
A Honeypot
for Arbitrary Malware on USB Storage Devices

Sebastian Poeplau
University of Bonn

Institute of Computer Science 4
Friedrich-Ebert-Allee 144

53113 Bonn

Jan Gassen
Elmar Gerhards-Padilla

Fraunhofer FKIE
Cyber Defense research group

Friedrich-Ebert-Allee 144
53113 Bonn

Abstract—Malware is a serious threat for modern information
technology. It is therefore vital to be able to detect and analyze
such malicious software in order to develop contermeasures.
Honeypots are a tool supporting that task—they collect malware
samples for analysis. Unfortunately, existing honeypots concen-
trate on malware that spreads over networks, thus missing any
malware that does not use a network for propagation.

A popular network-independent technique for malware to
spread is copying itself to USB flash drives. In this article we
present Ghost, a new kind of honeypot for such USB malware.
It detects malware by simulating a removable device in software,
thereby tricking malware into copying itself to the virtual device.
We explain the concept in detail and evaluate it using samples
of wide-spread malware. We conclude that this new approach
works reliably even for sophisticated malware, thus rendering
the concept a promising new idea.

I. INTRODUCTION

In this article we will deal with the topic of malware –
malicious software that is executed illegally on machines not
owned by the authors of that software in order to achieve some
kind of political or economical benefit. Although computer
security is continuously improved, malware imposes a severe
threat not only on common computer users, but also on compa-
nies, governments and the internet as a whole. Once infected
by malware, a computer may be bound to behave however
the author of that particular piece of malware likes it to. An
infected machine might, for example, disclose confidential in-
formation or personal data [1], participate in distributed attacks
against computer systems, or it might sabotage computer-
controlled industrial processes [2].

Malware is a serious threat in today’s interconnected infor-
mation technology: The Internet provides a convenient way for
malicious software to spread fast across the world, and there
are further means of propagation, as we will discuss later.
The anti-virus software vendor McAfee has captured more
than 20 million new unique malware samples in the year 2011
[3]. Thus, it is important to encounter the threat of malware
by developing ever more sophisticated defense mechanisms.
This, in turn, requires extensive insights into current malware
technologies like spreading mechanisms, ways of infection and
rootkit techniques.

In order to collect samples of malware for analysis, hon-
eypots are employed – automated systems, that attempt to

be infected usually by pretending to be vulnerable computers
or services. Most commonly, honeypots are run on dedicated
systems, i. e. machines that are maintained exclusively for the
purpose of capturing malware. Honeypots enable researchers
and anti-virus companies to analyze new types of malware and
to develop countermeasures, and they are vital in generating
signatures of previously unknown malware. Even though there
are various different honeypot concepts, they all face one basic
problem: How to trick malware into infecting a honeypot
machine?

Many of the employed concepts make use of the fact that
modern malware often spreads across networks, in particular
the Internet. Those honeypots often imitate vulnerable network
services or even whole operating systems in order to catch
an infection over the network. This approach has proved to
successfully attract malware: By exposing a seemingly vulner-
able machine to the internet openly detailed insights can be
gathered, such as information about the security vulnerability
that a certain malware exploits, its techniques for hiding on an
infected system or the goals it pursues on that machine. Also,
by collecting statistical data from incoming network traffic it
is possible to estimate the number of hosts that are infected
with some malware.

But some kinds of malware, among them very well-known
recent malware families such as Conficker [4], [5] Stuxnet [2]
and Flame [6], do not only use networks as their medium
of choice for spreading. They also copy themselves onto
removable devices, which enables them to reach even hosts
that are not connected to any network at all. Larimer shows
in his 2011 paper a variety of different attack approaches
using removable devices [7]. Also, according to Microsoft’s
Security Intelligence Report [8], more than one quarter of the
malware that was detected by the Malicious Software Removal
Tool in the first half of the year 2011 was able to exploit the
Windows autorun feature from a USB flash drive. For targeted
attacks, i. e. if a certain malware aims to reach a predetermined
system for some reason, it might even be crucial not to depend
solely on the internet for propagation. Stuxnet, for example,
was alleged to target industrial control systems that are not
connected to the internet for security reasons. In such cases,
malware cannot reach its target machine without additional
propagation methods.

