‘Y Institute of Computer Science 4
universitatbonnl Communication and Distributed Systems

RHEINISCHE
FRIEDRICH- WILHELMS-UNIVERSITAT BONN,
GERMANY

LAB COURSE: COMMUNICATION AND COMMUNICATING DEVICES

Code Protection in Android

Author: Patrick Schulz
Advisor: Daniel Plohmann
Seminar: Communication and Communicating Devices
Semester: Winter term 2011/12
Date: June 7, 2012

Contents
1. Introduction

2. Related Work
2.1. Code protectors
2.2. Analysistools

3. Android Architecture
3.1. Android applications and runtime environment
3.2. Dalvik bytecodeo
3.3. Build process of an Android application.
3.4. Reverse engineering

4. Obfuscation techniques
4.1. Identifier mangling
4.2. String obfuscation00
4.3. Dynamic code loading
4.4. Junkbytes
4.5. Self modifying code oo
4.5.1. Self modifying Dalvik code
4.5.2. Modifying Dalvik code using JNT
4.5.3. Self modifying native code

5. Conclusion

Appendix A. Dynamic dex file loading
A.1. Java implementation for dynamic dex file loading
A.2. Native implementation for dynamic dex file loading . . .

Appendix B. Self modifying Dalvik bytecode via JNI
B.1. Java implementation for self modifying Dalvik bytecode .
B.2. Native implementation for self modifying Davik bytecode

il

In recent years the Android [1] platform has been become very popular and now runs

on more than half of the worldwide sold smartphones [2]. As a result, protecting applica-
tions running on Android becomes of interest. Currently, Reverse engineering of Android
applications is much easier than on other architectures, due to the high level but simple
bytecode language used.
Obfuscation techniques can be used to protect intellectual property of software. This pa-
per discusses possible code obfuscation methods on the Android platform. With a focus
on obfuscating Dalvik bytecode, we will also discuss limitations and problems of current
reverse engineering tools.

1. Introduction

The Android [1] platform developed by the ” Android Open Source Project” is one of the
most popular systems for mobile devices in the recent years [2]. This platform is designed
in a way that the user can download and install new applications easily. Due to the pop-
ularity of the platform, the market for Android applications has grown massively both
in variety and financial volume. This results in an increasing interest to protect program
code of Android applications. This protection shall help against software piracy and serve
as a method to guard intellectual property. On the Android platform there is a further
motivation to protect the program code. It is not unlikely for a malware developer to
abuse existing applications by injection of malicious functionalities and consequent redis-
tribution of the trojanized versions [3]. Application developers are interested in protecting
their applications. Protection in this case means that it should be hard to understand
what an application is doing and how its functionalities are implemented.

Obfuscation is the paradigm of hiding program semantics through choosing semantically
equivalent but complex and ambiguous representations in order to aggravate analysis. In
order to achieve this protection, obfuscation transforms program code of an application
in a way that it is "hard to reverse engineer” but without changing the behavior of this
application. Hard to reverse engineer means that automated programs cannot produce
good abstractions of the analyzed program and the results of the analysis become harder
to understand for a human analyst.

Reverse Engineering on the other hand has the goal to gather as much information
on an application as possible in order to understand its functionalities. The ideal result
of a reverse engineering process for an Android applications would be to reconstruct the
original Java source code out of the distributed binary form. Obfuscation cannot prevent
reverse engineering but can make it harder and more time consuming. We will discuss
which obfuscation and code protection methods are applicable under Android and show
limitations of current reverse engineering tools.

This paper is organized as follows. In section 2 we discuss related tools, which can be
used to obfuscate and reverse engineer an Android application. Section 3 describes the
Android architecture and how an application is structured. Obfuscation techniques are
discussed and evaluated in section 4. In the final section we conclude and summarize our
findings.

2. Related Work

Code obfuscation is a well known method and extensively researched on other architec-
tures such as x86. It is used to protect intellectual property of software and is also widely
used in malware both to evade detection by Anti-Virus products and harden the code
against analysis. It can have a huge impact on the effectiveness of reverse-engineering,
e.g. by disabling the usefulness of tools and circumventing heuristics. In the follow-
ing section we will discuss related tools for Android code obfuscation as well as reverse
engineering tools.

2.1. Code protectors

The following tools can be used within the deployment process of an application to ob-
fuscate program code and protect the application against analysis.

ProGuard

ProGuard [4] is an open source tool which is also integrated in the Android SDK [5]. It can
be easily used within the development process. ProGuard is basically a Java obfuscator
but can also be used for Android applications because they are usually written in Java.
The feature set includes identifier obfuscation for packages, classes, methods, and fields.
Besides these protection mechanisms it can also identify and highlight dead code so it can
be removed in a second, manual step. Unused classes can be removed automatically by
ProGuard.

Without proper naming of classes and methods it is much harder to reverse engineer
an application, because in most cases the identifier enables an analyst to directly guess
the purpose of the particular part. The program code itself will not be changed heavily,
so the obfuscation by this tool is very limited.

Allatori

Allatori [6] is a commercial product from Smardec. Besides the same obfuscation tech-
niques like ProGuard, shown in section 2.1, Allatori also provides methods to modify the
program code. Loop constructions are dissected in a way that reverse engineering tools
cannot recognize them. This is an approach to make algorithms less readable and add
length to otherwise compact code fragments. Additionally, strings are obfuscated and de-
coded at runtime. This includes messages and names that are normally human readable
and would give good suggestions to analysts.

