @ Interpol. — gg:\?

Video
Decomp

Demand=normal(1.0,0,01) | | Demand = trace(decodeBFrame.txt) | Demand = normal(1.0,0,01) || Demand = trace(interpolateBFrame.txt) | Demand = trace(dctBFrame.txt) Demand = trace(mocompBFrame.txt)

Fig. 7. Chain of actions for the sequence diagram SD_VideoDecompress — the resource
demands are shown only for one branch

function MapComponents(ChainOfActions)
List Components
foreach action in ChainOfActions do
case regularAction:
comp = processingComponent(action.CSDcomponent))
add (Components ,comp)
case Loop:
add (Components ,MapComponents(action))
case Alt:
add (Components ,MapComponents(action))
done
return Components
done

function processingComponent(comp)
if not elementOfProcessingCSD (comp) do

compFather = processingComponent(comp.fatherComponent)
compFather.capacity = comp.capacity*xcompFather.PArate
comp = compFather
done
return comp
done

Listing 2. Mapping actions to processing components

From the hierarchy of composite structure diagrams, a component’s capacity may
be calculated from the PArate tagged value as described in sec. 3.2.1, i.e., the
relative speed values propagate from the processing CSD down to the refinement
CSDs by multiplying the respective values. The mapping and the calculation of
the capacity is determined by recursively traversing the CSD hierarchy bottom up
until the processing CSD is reached. The default capacity is always 1 (lines 36-43).
Loops and alternatives are still preserved and treated separately (lines 28-31).

For additional components which the processing CSD does not contain but which
are required for the use case definition (e.g., source and sink in an end-to-end
scenario), the corresponding components are derived from the root CSD or sub-
hierarchies thereof. From the root CSD all components of the system are reachable
and thus, every component can be found.

The result of this step is the sequence of processing resources in the way they are

16

“visited” in the current use case combined with the resource demand of the ac-
tions. Thus, each step of the sequence is annotated with the corresponding resource
demand as well as the effective capacity of the associated component.

In the video decompression example, the components are mapped to the Handhe1d-
_CSD composite structure diagram depicted in fig. 2(a) which is used as the process-
ing CSD. In this example, the processing CSD is also the root CSD. Figure 8 shows
the modified chain of actions and the added resource capacities.

3w -m —
=
T
c
<
[}
3
[}
23
O
[%2]
o

ALT

Demand=normal(1.0,0,01) | |Demand = trace(decodeBFrame.xt) | | Demand = normal(1.0,0,01) |/ Demand = trace(interpolateBFrame.txt) | (Demand = trace(dctBFrame.txt) | | Demand = trace(mocompBFrame.txt)
Capacity=1 Capacity=1 Capacity=1 Capacity=3.815 Capacity=3.815 Capacity=3.815

Fig. 8. Chain of actions for sequence diagram SD_VideoDecompress after processing com-
ponent mapping — the resource demands are shown only for one branch

4.3 Generating a Queueing Network for a Single Use Case

In step 3 of the transformation, the sequence of processing demands and compo-
nents generated in step 2 is transformed into a queueing network corresponding
to the original use case. In contrast to the analytical analysis, the sequence of the
queueing centers is very important for the simulative model, because it determines
the paths a job can take through the network. Thus, it is necessary to resolve the
three structural elements, i.e., explicit loops, implicit loops, and alternatives in such
a way that each single path through the network possibly initiated by the current
workload is available in the resulting queueing network and that it is visited with
the derived probability.

As mentioned above, explicit loops generated by the loop-frame essentially result
in re-visiting the same queueing center several times. To be able to service each
visit of a job of the same workload with a different service time, it is necessary to
distinguish between each visit. For this purpose, we use the concept of multiclass
queueing networks. Basically, a special job class is assigned to the job and thus,
marked for looping in this way. After the job finished all iterations, the job class is
changed again and the job leaves for the succeeding queueing centers. The outgoing
link of the last queueing center of the explicit loop needs to be reconnected to the
input of the first queueing center. In this way, the jobs of the job class to loop are

17

continuously rerouted back to the loop start until they finished the last repetition
after which they leave the last queueing center of the loop to the remaining queueing
network.

