Classification and Detection of Metamorphic Malware using Value Set Analysis

Felix Leder, Bastian Steinbock, Peter Martini
University of Bonn
Institute of Computer Science IV
Roemerstr. 164, 53117 Bonn, Germany
Email: {leder, steinboc, martini } @cs.uni-bonn.de

Abstract

Metamorphic malware changes the structure of its code
from infection to infection. This makes it very hard to clas-
sify or to detect. While the byte-sequence of two variants
may be completely different, the core functionality of the
malware has to stay the same. This includes the use of flags
and constants that have to be consistent at specific points.
We present a novel approach that allows us to detect meta-
morphic variants. Based on this detection, it is also possible
to classify new samples to a metamorphic family. Our ap-
proach identifies variants by tracking the use of consistent
values throughout the malware. Our evaluation shows a
100% detection rate with 0 false positives for all metamor-
phic samples that do not change their behavior.

1. Introduction

The number of new malware specimen has significantly
increased over the last years and basically shows an expo-
nential growth [13]. The vast amount of new specimen can-
not be analyzed fast enough. Thus, many of the modern
antivirus products are not able to keep up with the grow-
ing threat. Statistics from [9] show that less than 5% of all
submitted malware samples were detected by all virus scan-
ners.

The detection rate is even worse for metamorphic mal-
ware. Metamorphic malware changes its code’s appearance
and structure from infection to infection. It does so e.g. by
inserting junk code, which does not change the behavior,
by replacing instructions with equivalent operations, and
by changing the order of code blocks. Metamorphism is
also used in polymorphic malware. Here, the acutal mal-
code is encrypted and a decryptor is included in the exe-
cutable. Polymorphic malware uses metamorphic decryp-
tors to avoid the detection and classification by the decryp-
tor [21]. One prominent example for fully metamorphic
malware is Lexotan32 [8]. Even though, this virus has been

around since 2002, only 12.6% out of our infected samples
were identified by the 40 virus-scanners at [9]. None of
those scanners was able to detect all of the samples.

Metamorphic malware can change its code and structure
in a way that less than half a dozen bytes remain avail-
able for signatures, which is impossible to use for detection.
While the code itself changes significantly, the general be-
havior of the malware and thus the actual malfunctionality
stays the same. This is reflected by the data that is used
inside the malware. Certain values like loop counters, pa-
rameters to external library functions, like the “protocol”
parameter to socket(), or flags have to stay the same at spe-
cific logical points inside each variant. However, those val-
ues can be constructed by metamorphic malware in various
ways. As an example, the instruction mov eax, 5 leads
to the situation in which a register holds the value 5. So do
the following two code sequences.

mov ebx, 2
add ebx, 3

XOr ecx, ecx
sub ecx, -5

In this paper, we present a novel approach to detect and
classify metamorphic malware by extracting characteristic
sets of values. This approach is based on a value set anal-
ysis [11], which is a static analysis technique that tracks
the propagation and changes of values throughout an exe-
cutable. This characteristic set is determined by a refine-
ment step that creates an intersection of all sets of values
found in multiple variants of the same malware. With this
refinement step it is even possible to separate the values of
file-infecting malware from those values originating from
the host program’s code. The actual identification is based
on an algorithm that identifies the best matching position
for each of the characteristic’s value set inside a specimen.
Different parameters and matching schemes are studied to
achieve the best detection performance.

With our approach, we were able to perfectly identify
and differentiate all of six metamorphic specimen without

any false negatives or false positives.

The rest of the paper is structured as follows. Section 2
gives an overview of both commercial and academic related
work. Section 3 gives a brief introduction into value set
analysis. Section 4 explains the general methodology of
the identification process, the use of points of interest, and
the matching. In section 5, the matching parameters are
determined and the evaluation of our approach based on six
malware specimen is presented. Section 6 concludes our
achievements and summarizes the results.

2. Related Work

Methods and tools that detect and classify malware exist
in a range of commercial products as well as in academic re-
search. It has been proven that it is not possible to develop a
detection system that can detect all types of malware with-
out any false negatives and false positives [12].

This section presents an overview of both commer-
cial and academic approaches and explains the deficiencies
found especially in commercial products when trying to de-
tect metamorphic malware.