The obfuscation methods used in Allatori are a superset of ProGuards so it is more
powerful but does not prevent an analyst from disassembling an Android application.

2.2. Analysis tools

The usual reverse engineering process makes use of a whole range of different analysis
methodologies and tools. In this case we only consider static analysis tools. In the follow-

ing, we present a selection of tools that can be used to disassemble Dalvik bytecode, see
section 3.2. Furthermore, meta information, e.g. method identifier and string constants,
about the program structure can be gathered, which helps to identify interesting parts of
an application.

dexdump

"Dexdump” is a tool that is directly included with the Android SDK [5]. It is a basic
dex file dissector and can also disassemble Dalvik bytecode, which is stored in the dex
file. dexdump uses a trivial and straight forward approach in order to disassemble a dex
file. It uses linear sweep to find instructions, this means that dexdump expects a new
valid instruction behind the last byte of the currently analyzed instruction. This is true in
most benign cases, but must not be true in case of obfuscated bytecode, as shown e.g. in
section 4.4 on Junkbytes. Furthermore, dexdump outputs the embedded classes, methods
and fields as well as some detailed information about the class structure.

smali

The smali [7] program is an assembler, which is the opposite of the already explained dis-
assembler. smali brings its own disassembler called ”baksmali”. So in combination, both
tools can be used to unpack, modify, and repack Android applications. The interesting
part for obfuscation and reverse engineering is baksmali. baksmali is similar to dexdump
but uses a recursive traversal approach to find instructions. So in this approach the next
instruction will be expected at the address where the current instruction can jump to, e.g.
for the "goto” instruction. This minimizes some problems connected to the linear sweep
approach. baksmali is also used by other reverse engineering tools as a basic disassembler.

Androguard

A very powerful analysis tool is Androguard [8]. It includes a disassembler and other
analysis methods to gather information about a program. Androguard helps an analyst
to get a good overview by providing call graphs and an interactive interface. The inte-
grated disassembler also uses the recursive traversal approach for finding instructions like
baksmali, see section 2.2. At the moment, Androguard is one of the most popular analysis
toolkits for Android applications due to its big code base and offered analysis methods.
It is also used as backend component for other tools like apkinspector [9].

IDA Pro

IDA Pro [10] is well known as a powerful tool for reverse engineering under x86. It
also supports many other architectures as well as Dalvik bytecode. IDA Pro provides a
graphical interface and supports plug-ins in order to extend analysis functionality. Besides
the usage of the recursive traversal approach, IDA Pro can start disassembling at specific
points within the file by a user request. This is useful in the case when the disassembling
algorithm missed some instructions. A very helpful feature of IDA Pro is the presentation
of the Dalvik code as a graph. This makes it much easier for an analyst to follow the
control flow within a program.

3. Android Architecture

In this section we describe the main parts of the Android architecture. This includes the
runtime environment and the format of Android applications as well as the build process.
These parts can be affected by obfuscation methods as described in section 4. The reverse
engineering process and its components are discussed in the last part of this section.

3.1. Android applications and runtime environment

Android applications are written in the Java [11] programming language and deployed
as files with an ”.apk” suffix, later called APK. It is basically a ZIP-compressed file and
contains resources of the application like pictures and layouts as well as a dex file. This
dex file, saved as ”classes.dex”, contains the program code in form of Dalvik bytecode.
Further explanations on this bytecode format are given in section 3.2. The content of the
APK is also cryptographically signed, which yields no security improvement but helps to
distinguish and confirm authenticity of different developers of Android applications.
Applications can be downloaded to an Android device via USB cable, from the official
Android Market [12], or various third party markets on the Internet. The installation
process on the device will be controlled by the Android platform, which also takes care
about permission assignment. Within the installation process, every installed application
gets its own unique user ID (UID) by default. This means that every application will be
executed as a separate system user.
When an Android application is executed, the process consists of the following four parts:

e Dalvik bytecode, which is located in the dex file

e Dalvik Virtual Machine [13], which executes the Dalvik bytecode

e Native Code, like shared objects, which is executed by the processor

e Android Application Framework, which provides services for the application

The Dalvik Virtual Machine (DVM) provides also the ability to call native functions
within shared objects out of the Dalvik bytecode. When speaking of reverse engineering
an Android application we mostly mean to reverse engineer the bytecode located in the
dex file of this application.

3.2. Dalvik bytecode

The program code of an Android application is delivered in form of Dalvik bytecode. It
will be executed by the Dalvik Virtual Machine and is comparable to Java bytecode. The
main difference between the Java Virtual Machine (JVM) and the DVM is, that JVM is a
stack based machine whereas DVM is register based. The Dalvik bytecode format [14] has
been developed for Android to be more efficient and smaller due to the limited resources
on mobile devices. Dalvik bytecode of an application is normally not optimized, because it
is executed by a DVM which can run under different architectures. So there is a separate
optimizing step while installing an application, where the bytecode gets optimized for the
underlaying architecture. The optimized form is also called "odex”. The optimization is

done by a program called ”dexopt” which is part of the Android platform. The DVM can
execute optimized as well as not optimized Dalvik bytecode.