Implicit loops evolve when the same component is visited twice or more in the se-
quence of processing resources. This might be due to either another message sent to
the same component in the sequence diagram or by mapping different refinement
components to the same processing CSD component. For the implementation of
implicit loops, the transformation needs to reconnect the outgoing link of a queue-
ing center for the incoming job class to the input of the same queueing center. The
job class is incremented before the connection is established to distinguish between
the repeated visit. The conversion of an alternative exploits the fact that each indi-
vidual branch connection to a sub-queueing network can be handled like a regular
connection. Before the jobs leave the queueing center in front of an alternative,
they are pseudo-randomly assigned to one of the branches according to the given
probabilities. Additionally, the output of each branch is connected to the queueing
center succeeding the alternative. Here, it is necessary to recombine the split job
stream by assigning a uniform job class to every job leaving the different branches.
Listing 3 shows a pseudocode representation of the algorithm.

HashMap QCs, List ON, List lastQC
function generateQN (Components)
List oldLastQC = lastQC
foreach comp in Components do
case Component:
gc = get(QCs,comp) or put(QCs,comp ,makeNewQC (comp.PAschdPolicy))
jc = gc.nextJobClass
setServiceTime (gc,jc ,comp.demand/comp . capacity or (comp.tracefile ,comp.
capacity))
foreach element in lastQC do connect(lastQC ,qc,jc)
lastQC = qc
case Loop:
generateQN (getLoopComponents (comp))
lastQC = comp.lastElement
case Alt:
foreach branch in comp do generateQN (getAltComponents (branch))
lastQC = oldLastQC
foreach branch in comp do add(lastQC ,branch.lastElement)
done
done

Listing 3. Generating use case queueing network

Each participating component is transformed into a queueing center. The service
times for each queueing center are calculated by dividing the resource demand as
derived in the chain of actions and the resource capacity as derived in step 2. If trace
based service times are specified (cf. sec. 3.2.1), the capacity is saved and the ser-
vice time is reduced during the simulation execution. The scheduling policies of the
queueing centers are taken from the PAschdPolicy tagged value of the processing
CSD <<PAhost>> annotations (lines 47-51). Loops and alternatives are unfolded
by first, transforming them as individual queueing networks and then, connecting

18

these sub-queueing networks to the main queueing network (lines 54-60).

In case of an alternative, there is more than one preceding queueing center to con-
nect to the succeeding network. In order to join the alternatives, each single branch
has to be reconnected to the succeeding queueing center. By using the same job
class for each connection, it is ensured that the branches will be combined to the
same original job stream again (line 52).

Figure 9 depicts the queueing network for the video decompression modelled by the
sequence diagram of figure 4. In this particular transformation, parts of the decom-
pression algorithm are processed by the MPU and parts by the DSP. The decision of
which part should be processed by which component is derived from the composite
structure diagrams as described in section 3.1, i.e., the VideoDecompression algo-
rithm and its part Decode run on the MPU while the Interpolation, MoComp, and
DCT are delegated to the DSP. The decompFrame () method of the class Video-
Decompression is reflected by the full arrow labelled ”Video”. After being pro-
cessed for the first time, the jobs are separated into three different job classes due
to the alternative distinguishing between the three MPEG frame types and rerouted
back to the MPU (Decode). At last, the jobs move on via the Memory queueing cen-
ter to the DSP queueing center (Interpolation). There they are implicitly looped
for two more times (DCT, MoComp).

Fig. 9. Resulting queueing network for SD_vVideCompress sequence diagram

4.4 Combining Use Cases to the Resulting Queueing Network

The last transformation step merges the use case specific queueing networks of step
3 to a resulting queueing network representing the entire performance scenario.

In this step, it has to be assured that the job classes assigned in the use case spe-
cific queueing networks are mapped to unique job classes of the resulting queueing
network. This allows the queueing centers to distinguish between the use cases,
and thus to process jobs of different workloads with the appropriate service times.
Listing 4 shows the pseudocode for this last step.

In the example performance scenario, there are two sequence diagrams leading
to the resulting queueing network depicted in fig. 10. Each sequence diagram is
represented by an individual workload, i.e., Audio for the audio decompression
and Video for the video decompression.