Poeplau, S.; Gassen, J.; Gerhards-Padilla, E., "A honeypot for arbitrary malware on USB storage devices," Risk and Security of Internet and Systems (CRiSIS),
2012 7th International Conference on, vol., no., pp.1,8, 10-12 Oct. 2012 doi: 10.1109/CRISIS.2012.6378948
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6378948&isnumber=6378933

© 2012 IEEE

This results in a major issue. As long as malware spreads via
both, networks and removable devices, our traditional network-
based honeypots can capture it. In contrast, if some malware
only uses removable devices for propagation, those kinds of
honeypots are completely unable to detect it. The implications
are severe: Anti-virus companies can only generate signatures
for malware if their honeypots eventually collect samples of it.
But if malware evades all honeypots, no specialised protection
can be provided.

That is one of the reasons for us to introduce a new type
of honeypot which concentrates on malware that spreads via
removable storage devices. Consider again the example of
Stuxnet: As long as the malware was not known, it could
spread in networks freely, not being recognized by intrusion
detection systems or anti-virus scanners. If it had been possible
to detect the infection of machines by using a honeypot such as
the one we propose here, certainly less computers would have
been infected before the malware became publicly known.
Another advantage of the approach is that focussing on USB
malware significantly simplifies the process of collecting the
actual malware executable, as we will show within this article.

By mounting a virtual USB flash driver on the infected
system we will be able to detect the infection and capture
a sample of the malware without having any knowledge about
it – the only assumption is that it infects removable storage
devices. Since the machines that are likely to be targeted by
malware on USB devices are not dedicated honeypot systems
but rather productively used machines, our honeypot will be
deployed to computers that are used actively. Note that for the
concept to work we need the honeypot system to be infected
with malware, so our honeypot can be seen as the last line
of defense: If all other protection mechanisms have failed,
then we can detect the infection and take immediate action.
Obviously, such a kind of honeypot is not going to capture
as many malware samples as a system that follows a more
traditional approach, but especially on highly threatened ma-
chines (e. g. publicly accessible ones) it can detect otherwise
unnoticed malware and thus provides for excellent intrusion
detection.

The article is organised as follows: Section II outlines
related work in the field and compares it to the ideas that we
introduce. Section III works out the concept of our honeypot
and describes Ghost, its implementation. In section IV we
evaluate the honeypot with various samples of malware and
draw conclusions from the evaluation. Possible further work is
discussed in section V, and finally we summarize the results
in section VI.

II. RELATED WORK

In this section we will discuss what has been done already
and why the work presented in this text is necessary. We will
cover classical honeypots as well as tools that can be used to
create virtual devices.

There are many honeypots, but most of them only target
malware that spreads across networks. Dionaea [9] and Ne-
penthes [10], for example, emulate certain network services

and thereby capture malware that tries to attack those services,
but they are not able to deal with malware that does not
spread across the network. Similarly, honeytrap [11] listens for
incoming network connections, but does not deal with malware
on removable storage devices.

Argos [12] follows another approach: It emulates a whole
operating system and tracks the path of all data received from
the network through the system. If at some point such data or
a variation of it is executed as machine code, Argos is able to
detect the infection. Tracking of incoming data is restricted to
network data though, so that infections of the virtual machine
by USB devices are not detected. Theoretically, Argos could
be extended to also track data from removable storage devices,
but then other problems would arise: Many malware samples
rely on social engineering in order to infect a machine from
a removable device. But Argos would not be able to provide
such interaction in an automated fashion. Furthermore, since
our honeypot is going to be deployed on productive machines,
we rely on those machines’ operating systems. So in many
cases the honeypot will run on Windows machines. The Argos
virtual machine would have to be provided with the contents
of the removable device by its host, but we cannot expect a
Windows host to be reliable in such a situation – as the host
itself is a possible target for the malware, it might be infected
and the files on the USB flash drive would subsequently be
hidden hidden by a rootkit. We could use other host operating
systems, but Windows systems are the ones that USB memory
sticks are plugged into frequently in most organizations, and
it is less convenient to have to connect each USB flash drive
to a dedicated honeypot machine first before plugging it into
the actual productive machine. Also, Argos’s approach of
emulating a whole operating system introduces overhead that
makes it unsuitable for use on production computers and rather
requires a dedicated honeypot machine.