3.3. Build process of an Android application

An Android application needs many steps and tools until the APK is build and ready
to be deployed. As mentioned in section 3.1, Android applications are written in the
Java programming language. Therefore, the application code is available in ”.class” files.
This plain text files are provided by the application developer. The first step of the build
process, as shown in figure 1 step 1, starts with the Java files which will be compiled into
7 .class” files by a Java Compiler. This step is similar to a Java program build process. At
this point the class files contain Java bytecode representing the compiled application. An
optional step "a” is to apply a Java Obfuscator [4][6] on this ”.class” files. The next step
is the transformation from Java bytecode into Dalvik bytecode, as discussed in section
3.2. For this, the ”"dx” program is used in step 2. It is included in the Android SDK [5]
due to it is necessity for building an application for the Android platform. The output of
dx will be saved into a single dex file ”classes.dex”. This file will be included in an APK
in a later step. Before this happens, it is possible to apply a further obfuscator operating
on Dalvik bytecode, as shown in figure 1 step b. Such Dalvik obfuscation techniques
will be discussed in section 4. The last step of the build process is packing and signing
the APK. The ApkBuilder constructs an apk file out of the ”classes.dex” file and adds
further resources like images and ”.so” files. ”.so” files are shared objects which contains
native functions that can be called from within the DVM. The ”jarsigner” just adds
the developer signature to the APK, which can now be installed on an Android device.
We should further mention that the obfuscator ProGuard [4] works at position ”a”, has
been integrated in the default development process and is recommended to use for release
versions.

3.4. Reverse engineering

Reverse engineering is the process of gaining information about a program and its imple-
mentation details. This process aims at enabling an analyst to understand the concrete
relation between implementation and functionality of the program. An optimal output
of such a process would be the original source code of the application, but this is not
feasible in general. An understanding of the program can be reached without recovering a
form that recompiles to the original program. Therefore, it is necessary for such a process
to provide on the one hand abstract information about structure and inter-dependencies
and on the other hand result in very detailed information like bytecode and mnemon-
ics that allow interpretation of implementation. The produced abstract representation
of the program code, e.g. class diagrams, helps an analyst to get a quick overview and
can give good suggestions where to start with further investigations. This means we use
abstract representations to find starting points and then use more detailed ones to ana-
lyze these interesting parts. It is also likely to generate intermediate representations e.g.
an intermediate language which is more abstract than mnemonics in order to enable an
analyst to read the program code faster. In this paper we focus on the disassembling
process which yields mnemonics because this is the fundamental step in reverse engineer-

Jjava Files = Java Compiler .Class Files

a

jarsigner Resources .s0 Files l

.apk File |< ? ApkBuilder ‘ .dex File

Figure 1: Android application build process [15].

ing due to the fact that most of the other processes are based on the disassembling process.

A disassembler is a tool which gets bytecode as input, e.g. the binary executable, and
produces the equivalent mnemonics. Some examples of disassemblers have already been
introduced in section 2. We will come back to them in the obfuscation process in section
4. Mnemonics represent bytecode in a human readable form and are the output of the
disassembling process. This representation yields therefore nearly the same information
as its bytecode counterpart. Only a few pieces of information are usually not included like
the addresses of instructions. In figure 2, the output of the disassembler ”dexdump”[5]

1 <Dalvik bytecode> | <Mnemonics>

> 1250 |const /4 vO, #int 5 // #5

3 1201 |const /4 vl1, #int 0 // #0

1+ 3d01 0400 |if-lez v1, 0006 // +0004

s d801 0101 ladd—int/1it8 v1, vl, #int 1 // #01
¢ d800 0009 |add—int /1it8 v0, vO0, #int 9 // #09
7 0f00 |return vO0

Figure 2: Disassembled method of an Android application generated by dexdump|5].

to a short method is shown. On the left side the binary representation called bytecode
is listed. They are printed as hexadecimal values. Each line represents exactly one
instruction of the DVM. Due to unintuitive representation, the right side also shows the
corresponding mnemonics. The meaning of every instruction within the bytecode is well
defined [14] but the syntax of the mnemonics can be chosen by disassemblers freely. At the
moment, there are two mainly used syntaxes [14][16]. The transformation from bytecode

to mnemonics and vice versa is available due to the bijective mapping, but finding the
correct start address and offset can be challenging. There are two major approaches:
linear sweep disassembling and recursive traversal disassembling [17]. The linear sweep
algorithm is prone to producing wrong mnemonics e.g. when a assembler inlines data so
that instructions and data are interleaved. The recursive traversal algorithm is not prone
to this but can be attacked by obfuscation techniques like junkbyte insertion as discussed
in section 4.4. So for obfuscation, a valuable attack vector on disassembling is to attack
the address finding step of these algorithms.

4. Obfuscation techniques

Obfuscation techniques are used to protect software and the implemented algorithms.
They are well known under the x86 architecture for years, where it is still an extensively
researched topic. These techniques are designed to make reverse engineering harder and
more time consuming, as discussed in section 3.4. On the other hand also new reverse
engineering techniques were developed and improved. So, it is an ongoing development
of both sides.

In general, the applicaiton of obfuscation techniques must not alter the behavior of pro-
grams, but their outer representation. Obfuscation techniques often only target specific
reverse engineering steps due to the circumstance that there are few general protection
schemes. Depending on the concrete obfuscation technique, a possible drawback is an
impact on execution speed. In this paper we will not discuss such slow downs in detail
because the presented techniques do not cause substantial slow downs.

In the following list we define reverse engineering goals, which should be covered and
attacked by obfuscation techniques.

e Derivation of correct mnemonics according to the bytecode, so that they are consis-
tent with the executed instructions.

e Extraction of meta information like identifiers and strings.

4.1. Identifier mangling
Identifiers are names for packages, classes, methods, and fields. They are represented as

strings. In figure 3, a snippet of Java source code with highlighted identifiers is shown.

1 public class NetworkManager {
> private String encrypt(String input)

1+ public void send(String input)
o }

Figure 3: Java source code example with highlighted identifiers.