19

function mergeQNs(QONs)
List resultingQN , HashMap QCs, uniqueJC = 0
foreach gn in ONs do
exchangeJC (gn,uniqueJC)
uniqueJC = uniqueJC + 1
foreach gc in ¢gn do
globalQC = get(QCs,name(gc))
if not globalQC do
globalQC = qc
add (QCs,name (gc) ,qc)

else
globalQC = combine (globalQC ,qc)
done
done
done
return resultingQN
done

Listing 4. Generating resulting queueing network

Memory

Fig. 10. Resulting queueing network for Audio, Video, and e-mail use cases

5 Performance Analysis

In this section, we present the performance analysis steps taken for the described
scenario (cf. sec. 2). We considered two architectures. Architecture (1) consists
only of an MPU running all parts of the decoding algorithm. In architecture (2) we
add a DSP component which was assigned the computing intensive algorithm parts.
See figures 3(a) and 3(b) for the corresponding composite structure diagram hier-
archies. Both architectures were evaluated by simulation with arrival and service
times modelled stochastically. Additionally, we ran the simulation of architecture
(2) in the trace based mode as well, in order to compare the stochastic model with
real world values. Sending and receiving of e-mails was added to consider the im-
pact of background tasks. Section 5.1 describes how we obtained the necessary
performance figures for specifying the performance annotations. In section 5.2 we
present the results of our simulations.

We have implemented the described methodology and integrated the resulting tool
into Telelogic Tau G2(28), a UML 2.0 CASE environment, for an easy application.
Our UML to Queueing Networks (U2Q) tool generates input for the general purpose
simulator Omnet++(29) which was enhanced where necessary. The transformation
process can be configured and started directly from Tau G2 using a self made add-
in. This allows the developers to run the evaluation without switching to another
application. This add-in is able to analyse the evaluation output and to write back

20

the results into the diagrams. For example, the utilisation of a hardware component
and the mean residence time are presented as a comment of the corresponding ob-
ject in the composite structure diagram. Detailed simulation results can be viewed
in a separate window and are saved in HTML format. This seamless integration of
the performance evaluation into a CASE tool has two benefits. Queueing network
theory as the basis for the evaluation is hidden as much as possible from the de-
signer. This allows the designers to use performance engineering even if they are
not experts in this theory. Only by hiding the underlying mechanisms, performance
engineering might be adopted by the designers. This is complemented by the fact
that the designers do not need to switch applications to use the evaluation tool, but
may start it directly from their well-known design application. The current version
of U2Q along with the Tau G2 3.1 add-in can be downloaded at (30).

5.1 Input Values

In order to gain reasonable performance values, it is necessary to use appropriate
figures for the resource capacities and the resource demands. The goal of our anal-
ysis was to gather information about the resource demand of an MPEG decoder
running on an OMAP platform. As mentioned in section 2, one goal of our analysis
was to decide whether the MPU offers sufficient computing resources or whether
the DSP functionality would be needed. Therefore, it was sensible to estimate the
resource demands of the decoding process running on an ARM MPU only, first.
For this purpose, we measured the resource demands of decoding an MPEG stream
on a real ARMI9TDMI running Linux. First, we recorded a DVB-T stream (using
MPEG-2 for video and AAC for audio) of approx. 30 min and transcoded it into an
H.264 encoded video stream with PAL QCIF resolution (176x144 pixels) and the
GoP "IBBPBBPBBPBBP” (cf. sec. 2). The audio stream was kept the same as in
the original DVB-T stream. In a second step, we modified the open-source video
playback tool mplayer(31) used by the OpenZaurus(32) project, a FreeBSD distri-
bution for the ARM based Sharp Zaurus device. We extended mplayer to support
measurements for the decoding times of each I-, P-, and B-frame as well as for each
audio packet. Table 1 shows a summary of the measurement figures.

Min. | Median | Mean | 0.975 Qu. Max.

Audio || 2272 73794 | 85274 | 237768.4 | 712103
Video || 14610 | 35294.5 | 37510 | 67996.12 | 218800

Table 1
Measured performance figures for decoding video and audio on ARM in usec

The values for the audio and video decoding were measured independently. For this
purpose, we configured mplayer to only decode one of the streams and to ignore the
second. The measured values show a significant higher processing time for audio

21

packets. This is due to the fact that the audio stream was kept in the original quality
for convenience while the video quality was reduced. From our measurements we
observed several very large decoding times for both, video and audio frames. These
values are likely due to operating systems tasks running in parallel. Therefore, for
our analysis we considered the top 2.5% of the decoding times as outliers.