The approach proposed in this article requires emulation of
USB storage devices. There are several solutions that provide
storage device emulation, but none of them are able to emulate
removable storage devices:

• DaemonTools [13] is a well-known emulator of CD and
DVD drives, but it cannot emulate other types of storage
devices and therefore does not meet the requirements for
our concept.

• FileDisk [14] can emulate hard disks. Unfortunately, the
driver that is part of its implementation is not compliant
with the Windows Driver Model [15] and, as a result,
does not support plug and play. But since plug and play
is an essential concept when emulating a USB flash drive,
the software cannot be used for this purpose.

• The Windows Driver Kit by Microsoft contains the driver
Ramdisk [16], which emulates a hard disk backed by a
data structure in the computer’s main memory. However,
the emulated hard disk is mounted at system startup,
which again prevents realistic emulation of a removable
storage device.

USB flash
drive

clean vulnerable
machine

infected
machine

USB flash
drive

infects infects

transport

Figure 1. The infection process for USB malware.

III. CONCEPT

In this section we first describe the concept of a honeypot
for malware on removable devices before we detail the actual
implementation. It is important to keep in mind that no
assumptions have to be made about the target malware except
that it is able to spread via USB devices.

A. The Idea

The goal of any honeypot is to collect information like
insights into the malware itself, information about its author or
about infections with that particular malware. In our case, the
effort is targeted at learning about an infection of the honeypot
machine in the first place and at obtaining a sample of the
malicious software.

There are different points in the lifecycle of a malicious
piece of software at which a honeypot can try to gather a
copy of the executable malware files. In this context, the
term “lifecycle” refers to the process of malware infecting
a machine, hiding itself on the system, executing unwanted
activities such as sending spam or collecting personal data,
and ultimately infecting other machines.

Propagation, i. e. infection of other machines, is the phase
that many honeypots interested in self-spreading malware aim
at, as has been described in section II. One of the reasons
is that propagation is an often-seen characteristic of such
malware. However, much effort is put into capturing malware
spreading across networks, while there is little consideration
of other mediums.

Especially Stuxnet has shown that spreading via removable
devices is an important characteristic of recent malware [2]: In
order to achieve its alleged goal – manipulation of industrial
facilities – it was vital for Stuxnet to infect machines that
were not connected to a network. As USB storage devices
are cheap and easy to use, they are widely employed for data
exchange with such disconnected machines and provide an
excellent way for malware to infect those systems. Stuxnet is
able to infect machines via files that it previously copied to
USB storage devices when they were plugged into infected
machines. Figure 1 illustrates the process.

This demonstrates the need for a honeypot that targets USB
malware and gives us a possible way to construct such a
honeypot. Since USB malware – like its network-oriented
counterparts – propagates to other machines at some point in

its lifecycle, we can build a honeypot that exploits the general
behavior of infecting removable devices for propagation.

However, it is not feasible to connect physical removable
devices to a pool of potentially infected machines periodically
in order to try and detect an infection. Therefore, we propose
the implementation of a virtual USB storage device that
can be connected to threatened machines on a regular basis.
The implementation of the virtual device must be such that
malware mistakes it for a real removable storage device and
therefore infects it.

Unfortunately, the approach implies two drawbacks:
1) A machine has to be infected before we can capture any

malware.
2) As the honeypot emulates its virtual device on an

infected machine, it is possible for the malware to detect
and subvert the honeypot, provided that it undertakes
sufficient efforts – as is also the case with host-based
intrusion detection systems.

Those two points emphasize that the system is not quite a
typical honeypot but also carries characteristics of an intrusion
detection system. We cannot expect it to capture unknown
malware before any harm is done, but it provides us with a
means to learn about infections that would otherwise remain
completely undetected. Thus it serves as a final defense after
other protection schemes have failed.

Knowing about this basic difference between common hon-
eypots and the system proposed here, the concept of a virtual
USB flash drive promises substantial benefits:

1) It provides a means of host-based intrusion detection
with very low false-positive rate.

2) If malware infects the virtual device, we are likely to be
provided with all executables of the malware.

In order to record a false positive, two scenarios are possible.
Either some application legitimately writes data to newly
connected removable storage devices, or the user accidentally
copies files to the virtual device. Although the former is
possible, it is not at all common behavior of software to
write data to any newly connected USB flash drive. The
latter, however, has to be avoided by the honeypot. So the
virtual USB device must be hidden from the user in order
to prevent accidental write operations. Section V discusses
different approaches to achieve this. Obviously, the shorter
the virtual device is mounted the easier it gets to hide the
whole process from the user. Fortunately, we will see in section
IV that the amount of time during which the device must be
mounted is relatively small.