In the example it is easy to get an idea of what this class is about and that it is almost

1 public class a {
> private String a(String ab)

4+ public void b(String ac)

Figure 4: Java source code example with obfuscated identifiers.

certain that some kind of encryption is involved. From the example it is obvious, that
original identifiers give information about interesting parts of a program. Reverse engi-
neering methods can use these information to reduce the amount of program code that
has to be manually analyzed. Identifier mangling aims to neutralizing these information
in order to prevent this reduction.

Identifier mangling tries to remove any meta information about the behavior, which
can be gathered out of identifiers. An easy approach is to replace any identifier with a
meaningless string representation holdin respect to consistence. This means identifiers
for the same object must be replaced by the same string. As for the substitution schema,
random strings do not contain any information about the object or its behavior itself, so
they fulfill the requirement.

The obfuscator ProGuard, presented in section 2, uses a similar approach. It uses minimal
lexical-sorted strings like {a, b, c, ..., aa, ab} instead of random strings, which is shown
in figure 4. This has the advantage of minimizing the memory usage, which should also
be concerned in the context of mobile devices. Such an obfuscator can be applied within

the development process in step ”a” or step ”b” in figure 1.

4.2. String obfuscation

Strings are arrays of characters which are frequently used within a program e.g. for
enabling user interaction or printing messages. In comparison to identifiers, see section
4.1, the original content of a string must be available at runtime because a user cannot
understand an obfuscated or encrypted message dialog. In figure 5 an example of string
usage is shown.

1 private void start() {

2 String server = "irc.cnc.mal”;

3 String password = "notpublic”;

4 connection.connect(server, password);
5o}

Figure 5: Java source code example with highlighted strings.

A reverse engineering process can extract at least two important information out of such
strings. On the one hand we can identify functions of interest by interpreting the context
in which strings are used and on the other hand we get the content of these strings, e.g.

server addresses, passwords, or cryptographic keys. Therefore, an Android application
developer is interested in obfuscating these strings.

String obfuscation can be achieved by any injective function F which is invertible and
transforms an arbitrary string into another string. We can use e.g. the xor function or
encrypt a string using AES [18]. In order to obfuscate a string S, we replace S within the
program code with the output of F(S). Beside the output of F(S) the obfuscator has
to generate a deobfuscation stub F~! which has to be included into the program code.
This deobfuscation stub is used to reconstruct the original string just before it is used at
runtime, which is necessary in order to not change the behavior of the program.

This obfuscation technique does not make it harder to understand the program code
due to the fact that it does not change it, besides injecting a deobfuscation stub. This
technique aims at reducing the amount of extractable meta information. Furthermore,
we have to mention that this obfuscation can be defeated by dynamic analysis in which
the program will be executed. Here, an analyst may execute the program until the first
time the particular string is used and can then extract the content of this string. The
string holds the original value at this point due to the assumption that the behavior is
not changed by the obfuscator.

4.3. Dynamic code loading

An optimal obfuscator would transform an application in a way so that it does not contain
any meta information or directly interpretable bytecode. This is not possible because in
this case also the DVM could not execute this program and it would not be runnable. A
result close to this ideal transofmration can be achieved by applying packing that goes
beyond obfuscation. This approach is well known under the x86 architecture and is often
used by malware [19]. A packer takes an arbitrary executable and transforms it in a way
that an analyst cannot immediately extract information out of it. For example, this can
be achieved by not only encrypting data but also code, which is then decrypted during
runtime before it is executed. In this case, no information can be extracted without
decrypting it first. In order to yield an executable application, the packer has to generate
a so called unpacking stub, which will be executed when starting the application. This
unpacking stub will decrypt the encrypted application, load it into the process context
and execute it. In this approach the analyst cannot gather useful information out of the
encrypted application. He has to investigate the decryption stub in order to decrypt the
application by hand or use dynamic analysis techniques.

The obfuscator has to generate two components, the encrypted application and a decrypter
stub. In Android, the encrypted application would be an encrypted dex file. This is rather
easy to generate compared to the decrypter stub. The decrypter stub has to implement
four main functionalities as shown in figure 6. At first the encrypted application has to be
fetched into memory fetched. This can be done by downloading a dex file from a remote
server or extracting it from an internal data structure. In Android we can simple add
arbitrary files to an APK and access them at runtime. The second step in figure 6 is
the decryption of the encrypted dex file, yielding the original dex file. The cryptographic
function can be chosen freely, due to its application is completely independent from the
content of the dex file. After the unpacking stub has generated the original dex file, it
can be loaded into the DVM and executed, as shown in steps 3 and 4 in figure 6.

10

In order to attack such a schema, a reverse engineering tool has to gain access to the
decrypted dex file. This can only be done after step 2 in figure 6.

(1 (2 © (4]
fetch
download N

embedded decrypt |—>{ load |—>{ execute

Figure 6: The steps of an decryption stub in case of a packed application.

The implementation of step 1 and 2 in Android is very simple, because we can use
existing library functions [20][21]. The 3rd and 4th step are also possible because of the
support of reflection in DVM via the "DexFile” class [22]. This class supports loading
of dex files into the currently running process, a requirement for step 3 in figure 6. The
publicly accessible functions can only operate on dex files stored on the file system, which
means that our decrypted dex file has to be saved to the file system before loading. In
this case an analyst can easily copy it from there and the considered protection scheme
becomes useless. Another problem with this mode of operation is the transformation of
the loaded dex file into an optimized equivalent that in turn is stored on the file system.
The optimized dex file is secured by file system permissions so that our application cannot
delete them to prevent leakage of the decrypted file. From this, we conclude that using
these functions are not suitable to create a protection scheme comparable to the likes
of x86. However, the "DexFile” class provides another function, which supports loading
a dex file from an arbitrary bytearray instead of a file, but this is a private function as
shown in figure 6.1a and it cannot be called directly by our application.