2.1. Commercial Approaches

Commercial products incorporate a wide range of dif-
ferent scanning and classification techniques like check-
summing, string scanning, smart scanning, X-Ray scan-
ning, code emulation, geometric detection, and heuristics
[21]. Since the complexity of these approaches increases
and commercial products try to achieve real-time scanning,
the use of filters is common. Examples of filters are the
exclusion of files that don’t have an “.exe” suffix or lack
executable headers, like PE or ELF [19, 10]. Other filters
are to scan only in the boot-sector for boot-sector-viruses.
Means to speed up detection in AV include Top-and-Tail
scanning, which only scans certain regions at the start and
end of each file, as well as Entry-Point scanning that is per-
formed around the entry point of a file. It is obvious that the
types of filters have to be tailored specifically to malware
families.

Check-summing is the fastest but least reliable technique.
The file that is to be scanned is check-summed using cryp-
tographic hash functions, like MDS5 [20], and compared to
a list of malicious programs as well as possible whitelists.
A variant of this approach is to hash only parts of the file.
A little more sophisticated is string scanning, which scans
the considered files for common substrings that only found
in specific malware. Both approaches are not able to de-
tect strong metamorphic because of the high variability of
the infections. The chances for detection even get worse for
file-infecting malware that morphs into a host program. An
extension to string scanning is the use of wildcards, similar

to regular expressions, in the search string. This allows for
little more flexibility and can detect slightly changing code
but not sophisticated morphing. Smart scanning is a special
form of wildcard scanning that leaves out irrelevant parts of
the inspected file, like obvious junk code. It is able to detect
malware that performs metamorphism through the insertion
of junk code but fails for semantic code replacement or code
reordering [7].

Since real malcode is often encrypted, commercial prod-
ucts often target the encryption of the malware’s body and
then apply one of the scanning methods described above.
While those methods can be efficient for this scenario that
do not improve the detection of metamorphic malware
which does not hide its code because of its ever-changing
nature. X-Ray scanning targets the encryption often used
by attempting simple, standard decryption based on simple
arithmetic operations. Code emulation executes the start of
the malcode in a small virtual machine trying to find the end
of the decryption routine included.

A third category of commercial products searches for
typical anomalies in executable files. These can be changes
to the host program of specific file-infecting malware or un-
usual layout inside the malicious programs themselves. If
tailored to specific families, this detection is called geomet-
ric detection. It is often prone to false positives [21]. More
generic detections are based on typical malcode heuristics,
like entry points in the last section of the infected file, sus-
picious code flow redirections, or inconsistent file header
value [19].

2.2. Academic Approaches

While most commercial approaches try to detect mal-
ware by scanning for signatures, several newer approaches
aim to detect and classify malware by its behavior.
MetaAware [22] is closest to our approach by examining
the code and data flow between system functions. From
those they derive patterns that are matched to a metamor-
phed variant. Based on this matching attempt a similarity
score is computed. Our approach is not only based on sys-
tem functions but on all parts of the possibly infected file.
Furthermore, MetaAware does not use refinement to extract
the malcode from files, in which it has been merged with
host code.

The method presented in [14], uses code normalization
to remove obfuscation techniques, which are typically used
within metamorphism. After the normalization step, the
files are classified using subgraph isomorphism matching
of the inter-procedural control flow graph [17]. Different
normalization techniques exist. [16] presents how to revert
common obfuscation, namely junk insertion, code reorder-
ing, and packing. Related to [14] is the detection and re-
moval of redundant and useless instructions [15], which is

based on compiler optimization and clone detection to iden-
tify duplicate code. While those approaches attempt to re-
vert known obfuscation they are no generic means for meta-
morphic malware.

The approach presented in [18] creates disassemblies
that are more robust against traditional obfuscation by per-
forming a more sophisticated reachability analysis. The
analysis checks the plausibility of the existence of concur-
rent code-blocks. While this improves readability and anal-
ysis, it cannot directly be used to detect metamorphism or
to classify metamorphic malware.