Since the purpose of the files written to the USB storage
device is infection of other hosts, we will find all necessary
executables on the device most of the time. Theoretically, it
would be possible for malware to only write a loader to the
USB fash drive which then downloads the actual malware from
some network location. But such an approach would require
the target machine to have network access (which cannot be
guaranteed if the infection is conducted via a USB memory
stick) and has not yet been seen in practice. So with high

probability we are provided with all files, and if not so then
at least we learn where to find the remaining data.

The idea that we have discussed so far requires a re-
structuring of the traditional honeypot infrastructure: With
traditional honeypots it is common to have dedicated machines
that run them, machines that solely exist for the purpose
of detecting malware. But we need to run the virtual USB
drive on machines that are used frequently, and thus the
honeypot software has to function transparently on machines
that are in productive day-to-day use, e. g. office computers in
some company. After all, USB storage devices are frequently
plugged into production machines, but users would not like to
undertake the effort of connecting each and every such device
to a dedicated honeypot machine beforehand. The notion of
a virtual USB memory stick as honeypot, though, crucially
depends on the host machine being infected, so that we can
consider it a kind of intrusion detection system rather than a
pure honeypot.

When discussing the concrete implementation, we will show
that it is possible to implement the above in a transparent,
reliable and efficient manner. Furthermore, the evaluation will
demonstrate that modern malware is not capable of detecting
such a honeypot (see section IV).

B. The Implementation
After we have covered the theoretical basics of the new

concept, we will now discuss how the proposed system can be
implemented. We chose Windows XP as target system for our
implementation, because despite its age it is still widely used
and targeted by many pieces of malware [17]. However, the
code can be extended to work on other versions of Windows
with little effort.

The challenge of implementing a virtual USB flash drive
is twofold: First, we would like to have virtual storage, i. e.
an emulated storage device that is backed by an image file.
Applications must be able to write data to and read from
the device, while we route all those I/O operations to an
image file that comprises our storage. Secondly, the device
has to look exactly like a removable storage device to any
application that queries information about it. This is where
the available solutions do not provide sufficient flexibility –
tools like FileDisk [14] emulate a hard disk but cannot make
it appear as a removable device. Of course, the implementation
of the honeypot must be complex enough to provide such
features, but we do not want it to be more complex than
necessary. Therefore, different approaches are considered for
achieving the two main goals stated above: simulating storage
and making it look removable.

Microsoft provides the Device Simulation Framework [18],
a software framework that simplifies simulation of USB de-
vices. It allows to execute simulation code in user mode and
routes it to the kernel by using a custom driver. However, the
main intention of the framework seems to be driver testing.
Also, it requires an implementation of the simulated device
at a very low level, which is not necessary for the concept
presented here. Furthermore, licensing issues would have to

operating
system

registered
application

new device

registered
application

registered
application

arrival

WM_DEVICECHANGE
with device information

user mode

kernel mode

devices

Figure 2. Device detection by using the window message
WM_DEVICECHANGE.

be considered if the Device Simulation Framework were to be
part of the honeypot, so this is not a practical option.

In order to find out how to achieve the goal of maximum
resemblance to real removable devices in a custom imple-
mentation, we first examine the possibilities for software to
notice when new removable storage is plugged in. A common
way of doing so is to register for the window message
WM_DEVICECHANGE (see [19] for an implementation).
The operating system sends this message to registered appli-
cations whenever new devices are attached. The receivering
application can examine the message’s additional parameters
to find out whether the newly attached device is a removable
storage device (see figure 2 for an illustration). This technique
is used by Conficker [4] and Stuxnet [2]. Another (less elegant)
way of learning about new storage devices is to regularly poll
all available drive names (usually C: through Z:) and query
whether the underlying devices are removable.