To circumvent this restriction we can use the provided ”Java Native Interface” (JNI) of
the DVM, see figure 7. JNI is intended to allow execution of native code, which is located
in shared objects, out of the DVM. This is useful e.g. for computationally complex algo-
rithms like graphic processing. The DexFile class also uses this native interface as shown
in step 2a.

While the ”DexFile” class does not provide access to all functions, it allows access to those
which store optimized dex files. We implemented our own minimal dex file loader as a
shared object, which provides the function ”public static int openDexFile(byte[] fileCon-
tents)”, as shown in step 1b and 2b in figure 7. We use the circumstance that the shared
object ”libdvm.so” exports symbols, which we can use to call this particular function in
order to circumvent the restrictions that occur when directly interfacing with the Android
library within the DVM.

This approach has two advantages. We do not have to store the decrypted dex file on the
file system, because we can pass the content of it via a bytearray. By this, the content

11

of our dex file is only available within volatile memory. The other advantage is that this
function does not generate an optimized dex file. An example implementation can be
found in the appendix A.

process context

o - — — — — —

| Dalvik bytecode) @ e ATEERER ~
‘ class DexFile {
\ X P | private static int ‘

openDexFile(byte[] fileContents)

| P | public static int |
/ openDexFile(String sourceName, ‘
| String outputName, int flags)

}
|
within the DVM |

S " S

| native execution |

Y

| Shared object libdvm.so
| public static int @ private static int . |
openDexFile(byte[] fileContents) openDexFile(byte[] fileContents)

private static int
openDexFile(String sourceName, ‘
‘ String outputName, int flags)

.o |

Figure 7: Possible control flows to load a further dex file into a running process.

This protection scheme makes it hard to analyze the target application, because its byte-
code is only available encrypted. To get the decrypted version, the unpacking stub has to
be analyzed. This slows down the whole reverse engineering process. Another advantage
of this approach is that we can apply further obfuscation techniques, but just need to
apply them on the unpacking stub. We also can freely modify the unpacker stub in order
to fulfill requirements of some advanced obfuscation techniques.

4.4. Junkbytes

Junkbyte insertion is a well known technique under the x86 architecture [23]. It is used to
confuse disassemblers in a way that they produce disassembly errors and disallow correct
interpretations by an analyst. This is done by inserting junkbytes in selected locations
within the bytecode where a disassembler expects an instruction. The position of a
junkbyte must take the disassembling strategy into account in order to reach a maximum
of obfuscated code. The two major disassembling strategies are discussed in chapter 3.4.
Another condition for the location is that the junkbyte must not be executed, because an
execution would result in an undesired behavior of the application. So a junkbyte must
be located in a basic block which will never be executed. We can ensure that this basic

12

block will not be executed by adding an unconditional branch in front of it. It is also
possible to use a conditional branch while ensuring that the evaluated argument results
in a constant value. This technique is called usage of an opaque predicate.

1 0003bc: 1250 |0000: const/4 v0, #int 5 // #5
> 0003be: 2900 0400 |0001: goto/16 0005 // 40004
3 0003c2: 0001 |0003: <Junkbytes>
4 0003c4: 0000 |0004: <Junkbytes>
5 0003c6: d800 000 |0005: add—int/lit8 vO, vO, #int 1 // #01
6 0003ca: 0f00 |0007: return vO0
Figure 8: Disassembly output with correct detection of the junkbytes.
1 0003bc: 1250 |0000: const/4 vO, #int 5 // #5
2 0003be: 2900 0400 |0001: goto/16 0005 // 40004
3 0003c2: 0001 0000 d800 0001 |0003: packed—switch—data (4 units)
4 0003ca: 0f00 |0007: return vO0

Figure 9: The linear sweep algorithm used by dexdump[5] produces disassembly errors
due to junkbyte insertion.

1 0003bc: 1250 |0000: const/4 vO, #int 5 // #5

2 0003be: 3c00 0400 |0001: if-gtz v0O, 0005 // +0004

3 0003c2: 0001 0000 d800 0001 |0003: packed—switch—data (4 units)
1 0003ca: 0f00 |0007: return vO0

Figure 10: The recursive traversal algorithm used by most of the disassemblers produce
disassembly errors due to junkbyte insertion using conditional branches.

In figure 8, a method is shown which returns 6 as an integer. We have inserted an un-
conditional branch at the address 0x3BE followed by two junkbytes. The unconditional
branch ensures that these junkbytes will not be executed and jumps directly to the addi-
tion encoded at the address 0x3C6. This is the correct output that will be produced by a
recursive traversal disassembling algorithm. Disassemblers like dexdump, which use the
linear sweep algorithm, will produce incorrect output, as shown in figure 9. In this case
the "add-int” instruction at address 0x3C6 is omitted.

With this simple junkbyte insertion using an unconditional branch, we can force a linear
sweep algorithm to misinterpret the bytecode. In order to also cover recursive traversal
algorithms we have to incorporate conditional branches. A simple example is shown in
figure 10. This will cover both recursive traversal as well as linear sweep algorithms. In
this case the addition is also not visible like in figure 9.