3. Value Set Analysis

The value set analysis [11] is the foundation of our meta-
morphic detection approach. The value set analysis (VSA)
is a static code analysis that estimates the memory con-
tents at all instructions of a program without executing it.
This is achieved by performing a detailed data flow analysis
throughout the whole executable and tracking the propaga-
tion of possible values. The following example shows the
general principle. Each line shows the x86 assembly in-
struction and the value set belonging to it.

loc_0x100:
mov eax, 1 {eax=1}
mov ebx, loc_0x100 {eax=1, ebx=0x100}
add eax, ebx {eax=0x101, ebx=0x100}

Values are tracked for registers, global memory, stack,
and heap locations. They are named memory locations be-
cause of being data stores. The VSA tries to determine the
contents for all memory locations at every instruction of the
program. Unlike in dynamic analysis, in which concrete
values are assigned to each memory location at a point in
run-time, the static analysis has to approximate all the val-
ues that an instruction’s operand may contain. Since some
values, like host dependend information, can only be deter-
mined at run-time, an exact determination is sometimes not
possible. In those cases the value set analysis performs an
over-approximation such that the real values are definitely
included in the determined range. This over-approximation
is extensively used during the analysis of loops and re-
cursions in order to speed up the analysis. To be mem-
ory efficient, the VSA performs two optimizations. First,
memory locations for which either no values can be deter-
mined or that can contain all possible values are not stored,
which is implicit storage. Furthermore, instead of storing
the exact values, more memory efficient structures are used.
One example in the use of strided intervals [11]. They
are described by a lower bound (Ib), upper bound (ub) and
stride (s) between elements. The values are described by
s [1b, ub]. As an example, the values {4, 8,10, 12, 14} can
be described by 2 * [4, 14].

The detection approach presented here is based on our
own VSA implementation that differs slightly from the one
presented in [11]. For efficiency reasons, only registers and
stack values are used. If the number of values for a given
memory location stays below a given threshold, the concrete
values are stored. Strided intervals are only used when the
number of values exceeds the threshold.

More formally, each instruction inside a program is
mapped to a value set. Such a value set V is a collection
of data objects (C;):

V={C,Cy,...,Cp} 1

A single data object represents a memory location / and
a set of possible values {s} that memory location ! may
contain at the time when the instruction considered would
be reached during execution:

Ci = (li, {s:}) 2)

For the value set analysis implemented, [can be either a
specific processor register or a location on the virtual stack
described by the its offset.

I € {register, stack location @ offset y} 3)

The offset is the relative position compared to the position
of the stack pointer at the beginning of the currently ana-
lyzed function. Stack locations mostly represent local vari-
ables or parameters for function calls. {s} can be a set
of concrete values or an over-approximation described by
a strided interval.

4. Methodology

Two infections by the same metamorphic malware may
have only few bytes of similar code in common. Thus, they
are impossible to detect by regular string sequences with-
out the risk of creating an unacceptable percentage of false
positives. This becomes even more complicated for file-
infecting viruses, in which the code of the infected host
program is mixed with the malcode. Even though the code
of the malware may change completely, the malfunctions
contained inside the binary have to stay the same: The mal-
ware does only change its appearance but not its behavior.
This includes that certain values or possible sets of values
do not change from infection to infection. Simple examples
are loops with a constant number of iterations, or calls to
specific system functions like socket(). The constant have
to be used at the same point in the logic of the malware,
even though its code and structure looks completely differ-
ent. The socket() function e.g. is typically used to create
UDP (17) or TCP (6) sockets. Thus, the set of values on the
stack just before the function call is {6, 17}. Our approach

exploits the fact, that certain sets of values stay constant
among all metamorphed variants which allows us to classify
and detect them. Figure 1 illustrates the idea for an exam-
ple with slight metamorphic modifications. On the left is the
original program, the right side is morphed. The marked in-
structions are junk and do not have any impact on the behav-
ior. The points O/ and M1 mark identical points. The value
set at those points is {eaz = 10, ebx = 2, ecx = 5}. In the
morphed variant, these values have been computed using in-
termediate calculations. Points O2 and M2 are inside a loop
and therefore over-approximated. Still, the value sets con-
tain the same over-approximations. {eax > 10,edz < 5}.
While these code sequences look similar, their binary rep-
resentation is completely different and cannot be used for
reliable string signatures.