Before we can discuss how to make a virtual device appear
removable in those respects, we need to elaborate a little
more on the handling of devices within the Windows kernel:
Devices are represented by device objects, and each device
object is managed by a device driver. Upon connection of
new devices, Windows decides which driver to load based
on the device identifier of the newly connected device. The
driver that is loaded may subsequently create a device object
itself and provide it with a certain device identifier. Again, a
driver is loaded for that device based on the identifier, and so
on. This leads to device objects and associated drivers being
stacked on each other, where each driver processes queries to
its device object and then passes them on to the next lower
device object’s driver. On the lower layers of the driver stack
for a storage device we usually find the respective bus driver
(e. g. IDE, USB), somewhere above that the disk class driver (a
generic driver for storage of all kinds) and associated systems
reside, and on the very top a file system driver is loaded in
order to give user space applications access to the device.

Our goal is to make a particular device seem removable
to the operating system. It turns out that the notion of

disk.sys

usbstor.sys

usbhub.sys

partmgr.sys

volmgr.sys

fastfat.sys

user
interface

ghostdrive.sys

ab
st

ra
ct

io
n

usbport.sys ghostbus.sys

USB flash
drive

user mode

kernel mode

hardware

Figure 3. Driver stack illustrating the hooks of the Ghost honeypot (based
on [20]).

removability in Windows is established by the disk class
driver. It determines whether a storage device is classified as
removable or not and thus decides whether the device is seen
as a removable device by applications or not. Therefore, we
decided to implement the virtual flash drive as a Windows
driver that operates on the same level as the disk class driver
and flags the virtual device removable: ghostdrive.sys. Figure 3
compares the driver stacks for real USB storage devices to our
virtual device. The driver ghostdrive.sys replaces the disk class
driver for the virtual USB flash drive and makes sure that it is
reported as a removable storage device to the more high-level
drivers. From user space the device then looks very similar to
a real removable storage device. Of course, close inspection of
a storage device’s driver stack can reveal a USB drive’s true
nature, but such a check requires considerably more effort than
the simple user mode API calls described above.

The second driver in figure 3, ghostbus.sys, still requires
some explanation. It is related to device enumeration. Gener-
ally speaking, new devices have to be announced to the Win-
dows kernel somehow in order for drivers to be loaded. This
process is called device enumeration. For drivers compliant
with the Windows Driver Model [15], there are two options:

1) A device can be root-enumerated. That is, a device with
a specified identifier is assumed to be present at system
startup, and the required drivers are loaded accordingly.
The PCI bus driver is an example of a driver that is
loaded this way.

root-enumerated

virtual bus

bus enumeration

user mode

kernel mode ghostbus.sys ghostdrive.sys

console
frontend

enumeration request

control control

devices
virtual USB
flash drive

Figure 4. Basic components of the Ghost honeypot.

2) Devices can be enumerated by other device objects
(bus enumeration). If the driver of some existing device
object creates a new device object, then Windows loads
the appropriate driver. Obviously, such a chain of enu-
merations has to start somewhere, which is where root-
enumeration is needed. Examples of drivers loaded by
bus enumeration include USB drivers (initially enumer-
ated by the driver of the PCI bus that the USB controller
is attached to) and the disk class driver (enumerated by
the driver for the respective bus that a storage device
connects to).

The the virtual USB drive is supposed to be mountable on
demand, so we cannot accept its driver to be loaded at
startup by root-enumeration. The solution is a second driver,
ghostbus.sys: It is loaded by root-enumeration and represents
a virtual bus that can report new virtual USB flash drives
on demand. So whenever we would like to mount the virtual
device, we instruct the virtual bus driver to report a new device
with a certain device identifier for which Windows then loads
the driver ghostdrive.sys. In the current implementation this is
done via a console frontend, which is sufficient for the purpose
of demonstrating that the system works, but more sophisticated
techniques are possible (see section V). Figure 4 shows the
overall structure of the implementation as described above.

Detection of infections and capture of malware samples
now work as follows: The virtual bus driver is instructed
to load the virtual storage device, which is reported to the
system as a removable device. The malware, upon noticing
the arrival of a new removable drive, infects that device by
writing data to it. The malware’s write requests are routed
down the driver stack and eventually passed on to the virtual
USB memory stick’s driver, ghostdrive.sys, which now does
two things: Since data was written to the removable device,
we can assume an infection and thus triggers some sort of user
notification. Also, the driver writes all data to an image file for
later analysis and to be able to properly serve read requests
issued by the malware (e. g. for double-checking success of
the write operation). After some time (which which will be

made more precise by the evaluation) the virtual device is
unmounted, and its contents can be sent to another machine
for analysis.