For modelling the queueing centers we analysed the distribution of the decod-
ing times. Using a maximum-likelihood-fitting, we concluded that the decoding
times are roughly log-normally distributed. Figure 11 depicts the pdf of the video
frame decoding times and a fitted log-normal distribution with the parameters u =
10.45,0 = 0.31. The decoding times of the different frame types can be well dis-
tinguished by the three peaks in the sample pdf. Nevertheless, the log-normal dis-
tribution provides a good approximation of the distribution. Similar graphs may be
drawn for the distributions of the single frame types as well as the audio packets.
Table 2 presents all distribution parameters used for the stochastic evaluation.

sample data: |-, P—, and B-frames

| fitted lognormal distribution

pdf

0e+00 1e-05 2e-05 3e-05 4e-05

T T T T T
0 50000 100000 150000 200000

Decoding Time [micsec]

Fig. 11. Density of frame decoding times and fitted log-normal

I-Frame | P-Frame | B-Frame | Audio

Mean 10.41 10.52 10.41 | 11.06
StdDev 0.31 0.36 0.26 0.74

Table 2
Parameters for service time modelling using log-normal distributions

For the DSP, an implementation of the MPEG decoding algorithm was not avail-
able. Since the goal of the methodology was to gain performance estimates early,
but without starting actual implementational work, we estimated the execution time
of DSP code from figures found in the literature. The authors of (33) break down
the MPEG decoding algorithm into its functional parts and provide an analysis of
how much time is spent in each functional part. We used this analysis to determine
the fraction of time spent in those functional parts in order to delegate their compu-
tation to the DSP. For example, DCT accounts for 59% of the computational com-

22

plexity, interpolation 12%, and motion estimation is performed 10% of the time. In
(34), figures are presented for the speed-up in execution time that a DSP optimised
implementation may be expected to achieve compared to a pure implementation on
the MPU. According to these figures, interpolation may be expected to execute 7.3
times faster, motion compensation 5.2 times faster, and DCT may be expected to
accelerate by a factor of 4.1.

The goal of this evaluation was to inspect whether a DVB-H stream can be decoded
using an OMAP platform and still having sufficient resources for other tasks like
processing e-mails. We measured the MPU computing time (system and user) for
receiving and sending e-mails with a 4 KB attachment on an idle system. Both
tasks include MIME en-/decoding and saving/loading the attachment. First, we
measured the MPU processing time (kernel and user) for receiving 1000 e-mails
by an SMTP server process. While it is reasonable to assume that such a process,
once started, continuously runs in the background, sending e-mails is often accom-
panied by starting the corresponding application first. Therefore, we measured the
invocation and sending time for 1000 e-mails. Both measurement series showed
to be very stable with only marginal variances. The mean reception took 0.02348
sec kernel time and 0.27438 sec user time. Sending an e-mail took 0.5345 sec ker-
nel time and 7.669 sec user time. As a worst case scenario to stress the MPU, we
assumed that one e-mail is received and send every minute.

5.2 Performance Results

As mentioned before, the video and audio stream decoding times were measured
separately, because the OMAP MPU is not capable to decode both streams in real
time. The same result was given by our simulation of architecture (1) as expected.

The second architecture incorporated a DSP and thus, allowed us to distribute parts
of the decoding algorithm to this special purpose processor. This has two advan-
tages. First, the MPU is relieved and second, the optimised signal processing rou-
tines lead to a significant reduction of computation times. According to the results
of (33) we moved the complex decoding parts to the DSP step-by-step. We started
with the inverse DCT (59% of computation time) for the audio and video decod-
ing which still led to an overload of the MPU. Only after moving the interpolation
(12%) and the motion compensation (10%) to the DSP, too, the MPU load dropped
low enough to allow the user to perform background activities as required. During
this modelling phase we distinguished between I-, B-, and P-frames. The proba-
bility for each frame type directly follows from the GoP (cf. sec. 5.1) which is
pr=1/13, pp =8/13, and pp = 4/13 in this scenario.

Table 3(a) shows the utilisation of the MPU and DSP in case that the motion com-
pensation remains to be processed by the MPU. Table 3(b) presents results with all

23

three mentioned algorithm parts running on the DSP which accounts for 81% of
the computational complexity. Finally, table 3(c) contains the results after incorpo-
rating the e-mail use cases. It can be clearly seen that both processors have enough
resources to perform additional background tasks and thus, it is sensible to invest
into porting parts of the decoding algorithms to the DSP.