1 nop

2 nop

3
; Create stack frame 4 ; Create Stack frame
push ebp 5 push ebp

6 mov ebp, esp
7

8 sub eax, @
9

1
2
3 mov ebp, esp
4

5 ; Initialize loop counter
6 mov ecx, 5

10 ; Initialize loop counter
11 mov edx, ©

12 add edx, 5

13

14 nop

15

3 Initialize values 16 ; Initialize values
8 mov ebx, 2 17 mov edi, @

18 sub edi, -2

19

20 add eax, ©

21

~

9 mov eax, 10 22 mov eax, 5
10 23 add eax, 5
24
11 startLoop: 25 startloop:
12 26
14 28 nop
29

15 ; Multiply value
16 imul eax, ebx

30 ; Multiply value
31 imul eax, edi
32

33 mov eax, eax

34

17 ; Decrement loop counter 35 ; Decrement loop counter
18 dec ecx 36 sub edx, 1
19 37

20 ; Repeat loop if neccessary 38 ; Repeat loop if neccessary
21 jnz startLoop 39 jnz startLoop

22 40

41 add ecx, @

42

23 ; Return 43 ; Return

24 leave 44 leave

25 ret 45 ret

Figure 1. Metamorphic code sample

In the following a brief description of the overall identi-
fication process given. This is followed by a a more detailed
explanation of the reliable identification of points of interest
(POI) inside metamorphic malware. The last part explains
the matching process.

4.1. Identification Process

The identification process of a suspicious binary pro-
gram is performed in four consecutive steps.

1. Create disassembly

2. Analyze
3. Match points of interest
4. Calculate similarity score

The general concept of the value set analysis relies on the
disassembly of the program analyzed. Even though this step
might already be targeted by specially obfuscated programs,
different methods exist to create reliable disassemblies even
in those cases [18]. The value set analysis is then applied as
a static analysis to approximate the possible values of each
memory location for every instruction in the program. Since
it is performed as a static analysis (instead of dynamic) all
possible execution paths are analyzed. As a result random-
ization and time-dependent control-flows have no impact on
the value sets. After all value sets have been computed they
are matched to a reference list of value sets. This list con-
tains the characteristics of a metamorphic specimen as de-
scribed in the following. Based on the matching a similarity
score is computed, which can be used for identification or
classification.

4.2. Points of Interests

Metamorphic malware significantly changes its struc-
ture and appearance from infection to infection. Further-
more, many of the specimen are file-infecting and some-
times merge into the code of the host program. This re-
sults in two major challenges when trying to match possible
characteristic value sets to those of a suspicious file. First,
points inside the program have to be identified at which it is
probable that value sets do not change from infection to in-
fection. Those points will be called points of interest (POI)
in the following. Secondly, POIs have to be found that can
be used to distinguish values of the host program from those
of the malware.

Prominent POI candidates are function calls, library
calls, jumps, functions entries, a combination of those, or all
instructions in the program. During function calls, certain
parameters, like flags, can only be chosen from a specific
range. This is especially true for external library functions
that require specific constants for the functionality required,
like the “protocol” parameter for the socket() function. At
conditional jumps decisions are made depending on certain
values. At function entries specific set-ups have to exist.
Of course, considering all instructions assures that no char-
acteristic value set is missed. Obviously, this requires the
most complex analysis. Different POIs and their impact on
the detection are evaluated in section 5.

When considering all instructions of a file-infecting mal-
ware, the value sets of instructions from the host program
will also be included. In order to distinguish value sets de-
rived from the host program from those from the malware,

we propose a refinement process. By using multiple sam-
ples with multiple host programs it is possible to extract the
value sets relevant for the malware and to eliminate those of
different host programs. This is performed by creating the
intersection of value sets {V'} and data objects {C;} that
can be found in all infected programs. Since a single value
set can contain data objects from both host and malware,
not only identical value set are used but also matches with
at least a certain matching score. This is depicted in figure
2. The value set at a given POI contains multiple data ob-
jects. Two of them belong to the virus. One data object is
the result of the host program’s code. For two value sets of
different files V; and V5 the refinement score A is the ratio
of data objects found in both value sets:
_ Muw

A [Vin Vs @
If two value sets of different files V; and V5 match at least
with the given threshold A > 7, all their matching data
objects are included in the further refinement process. The
refinement is repeated with all dedicated files. The number
of files needed for good refinements as well as suitable 7
are discussed in the evaluation (section 5).