It would be more convenient to analyze the virtual device’s
contents directly on the honeypot machine, but we have to
be careful: Since the machine is infected at this stage, the
malware has probably installed some kind of rootkit in order
to hide its presence on the system. If we just mounted the
image again and tried to access it with the usual APIs, we
would most likely be shown bogus results. See section V for
a discussion of a possible way around this issue.

IV. EVALUATION

In this section we will evaluate the proposed concept based
on the implementation presented above. All of the evaluation
was conducted on a machine with Windows XP SP2 (English)
installed on it, which was reset after each test run by replacing
the hard disk contents with a prepared binary image. The focus
of the evaluation lies on examining whether the concept works
at all, whether given malware samples infect the virtual USB
flash drive reliably and how long it takes until an infection
takes place.

A. Test samples
The malware samples used for testing were mainly selected

by one crucial property: A test sample must reliably infect a
USB storage device that is attached to the infected machine.
Since this is the basic assumption that the honeypot makes
about its target malware, we require it to hold for all test
samples. As part of the test set two samples of the Conficker
malware were selected because they can be referred to as quite
sophisticated pieces of malware. If they are not able to detect
the honeypot, then this might indicate that even high-level
malware (in terms of technical sophistication) can be tricked
into infecting a virtual USB flash drive.

Table I shows the test set used for evaluation and the names
that the samples are given by three different virus scanners.
The reader might notice that Stuxnet, although mentioned
frequently throughout this article, is not part of the set. The
reason is that we were not able to make that particular malware
infect even a physical USB memory stick reliably. The analysis
by Symantec [2] suggests that a change in the malware’s
configuration file suffice to enable removable drive infection.
However, the approach did not work for us, nor were we able
to call the corresponding routines in the malware’s DLL file
directly. The DLL is only saved in an encrypted form and
injected into selected processes at system startup. Thus we did
not incorporate Stuxnet into the test set. However, if Stuxnet’s
infection routine proceeds as described by Symantec [4], then
the malware is not able to differentiate between a physical
USB flash drive and our virtual equivalent.

B. Procedure
The evaluation procedure works as follows: Select a sample

S 2 MT from the sample set (see table I) and infect the
test machine with it. Then mount the virtual USB flash drive

and wait for DM 2 N seconds before the virtual device is
unmounted. DM is called mount duration. Afterwards, the
image that provided the backend for the virtual storage device
is copied to a clean Unix machine and we check whether
files have been written to it and whether similar were also
written to the real USB memory stick when the sample was
checked for USB infection initially. We call a run of the test
procedure P (S,DM) successful if and only if the files written
to the virtual device contain the same malware as those on the
physical USB flash drive.

In order to make sure that malware samples infect the virtual
USB memory stick reliably, we repeat the above procedure
exactly three times for each sample. Let the results of these
test procedures be P1(S,DM), P2(S,DM) and P3(S,DM),
respectively. We call the result of such a multiple execution
I3(S,DM) successful if and only if all three runs of the test
procedure were successful.

I3(S,DM) = successful
, 8i 2 {1, 2, 3} : Pi(S,DM) = successful

If we can trick the malware into infecting the virtual device
reliably within some mount duration DM , then there is a
minimal mount duration for which this is possible:

Dmin(S) = min{DM 2 N : I3(S,DM) = successful}

The goal of this evaluation is to find Dmin(S) for all test
samples S 2 MT (if it exists) in order to get an idea for how
long the virtual flash drive must be mounted to be infected
reliably.

C. Results
It turns out that Dmin(S) exists for all S 2 MT , i. e. all

test samples infect the virtual USB memory stick within some
mount duration Dmin(S). Furthermore, the mount duration
that is necessary for the device to be infected is 35 seconds
for the slowest sample – in most other cases it is much less
(see figure 5 for the measured minimal mount durations). On
average across the test set, an infection takes place after only
7.9 seconds. Especially in the case of Conficker the infection
is completed within only one second.

Drawing a conclusion, the evaluation shows:
1) None of the malware samples is able to distinguish

between the virtual USB flash and a real (i. e. physical)
USB storage device. So the concept works as expected.

2) The minimal mount duration is low enough to hide the
whole process from the user, thereby avoiding user-
triggered write operations to the virtual device.