Sim. run || MPU | DSP Sim. run || MPU | DSP Sim. run || MPU | DSP

stoch. 93% | 50% stoch. 63% | 57T% stoch. 97% | 57%
trace 91% | 49% trace 62% | 56% trace 95% | 56%
(a) DSP runs DCT and inter- (b) DSP runs DCT, interpo- (c) MPU processes E_Mails
polation lation, and motion compen-

sation
Table 3

Utilisation of MPU and DSP in architecture (2)

In addition, we ran the simulation of architecture (2) with the trace files generated
by our measurements. In these trace files the decoding function, frame type, the
processing time, and the frame number are saved for each processed frame. Thus,
we could directly compare the trace based simulation results with the performance
figures from the stochastically modelled simulation which showed to be an appro-
priate approximation (cf. tab. 3).

6 Summary & Future Work

In this article we presented a performance engineering methodology and its appli-
cation which mainly aims on non performance experts. It combines functional and
non-functional, i.e., performance, aspects in one UML model. while not altering
the functional model and keeping it working independently. In this way, non per-
formance engineers can still use the system. From this enhanced system model, per-
formance models were derived by an implemented transformation algorithm which
was also described. These performance models were analysed with queueing net-
work theory and provided a performance estimation of the modelled system and
thus, allow for the evaluation of the system design. The seamless integration of the
implementation into the CASE-tool Tau G2 hides queueing network theory almost
completely from the designer and thus, simplifies the application of our methodol-
ogy and of performance engineering in general for non-experts.

The presented system modelling approach proved to be applicable and well suited
to analyse a multimedia enabled handheld device. The intuitive separation of as-
pects into components, architecture, and behavioural model is strictly kept during
all stages of the system design. Especially composite structure diagrams allowed
us to iteratively decompose the system in an elegant fashion.

24

The performance annotations describing the resource capacities and demands were
modelled with UML SPT Profile annotations. Where reasonable or necessary we
adapted or extended the profile annotations. Since the capacities are rather part
of the architectural system design, we suggest to use the PArate and PAdemand
annotations in composite structure diagrams. This allows us to specify default de-
mands which are used if no specific demand is specified in the use case, e.g., if
intermediate components have to be inserted between two components communi-
cating indirectly. Even though this violates the required separation of component
and architecture modelling, it enables an easy exchange and comparison of com-
plete architectures. Further, we introduced the tagged annotation PAt raceLoad and
the type modifier t race for the tagged value PAdemand in order to incorporate real
world measurements directly into the model.

The integration of our U2Q tool into the UML CASE tool Tau G2 proved to be an
elegant and sophisticated way to enable a practicable employment of our methodol-
ogy. The designers do not need to change to another application, but only configure
the performance scenario and receive the values in a detailed report. The direct
write back of basic performance results such as the utilisation and the throughput
into the model itself visualises bottlenecks.

Future work will concentrate on extending the methodology and on the implemen-
tation. The limitation of speed-ups modelled by the PArate tagged value to only a
specific type of methods or classes is very important as already mentioned in the
text. For this purpose stereotypes might be used. The support of activity diagrams
for the dynamic behaviour modelling is an extension we are currently working on.
Further, it is sensible to transit to the upcoming MARTE Profile which already
incorporates solutions for the drawbacks of SPT we mentioned.

References

[1] L. Pustina, V. Deichmann, M. Gerharz, P. Martini, S. Schwarzer, Performance evaluation of a dvb-h enabled mobile
device system model, in: Proceedings of the 6th International Workshop on Software and Performance WOSP 2007,
2007, pp. 164-171.

[2] L.G. Williams, C. U. Smith, Performance evaluation of software architectures., in: WOSP, 1998, pp. 164-177.

[3] C. U. Smith, L. G. Williams, Performance Solutions, A Practical Guide to Creating Responsive, Scalable Software,
Addison-Wesley Pearson Education, 2001.

[4] V. Cortellessa, R. Mirandola, Deriving a queueing network based performance model from uml diagrams., in: Workshop
on Software and Performance, 2000, pp. 58-70.

[5] V. Cortellessa, M. Gentile, M. Pizzuti, Xprit: An xml-based tool to translate uml diagrams into execution graphs and
queueing networks., in: QEST, 2004, pp. 342-343.

[6] S.Bernardi, S. Donatelli, J. Merseguer, From uml sequence diagrams and statecharts to analysable petri net models, in:
WOSP *02, ACM Press, New York, NY, USA, 2002, pp. 35-45.

[7]1 J. Merseguer, J. Campos, Software performance modeling using uml and petri nets., in: M. Calzarossa, E. Gelenbe
(Eds.), MASCOTS Tutorials, Vol. 2965 of Lecture Notes in Computer Science, Springer, 2003, pp. 265-289.