Figure 2. Refinement process

4.3. Matching

As described in 3, the value set analysis computes an
over-approximation of all the values that each memory lo-
cation can contain.

The actual matching process takes the values sets {V}
that characterize a metamorphic malware (source) and tries
to find the best matching value sets {V;} in the considered
sample (target). For this, the data objects of each vy € {V;}
are matched to each v; € {V;} and a value set similarity
is calculated. This is used to find the best matching com-
bination, which then is used in the similarity rating for the
whole file. Two value sets V and V; are compared using
the similarity of their data objects C; ; and C} ; of each set.
Again, the best matching data objects are used to calculate
the similarity rating of two value sets.

This double best matching approach is used to identify
semantically corresponding parts inside completely mor-
phed variants.

The computation of the similarity score of two data ob-
jects Cs ; and Cy ; is performed in three steps:

1. Intermediate score S’ based on {s,;} % {s¢;}
2. Adjustment based on memory location I, ; and [y ;
3. Normalization of the final score S;nq; to [0, 1]

In the first step the values s, ; and s; ; of two data objects
are compared. Due to the refinement process, the source
value sets {V;} that characterize the malware can be as-
sumed to be more precise than the value sets obtained from
the single target sample {V; }. Thus, for matching two value
sets vs € {V5}, vy € {V4} with matching data objects Cj ;
and C; ;:

S5 C St (5)

Thus, if s5; D s;; then Cy; does not match Cs; and a
final similarity score of Sy;nq = 0 is assigned. If not, an
intermediate similarity S’ is computed. When both s, ; and
s¢,; are exact sets of values and no over-approximations, an
exact similarity is determined as:

_ I35 Vsl

|557i

S (6)

For many positions in a binary, the value set analysis leads
to over-approximations. In this case, the intermediate score
is set to S’ = 100%. Due to the assumption 5: |s, ;| <
|s¢,j]- The more they differ, the more unlikely is their sim-
ilarity. The intermediate score is lowered by A urdgina if
|Ss,i| < |5t,j| and by A2card if |Ss,i| <2- |5t,j‘

In the second step, I, ; and [; ; are compared. If both
are registers, the intermediate score is not modified. Regis-
ters can and are often exchanged in metamorphic malware.
Therefore, registers have to be regarded as aliases for each
other. In case one location is a register and the other is stack
memory a degree of uncertainty is introduced. Thus, the
similarity score is adjusted to S” = S’ — Ajs.. Both loca-
tions on the stack indicate some similarity. Similar offsets
indicate a higher similarity while a difference implies un-
certainty. Therefore, the offsets are compared and the simi-
larity score is lowered to S” = S — A g if they differ.

In the third step the final score is normalized to [0, 1] by
setting Syinq = 0 when S” < 0. Otherwise Syina = S'.

To sum it up, the score depends on the ratio of source
values found in the target range. It is lowered for certain
relations by Agiacks Atocs Acardinal> and Ageqrq. The latter
parameters are used for fine tuning and are determined in
the first part of the following evaluation.

5. Evaluation

The evaluation has been performed in two phases. In
the first phase, the impact of the different parameters in the
matching and refinement process have investigated and an
optimized parameter set has been determined. For this step,
the Lexotan32 virus [8] has been used since it includes all
major metamorphic techniques. The general applicability of
this approach is evaluated by using the derived parameters
for six metamorphic malware samples.

5.1. Parameter Derivation

The parameter set has been determined using 30 differ-
ent files infected by Lexotan32 [8]. Five files are used for
the refinement process and 25 are used for the evaluation. In
addition, 25 programs from a standard Windows installation
are used to check for false positives. Lexotan32 has been
chosen because of including all major metamorphic tech-
niques, like junk insertion, register exchange, code permu-
tation, and instruction substitution. Lexotan32 is the evo-
lution of different viruses [7]. Of the 30 samples uploaded
to VirusTotal [9] the average detection ratio was 12.6% and
none of the 40 virus scanner was able to detect all samples.