The number of obfuscateable instructions depends on the junkbyte e.g. if the junkbyte
indicates the begin of an instruction consisting of multiple bytes, more of the follow-
ing instructions are covered, which is shown in figure 11 in the third column. So the
"packed-switch-data” instruction we used in the examples is a good choice due to its
variable length, but not every disassembler processes this instruction because it is a very

13

junkbyte | reverse engineering | covered | output/behavior
sequence | tool bytes
0x0001 dexdump, baksmali, | 6-4kk | overlapping instructions will not be discov-
dex2jar ered
0x0001 androguard, dedexer | - no obfuscation due to this instruction is not
implemented in this tools
0x18 dexdump, baksmali, | 9 overlapping instructions will not be discov-
androguard, dedexer, ered
dex2jar
0x3c (*) | dexdump >0 all instruction following this junkbyte in the
particular method are discarded
0x3c (*) | baksmali >0 baksmali crashes while parsing this junkbyte.
No further output
0x3c (*) | androguard - ignores unknown opcodes.
0x3c (*) | dedexer >0 dedexer crashes while parsing this junkbyte.
No further output
0x3c (*) | dex2jar >0 dex2jar crashes. Produces no output.

(*) an unused opcode. Any other unused opcode should produce the same results.

Figure 11: The behavior of different reverse engineering tools when parsing inserted
junkbytes.

special one. The ”packed-switch-data” instruction is a dummy instruction which cannot
be executed, but just stores data. So we evaluated different candidate bytes for junkbyte
insertion and compared them according to their impact on different disassemblers. The
results are shown in figure 11.

The results show that all tested reverse engineering tools have problems with junkbyte
insertion and can be tricked. Besides this some of them crash and have flaws in excep-
tion handling. This shows that the disassembler implementations have to be improved
and that we still need better algorithms for disassembling in order to find all instructions
and to determine the control flow within bytecode correctly. This still holds for a simple
architecture like Dalvik, which e.g. does not support indirect jumps. An indirect jump
allows to jump according to the content of a register and this makes it generally very
difficult to determine the branch address with static analysis in general.

Junkbytes are still effective and can be used to hide instructions within the disassembling
process. An analyst has to check this manually, which is time consuming and as a result
junkbyte insertion is a valuable technique for obfuscation.

4.5. Self modifying code

Program code which can alter itself at runtime is called self modifying code. This means
that the instructions we observe in an initial piece of code, do not need to be the same
code which are executed when running the program. This technique can be used to hide
"true” code during static analysis, as discussed in section 4.3. It is even possible without

14

loading further code into the runtime environment.

On the Android platform there are situations where it is possible to have self modifying
code. In the following sections we discuss different situations and techniques to enable
self modification.

4.5.1. Self modifying Dalvik code

Android applications are mostly written in Java and so they consist of Dalvik bytecode,
as explained in section 3.2. Due to the limited instruction set of the DVM compared
to the x86 architecture or the ARM architecture, there is no direct way to access the
bytecode with an instruction. As a consequence, it is not directly possible to read nor
write into the bytecode stream which is executed. Therefore, self modifying code is not
possible within the DVM itself.

To achieve modification within a Dalvik bytecode stream we have to use external compo-
nents. As a result, we can make the assumption that the analyzed code will not be altered,
in case of absence of further external component which may implement such modification
techniques.

4.5.2. Modifying Dalvik code using JNI

In Order to achieve modification of Dalvik bytecode during runtime, we have to use native
code due to the missing ability of self modifying Dalvik bytecode, as discussed in section
4.5.1. This can be done using JNI, which we have used in section 4.3 on dynamically
loading code from memory. This interface enables us to execute native code within our
current process context. This means that it is possible to access the process memory
where the DVM as well as the running Dalvik bytecode are located. The advantage of
native code in this case is that we can access arbitrary memory locations, which on the
other hand is not possible using Dalvik bytecode.

An example is shown in appendix B. The Java source code and therefore also the Dalvik
bytecode consists of three parts:

e A JNI call in order to execute our native code,
e A magic byte constant, which is used to locate our Dalvik bytecode,

e The Dalvik bytecode which should be modified.

The native code will be called by our Dalvik bytecode. It has a search routine that starts
to look for the magic byte constant within the memory. This process with the intention to
gather position information is well-known from shellcode and called ”egg-hunting”. After
the magic byte constant has been identified, we can modify the target Dalvik bytecode,
which is located at a previously measured offset to the magic byte constant. By this we
can modify our bytecode. After returning from the native code, the modified bytecode
will be executed.

We showed that static analysis of the Dalvik bytecode is not enough in order to reverse
engineer an Android application due to the fact that the bytecode can be altered during
runtime. A further implication of this is, that an analysis must also cover the native code
and cannot only take Dalvik bytecode into account as an isolated part of the application.

15

4.5.3. Self modifying native code

Native code is code which will be executed by the processor directly. Due to the fact that
most mobile devices are based on an ARM architecture, we speak about ARM native code
in this section. The ARM instruction set is comparable to the instruction set of the x86
architecture. Due to the fact that self modifying code is well known since years under x86
[24], it is rather easy to transfer these techniques to ARM. A simple example is to map
a new memory section into the process, using the syscall “mmap”. Now, native code can
be written to this new section and be executed by jumping into it. Due to the fact that
we can write and execute the code within the section at the same time, we are also able
to implement memory-based self modifying code. For this approach we have to take care
about the caching behavior of the ARM architecture [25].