[8] S.Balsamo, M. Marzallo, Performance evaluation of uml system architectures with mutliclass queueing network mod-
els, in: WOSP, 2005, pp. 37-42.

[91 M. Marzolla, S. Balsamo, Uml-psi: The uml performance simulator., in: QEST, 2004, pp. 340-341.

[10] A. D. Marco, P. Inverardi, Compositional generation of software architecture performance qn models., in: WICSA,
IEEE Computer Society, 2004, pp. 37-46.

[11] J. Xu, C. M. Woodside, D. C. Petriu, Performance analysis of a software design using the uml profile for schedulability,

25

[12]

[13]

[14]
[15]
[16

[17
[18]

[19]

[20
[21]
[22

(23]
[24]

[25]

[26

(27]
[28]
[29]
[30]
[31]
[32
[33]

[34]

performance, and time., in: P. Kemper, W. H. Sanders (Eds.), Computer Performance Evaluation / TOOLS, Vol. 2794
of Lecture Notes in Computer Science, Springer, 2003, pp. 291-307.

D. C. Petriu, X. Wang, From uml descriptions of high-level software architectures to Iqn performance models, in:
AGTIVE °99: Proceedings of the International Workshop on Applications of Graph Transformations with Industrial
Relevance, Springer-Verlag, London, UK, 2000, pp. 47-62.

S. Balsamo, A. D. Marco, P. Inverardi, M. Simeoni, Model-based performance prediction in software development: A
survey., IEEE Trans. Software Eng. 30 (5) (2004) 295-310.

D.-H. org, Dvb-h homepage, http://www.dvb-h.org.

ISO, Isofiec 14496, http://www.iso.ch.

T. Wiegand, G. J. Sullivan, G. Bjntegaard, A. Luthra, Overview of the h.264/avc video coding standard, Circuits and
Systems for Video Technology, IEEE Transactions on 13 (7) (2003) 560-576.

Omap platform, www.omap.com.

V. Cortellessa, R. Mirandola, Prima-uml: a performance validation incremental methodology on early uml diagrams.,
Sci. Comput. Program. 44 (1) (2002) 101-129.

R. Pooley, P. King, The unified modeling language and performance engineering, in: IEE Proceedings — Software.,
1999, pp. 2-10.

ETSI, Uml profile for communicating systems (draft) (2005).

OMG, UML Profile for Schedulability, Performance, and Time Specification 1.0, Object Management Group, 2003.
M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Israr, J. Merseguer, Performance by unified model analysis (puma),
in: WOSP’05 Proceedings of the 5th international workshop on software and performance, ACM Press, 2005, pp. 1-12.
OMG, A UML Profile for MARTE, Beta 1, Object Management Group, 2007.

H. Espinoza, H. Dubois, J. Medina, S. Grard, A general structure for the analysis framework of the uml martes profile
(Oct 2005).

F. Baskett, K. M. Chandy, R. R. Muntz, F. G. Palacios, Open, closed, and mixed networks of queues with different
classes of customers., J. ACM 22 (1975) 248-260.

L. Pustina, V. Deichmann, M. Gerharz, P. Martini, S. Schwarzer, Performance aware design of communication systems,
in: Proceedings of LCN 2006, 2006, pp. 39-46.

R. Jain, The Art of Computer Systems Performance Analysis, Wiley Professional Computing, New York, 1991.
Telelogic Tau G2 homepage, http://www.telelogic.com.

Omnet++ — general purpose network simulator, http://www.omnetpp.org.

Homepage of U2Q, http://www.cs.uni-bonn.de/IV/U2Q.

MPlayer, http://www.mplayerhq.hu.

OpenZaurus, http://www.openzaurus.org.

K. Ramkishor, V. Gunashree, Real Time Implementation of MPEG-4 Video Decoder on ARM7TDM]I, in: Intelligent
Multimedia, Video and Speech Processing, 2001, pp. 522-526.

J. Chaoui, K. Cyr, S. de Gregorio, J.-P. Giacalone, J. Webb, Y. Masse, Open multimedia application platform: enabling
multimedia applications in third generation wireless terminals through a combined risc/dsp architecture, in: ICASSP
’01: Proceedings of the Acoustics, Speech, and Signal Processing, 200. on IEEE International Conference, IEEE Com-
puter Society, Washington, DC, USA, 2001, pp. 1009-1012.

26