The matching score of two files depends on the score
of the value sets V' at the considered POIs. Similarly, the
matching score of two value sets depends on the score of
their data objects C. We have evaluated two weighing
schemes for generating these scores: Average scoring and
Threshold scoring. Average scoring computes the higher-
level score by using the average of all lower-level scores.
For files, this is the average score of all value sets. For
value sets, this is the average score of the data objects. Av-
erage scoring includes very low scores that might indicate
two objects not being similar. Therefore, Threshold scoring
is evaluated as an alternative to compute the higher-level
score solely based on those lower-level scores that reached
a least a certain threshold. E.g. a threshold of 0.7 for file
matching means that only those value sets are included in
the average score that have at least a similarity score of 0.7.
We have performed an extensive evaluation that investigates
48 set-ups with all combinations of the following settings
using all instructions as POlIs:

e Average scoring and Threshold scoring for files
e Average scoring and Threshold scoring for value sets
e For Threshold scoring: Thresholds of 0.7, 0.8, and 0.9

L4 Astacks Aloc, Aca'rdinals and AQcard set to the same
value: A = 0.1, 0.2, and 0.3

We use a differentiation threshold T to classify whether a
file is a Lexotan32 variant or not. For a file with a simi-
larity score Sfinqa > T, it is assumed to be infected. If

Sfrinar < I'it is assumed to be clean. Steady configura-
tions have been found for I' = 0.8 to 1.0 Figures 3 and 4
illustrate the numbers of false positives and negatives.. The
results for I' = 0.9 are similar. For I' > 0.8, set-ups 34,
35, 36, 46, 47, and 48 have a perfect detection without any
false positives or false negatives. All of these set-ups use A
of 0.3 and Threshold scoring for both files as well as value
sets.

M False positives M False negatives

Number of failed classifications

10||| ||| | ||||| | |||||
. || [[{11] Il
o||||||||| ||||||| |||||||||||||

1234567 8 91011121314151617181920212223242526 27282930313, a 748

Configuration set-up #

Figure 3. Detection errors for I' = 0.8

25

M False positives M False negatives
20
15

10
[

12345678 910111213141516171819202122232 282930313, 4 748

Number of failed classifications

Configuration set-up #

Figure 4. Detection errors forI' = 1.0

Since the relation of A values to the value set threshold
scoring seems to be the important factor for perfect detec-
tion, the influence of Agiack, Aioes Aecardinal, and Nocard
on the result has been examined. Each A was set to 0.3
while the others were set to 0.0. Two other tests were per-
formed with all A = 0 and all A = 0.3 The detection of
infected files were always perfect with a similarity score of
1.0, which yields 0% of false negatives. Thus, the use of
A does influence the detection of infected files but only re-
duces false positives. Agzqcr and A grdging; have not show
an impact on the false positives. Ay, results in 8 false pos-
itives . Agcqrg reduces the false positives to O for I' > 0.75.
With all A = 0.3 the use of lower I' was even possible.

All in all, the use of high threshold scoring is required to

eliminate false negatives. All values sets are perfectly found
in every infected files and I' = 1.0 can be used. For the
evaluation with malware, strict threshold values of 1.0 are
chosen for value sets and data objects. With setting Agcqrq
and A, to a level of 0.3, the similarity scores of clean files
stays significantly below the given I". 84% of them have a
similarity score of 0, anyway.

Besides the derivation of matching parameters, the re-
finement parameters have been determined. In the follow-
ing, we will only present the results but not describe the
evaluation itself. For including value sets {V'} in the re-
finement process, a Refinement score of 7 > 0.7 was found
to be suitable. For this parameter, two refinement steps are
enough to reach the final refined characterization. The ini-
tial analysis of all instruction POIs of the first file leads to
153 suitable value sets with 633 data objects. This was low-
ered to 4 value sets with 8 data objects after two refinement
steps. These characteristics do not change in consecutive
refinement steps.

5.2. Malware Evaluation

The main evaluation is based on the parameters pre-
sented in the previous part. They are used to evaluate the
detection of six malware specimen with metamorphic code.
In addition, we study the impact of the POI selection on the
overall result.