ARM native code has no further restrictions on self modifying code in comparison to x86.
So we can apply any known obfuscation and even more generally, any protection technique
based on self modifying code on Android applications as well. To counter this situation,
we can also use the developed analysis techniques from x86 like dynamic analysis.

16

5. Conclusion

The Android platform is an interesting field of research and also a valuable market for
companies. Because source code can be easier recovered from an application in compar-
ison to x86, there is a strong need for code protection and adoption of existing reverse
engineering methods. Main parts of Android application functionalities are realized in
Dalvik bytecode. So Dalvik bytecode is of main interest for this topic. The Dalvik in-
struction set is less powerful when compared to e.g. those of the x86 architecture, due to
the lack of ability to access the own bytecode and perform indirect jumps. So it should
be less complex to work with Dalvik bytecode in order to parse, evaluate and disassemble
it. In fact, today’s disassemblers have still problems with transforming Dalvik bytecode
into mnemonics correctly. Also, the Android system does not prevent modification of this
bytecode during runtime. This ability of modifying the code can be used to construct
powerful code protection schemata and so make it hard to analyze a given application.
Beside modification of bytecode during runtime other obfuscation techniques can be used
in order to protect Android applications. These techniques do not try to make it harder
to parse the code but reduce meta information within the applications. This is done to
prevent, that information about the application and its functionalities are gathered by an
analyst. Those techniques like identifier mangling and string obfuscation are very effective
and let the reverse engineering process be time consuming.

In this paper we showed that the existing disassembling implementation have to be im-

proved and that well-known obfuscation techniques as proven on other processor archi-
tectures are still effective.

17

References

1]

2]

[10]

[11]
[12]

[14]

[15]

[16]

[17]

Android Open Source Project. Android sources. Visited: May, 2012. [Online].
Available: http://source.android.com

Gartner. Worldwide smartphone sales soared in fourth quarter of 2011
with 47 percent growth. Visited: May, 2012. [Online]. Available: http:
//www.gartner.com/it/page.jsp?id=1924314

C. A. Castillo and Mobile Security Working Group McAfee, “Android malware past,
present, and future,” 2011.

E. Lafortune. Proguard. Visited: May, 2012. [Online]. Available: http:
//proguard.sourceforge.net/

Android Open Source Project. Android sdk. Visited: May, 2012. [Online]. Available:
http://developer.android.com/sdk/index.html

Allatori. Allatori obfuscator. Visited: May, 2012. [Online]. Available: http:
//www.allatori.com/doc.html

smali. Visited: May, 2012. [Online]. Available: http://code.google.com/p/smali/

A. Desnos. Androguard. Visited: May, 2012. [Online]. Available: http:
//code.google.com/p/androguard/

Apkinspector. Visited: May, 2012. [Online]. Available: http://code.google.com/p/
apkinspector/

H.-R. SA. Ida pro. Visited: May, 2012. [Online]. Available: http://www.hex-rays.
com/products/ida/index.shtml

Oracle. Java. Visited: May, 2012. [Online]. Available: http://www.java.com

Google Inc. Android market. Visited: May, 2012. [Online]. Available: https:
//play.google.com

Android Open Source Project. Dalvik and dalvik virtual machine. Visited: May,
2012. [Online|. Available: http://code.google.com/p/dalvik/

Android Open Source Project. Bytecode for the dalvik vm. Visited: May, 2012.
[Online]. Available: http://source.android.com/tech/dalvik/dalvik-bytecode.html

Android Open Source Project . A detailed look at the build process. Visited:
May, 2012. [Online]. Available: http://developer.android.com/guide/developing/
building/index.html

J. Meyer and D. Reynaud. Jasmin. Visited: May, 2012. [Online]. Available:
http://jasmin.sourceforge.net/

B. Schwarz, S. Debray, and G. Andrews, “Disassembly of executable code revisited,”
2002.

18

http://source.android.com
http://www.gartner.com/it/page.jsp?id=1924314
http://www.gartner.com/it/page.jsp?id=1924314
http://proguard.sourceforge.net/
http://proguard.sourceforge.net/
http://developer.android.com/sdk/index.html
http://www.allatori.com/doc.html
http://www.allatori.com/doc.html
http://code.google.com/p/smali/
http://code.google.com/p/androguard/
http://code.google.com/p/androguard/
http://code.google.com/p/apkinspector/
http://code.google.com/p/apkinspector/
http://www.hex-rays.com/products/ida/index.shtml
http://www.hex-rays.com/products/ida/index.shtml
http://www.java.com
https://play.google.com
https://play.google.com
http://code.google.com/p/dalvik/
http://source.android.com/tech/dalvik/dalvik-bytecode.html
http://developer.android.com/guide/developing/building/index.html
http://developer.android.com/guide/developing/building/index.html
http://jasmin.sourceforge.net/

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

National Institute of Standards and Technology (NIST), “Advanced Encryption Stan-
dard (AES) (FIPS PUB 197),” 2001.