The specimen used for evaluation are listed in the
following table. Out of the six specimen, only W32/Evol
is a full metamorphic. The other six are polymorphic,
which means that their original code is encrypted and
the decryptor is included and executed at the beginning
of the virus code. These decryptors are metamorphic.
Therefore, the evaluation is based on the detection of
this metamorphic part. The VirusTotal column shows the
detection result of 40 virus scanners used in VirusTotal
[9]. The first number is the average detection rate, the
second shows the number of virus scanners that detected
every variant. None the viruses use metamorphism as
sophisticated as found in Lexotan32, which has been used
for the parameter evaluation in the first phase. This results
in higher detection percentage compared to Lexotan32.

’ Name \ ref. \ Type \ VirusTotal @/perf. ‘
W32/Evol [5] | Full 74.1% /23
W32/A0C [4] | Decryptor | 74.2% / 26
W32/BlackBat [1] | Decryptor | 70.5% /21
W32/Bolzano [2] | Decryptor | 53.9% / 15
W32/Hatred [6] | Decryptor | 48.3% /12
W32/Hezhi [3] | Decryptor | 68.0% /25

] W32/Lexotan32 \ [7] \ Full \ 12.6% /0 \

All of the presented malware specimen are file-infecting.
Therefore 30 different files were infected with each of the
malwares. Five of those are used for refinement. The left-

o B M oW = ouo@

..

Call POIs

All Instruction
POIs

Jump POIs Function POls

Perfectly identified samples

POl Identification technique

Figure 5. Number of perfect identifications

over 25 are used for the actual evaluation. In addition, 25
programs from a standard Windows installation are used
to check for false positives. The evaluation has been per-
formed for all instruction POIs as well as for jumps, calls,
and function entries.

We define a perfect identification when both sets of each
25 infected and clean files are correctly identified. This
means that neither false positives nor false negatives have
occurred for any specimen.

Figure 5 shows the number of perfectly identified and
differentiated specimen for the given POI types. Using all
instruction POIs all six specimen are identified perfectly.
Four out of the six malware were identified perfectly using
jump POIs. Two specimen ended in having no value sets for
identification for this POI after five refinement steps. Call
and function entry POIs are less often available and lead
to fewer numbers of value sets. After the refinement there
were still two specimen that were identified perfectly with
call POIs and even one specimen with perfect identification
using function entry POlIs.

The following table displays false positives and
false negatives for each of the malware specimen.

[Name | AllIns. | Jumps | Call [Func. Entry |
W32/Evol Vi v | v | 4%/0
W32/A0C Vv 4% /0 - -
W32/BlackBat | +/ NARIRY; 7
W32/Bolzano v N - -
W32/Hatred vV v - -
W32/Hezhi N ; - :

“y/” indicates perfect identification, i.e. 0% false positives
and 0% false negatives. “-” means that no value sets
are available for characterizing the malware after five
refinement steps. As can be seen by the table, there is
either a perfect identification or no value sets available
with two exceptions. The use of function entry POIs leads
to one false positive for W32/Evol. The number of false
negatives is still zero, which means that all infected files
have been identified correctly. The same situation exists for
the jump POIs of W32/A0OC. All in all, in cases in which

characterization data exists, all infected files have had a
similarity score of 1.0, which means perfect detection. The
score of uninfected files depends on the POI selection with
all instructions being the most reliable strategy.

6. Conclusions and Future Work

We have presented an approach to detect metamorphic
malware by using characteristic values that are used in all
variants of given specimen. These characteristic values de-
scribe parts of the behavior of the malware. We extract the
values with the use of a value set analysis. In order to get
specific characteristics, a refinements process is applied that
uses the intersection of values extracted from different vari-
ants. For file infecting viruses, this step allows us to sep-
arate the value sets of the host program from those of the
malware.

Two different matching schemes and specific parameters
are used to achieve the best detection. These have been eval-
uated and their influence on the matching performance de-
termined. With this set of parameters together with using
all instruction POIs, we were able to perfectly identify all
seven considered metamorphic malware specimen without
any false positives or false negatives.

The results for other POIs are less perfect because not
enough characteristic values have been found at those. One
reason is the strict matching that has been used to extract
those. The combination of POIs to might lead to character-
istics while lowering the analysis effort compared to consid-
ering all instructions. A larger number of malware and clean
samples might be beneficial for fine-tuning the parameters.
Furthermore, the approach could also be useful for general
identification of malware instead of metamorphic only. An
evaluation of this will be future work.

7. Acknowledgements

The authors would like to thank the anonymous review-
ers of this paper for discussions and comments. We are also
thankful for the people who supported us and gave valuable
suggestions.

References

[1] Blackbat virus (last visit (Iv): Jun. 2009)
http://www.rohitab.com/sourcecode/blackbat.html.

[2] Symantec security response, win32/bolzano (1v: Jun. 2009)
http://www.symantec.com/security _response/writeup.jsp?
docid=2000-121515-4146-99&tabid=2.

[3] Symantec security response, win32/hezhi (Iv: Jun. 2009)
http://www.symantec.com/security_response/writeup.jsp?
docid=2003-032615-3916-99&tabid=2.

(4]

5]

(6]

(7]

(8]
(9]
[10]

(1]

[12]

[13]

(14]

(15]

[16]

(7]

(18]

[19]

(20]

(21]

(22]

Virus encyclopedia, win32/aoc (last visit: Jun. 2009)
http://www.viruslist.com/en/viruses/encyclopedia?virusid=
20299.

Virus encyclopedia, win32/evol (last visit: Jun. 2009)
http://www.viruslist.com/en/viruses/encyclopedia?virusid=
20535.

Virus encyclopedia, win32/hatred (last visit: Jun. 2009)
http://www.viruslist.com/en/viruses/encyclopedia?virusid=
20608.

The molecular virology of lexotan32: Metamorphism il-
lustrated. http://www.openrce.org/articles/full_view/29, last
visit: Apr. 2009.

29a #6, virus magazine.
last visit: Jun. 2009.
Virustotal - free online virus and malware
http://www.virustotal.com/, last visit: Jun. 2009.
Tool interface standard (tis) executable and linking format
(elf) specification. TIS Committee, May 1995.

G. Balakrishnan. Wysinwyx: What you see is not what you
execute. Ph.D. dissertation and Tech. Rep. TR-1603, Com-
puter Sciences Department, University of Wisconsin, Madi-
son, WI, Aug. 2007.

D. Chess and S. White. An undetectable computer virus. In
Proc. of the 2000 Virus Bulletin Conference (VB2000), 2000.
S. Coorp. Symantec internet security threat report. Whitepa-
per, Volume XIII, Apr. 2008.

M. M. D. Bruschi, L. Martignoni. Detecting self-mutating
malware using control-flow graph matching. Proc. of the
Conference on Detection of Intrusions and Malware & Vul-
nerability Assessment (DIMVA), IEEE Computer Society,
2006.

M. M. D. Bruschi, L. Martignoni. Using code normaliza-
tion for fighting self-mutating malware. In Proceedings of
International Symposium on Secure Software Engineering,
Washington, DC, USA, 2006.

M. C. et al. Malware normalization. Technical Report 1539,
University of Wisconsin, Madison, Wisconsin, USA, Nov.
2005.

H. Flake. Structural comparison of executable objects. Proc.
of the Conference on Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA), IEEE Computer So-
ciety, 2004.

A. Kapoor. An approach towards disassembly of malicious
binary executables. Masters thesis, The Center for Advanced
Computer Studies, University of Louisiana at Lafayette,
Nov. 2004.

Microsoft. Microsoft ~ portable executable
and common object file format specification.
http://www.microsoft.com/whdc/system/platform/firmware/
PECOFF.mspx, January 2009.

R. L. Rivest. The mdS message-digest algorithm (rfc 1321).
http://www.ietf.org/rfc/rfc1321.txtITnumber=1321.

P. Szor. The Art of Computer Virus Research and Defense.
Addison-Wesley, 2005.

Q. Zhang and D. S. Reeves. Metaaware identifying meta-
morphic malware. Proc. of the Annual Computer Security
Applications Conference (ACSAC), 2007.

http://vx.org.ua/29a/29A-6.html,

scan.