F. Guo, P. Ferrie, and T.-c. Chiueh, “A study of the packer problem and its solu-
tions,” 2008.

Android Open Source Project. Android reference - javax.crypto.cipher. Visited:
May, 2012. [Online|]. Available: http://developer.android.com/reference/javax/
crypto/Cipher.html

Android Open Source Project . Android reference - java.net.url. Visited: May, 2012.
[Online|. Available: http://developer.android.com/reference/java/net/URL.html

Android Open Source Project. Android reference - dalvik.system.dexfile. Visited:
May, 2012. [Online]. Available: http://developer.android.com/reference/dalvik/
system/DexFile.html

C. Linn and S. Debray, “Obfuscation of executable code to improve resistance to
static disassembly,” 2003.

B. Anckaert, M. Madou, and K. De Bosschere, “A model for self-modifying code,”
2007.

J. Bramley. Caches and self-modifying code. Visited: May, 2012. [Online]. Available:
http://blogs.arm.com/software-enablement /141-caches-and-self-modifying-code/

19

http://developer.android.com/reference/javax/crypto/Cipher.html
http://developer.android.com/reference/javax/crypto/Cipher.html
http://developer.android.com/reference/java/net/URL.html
http://developer.android.com/reference/dalvik/system/DexFile.html
http://developer.android.com/reference/dalvik/system/DexFile.html
http://blogs.arm.com/software-enablement/141-caches-and-self-modifying-code/

A. Dynamic dex file loading

A.1. Java implementation for dynamic dex file loading

© oo ~ (=2} ot - w [} -

[T T N S o S S
X R =R O © O N O ;oA W N = O

N
=

A.2.

© 9] ~ =] [ol) - w [=

10

11

12

13

14

15

16

17

18

JNIEXPORT jint JNICALL Java_org_dexlabs_DexLoader_openDexFile

{

}

(JNIEnv* env, jobject thiz, jbyteArray dexdata)

JValue pResult;

jint result;

u4 args|[] = { (ArrayObjectx)dexdata };
dvm_dalvik_system_DexFile [1]. fnPtr(args, &pResult);
result = pResult.|;

return result;

JNIEXPORT jobject JNICALL Java_org_dexlabs_DexLoader_defineClass

}

(JNIEnv* env, jobject thiz, jobject name,
jobject loader, jint cookie)

StringObject*x nameObj = (StringObject*) name;
Object* loaderObj = (Object*) loader;

u4 args|[] = { nameObj, loaderObj, cookie };

JValue pResult;

dvm _dalvik_system_DexFile [3]. fnPtr(args, &pResult);

jobject xret = pResult.|;
return ret;

Native implementation for dynamic dex file loading

public class DexlLoader extends Activity

{

public void onCreate(Bundle savedlnstanceState) {

super.onCreate(savedInstanceState);
InputStream is;

byte[] buffer = new byte[2528];
//fetching further dex file,

//we can also do decryption at this point
AssetManager assetManager = getAssets();
is = assetManager.open(" classes.dex");
is.read(buffer);

//load dex file into the process,
//find a class by its name

int cookie = openDexFile(buffer);

Class newcls = loadClassBinaryName("com. protect.newclass”,
getClassLoader (),
cookie);

20

19

20 }

21 public Class loadClassBinaryName(String name,
22 ClassLoader loader,
23 int mCookie) {
24 return defineClass(name, loader, mCookie);
25 }
26
27 native private Class defineClass(String name,
28 ClassLoader loader,
29 int cookie);
30 native private int openDexFile(byte[] fileContents);
31 static {
32 System.loadLibrary (" dexloader"”);
33 System . loadLibrary ("dvm”);
34
¥

B. Self modifying Dalvik bytecode via JNI

B.1. Java implementation for self modifying Dalvik bytecode

1 public class ModiActivity extends Activity {

2 @Override

3 public void onCreate(Bundle savedlnstanceState) {

1 super.onCreate(savedInstanceState);

5

6 Integer err = makemodification ();

7 int egg = 0x23420023;

8 Integer result = 9;

9 }

10

1 native private int makemodification ();

12 static {

s System.loadLibrary (" hello—jni");
14 }
15 }

B.2. Native implementation for self modifying Davik bytecode

1 JNIEXPORT jint JNICALL Java_com_modi_ModiActivity_makemodification
2 (JNIEnvx env, jobject thiz)
s {

1 //POC: correct values can be find by /proc/self/maps

5 charx start = 0x40037000;

6 charx end = 0x40039000;

7

8 //enable write access

9 mprotect((void x)start, (end—start), PROT_READ|PROT_WRITE);

=
(=}

21

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

char x

candidate = memchr(start, Ox14, (end—start));

//egg hunter

while (

candidate !'= 0 && !(candidate [2] = 0x23 &&
candidate [3] = 0x00 &&
candidate [4] = 0x42 &&
candidate [5] = 0x23))

candidate = memchr(candidate+1, 0x14, (end—candidate));

//find and manipulate const/16 v4, #int 9 // #9

if(candidate != 0 && candidate [6] = 0x13 &&
candidate [7] = 0x04 &&
candidate [8] = 0x09 &&
candidate[9] = 0)

}

return

// const/16 v4, #int 265 // #265
candidate[9] = 1;
return candidate—start;

0;

22

	1 Introduction
	2 Related Work
	2.1 Code protectors
	2.2 Analysis tools

	3 Android Architecture
	3.1 Android applications and runtime environment
	3.2 Dalvik bytecode
	3.3 Build process of an Android application
	3.4 Reverse engineering

	4 Obfuscation techniques
	4.1 Identifier mangling
	4.2 String obfuscation
	4.3 Dynamic code loading
	4.4 Junkbytes
	4.5 Self modifying code
	4.5.1 Self modifying Dalvik code
	4.5.2 Modifying Dalvik code using JNI
	4.5.3 Self modifying native code

	5 Conclusion
	Appendix A Dynamic dex file loading
	A.1 Java implementation for dynamic dex file loading
	A.2 Native implementation for dynamic dex file loading

	Appendix B Self modifying Dalvik bytecode via JNI
	B.1 Java implementation for self modifying Dalvik bytecode
	B.2 Native implementation for self modifying Davik bytecode