So we can conclude that the proposed concept of a virtual
USB flash drive as honeypot for malware that spreads via USB
storage devices works reliably and fast.

V. FURTHER WORK

The current implementation already works well, as was
shown in the previous section. However, further work might
include additional improvements.

Table I
SET OF TEST SAMPLES MT WITH RESPECTIVE CLASSIFICATION BY VIRUS SCANNERS.

Title Classification by virus scanners
Kaspersky Symantec Microsoft

Sample A Worm.Win32.AutoIt.r W32.Badday.A Worm:Win32/Yuner.A
Sample B Worm.Win32.AutoRun.rwp W32.Ircbrute Worm:Win32/Hamweq.G
Sample C Worm.Win32.AutoRun.nuh Trojan.Packed.NsAnti Worm:Win32/Taterf.B
Sample D Worm.Win32.AutoRun.lkw W32.Baki.C Worm:Win32/Autorun.DX
Sample E Worm.Win32.AutoRun.zki W32.SillyFDC Backdoor:Win32/Darkshell.A
Sample F Virus.Win32.VB.ki W32.Mikbaland Worm:Win32/Autorun.CA
Conficker I Net-Worm.Win32.Kido.ih W32.Downadup.B Worm:Win32/Conficker.B
Conficker II Net-Worm.Win32.Kido.ih W32.Downadup.B Worm:Win32/Conficker.C

Sample A

Sample B

Sample C

Sample D

Sample E

Sample F

Conficker I

Conficker II

0 10 20 30 40

Minimum mount duration (seconds)

Te
st

 s
am

p
le

Figure 5. Minimum mount durations necessary for the sample to infect the
virtual device.

User interaction with the virtual device must be avoided
efficiently. If the user is shown the virtual device in the
graphical user interface, they might accidentally copy files
to it and thereby trigger a false alert. So the chance of the
user interacting with the virtual USB memory stick must be
minimized. A possible way to do so would be to only mount
the virtual flash drive if the screen saver is active. It is unlikely
that a user is working on a usual office computer in such a
situation. Another option would be to instruct the operating
system not to show the device in the user interface. However,
such a setup could provide malware with an easy way to
distinguish between the virtual device and a physical USB
memory stick and thus would have to be analyzed carefully.

The files that are copied to the virtual device by malware
could be analyzed on the honeypot system rather than transmit-
ting the whole image file to some other machine. However, as
mentioned before, rootkits might prevent analysis applications
from reading back the data on an infected machine. In order
to evade rootkits, the honeypot could be equipped with some
kind of user mode file system driver. If the honeypot were
able to parse the file system structures within the image file,
then it would not have to rely on file system drivers supplied
by the operating system which are likely to be manipulated by
the malware. The approach would allow for checking whether

malware on the virtual USB device is already known, in which
case a further analysis of the files would be unneccessary and
a simple alert that a machine is infected might be sufficient.

After the files that a certain malware writes to removable
devices are known, the honeypot could hook the operating
system’s I/O routines and try to prevent the infection of further
devices with those files until the malware is removed from the
host machine.

The next logical step after having shown that the concept
works in a controlled environment would be to install the
honeypot on a number of machines in order to find out how
severely the problem of malware on USB devices threatens
computer security. It would also be interesting to find out
whether there actually is malware around that spreads via
flash drives exclusively and thus has not been detected yet
by traditional honeypots or intrusion detection systems.

VI. SUMMARY

We have presented the concept of a honeypot targeted
at malware that spreads via USB storage devices. We have
evaluated the implementation of that concept and we have
shown that even sophisticated recent malware is not able
to distinguish the honeypot from any other infection target.
Therefore, we can conclude that the concept is well-suited for
detecting infections of computers and gathering samples of
the infecting malware. Especially when considering the efforts
of malicious software to avoid being caught by honeypots in
networked environments, the idea of a virtual USB storage
device promises to be a means of detecting infections and
thus unknown malware with less effort than before. It enables
organizations to learn about infections of their machines when
conventional protection has failed and thus serves as a reliable
intrusion detection system.

REFERENCES

[1] J. Baltazar, J. Costoya, and R. Flores, “The real face of koobface: The
largest web 2.0 botnet explained,” Trend Micro Threat Research, 2009.

[2] N. Falliere, L. Murchu, and E. Chien, “W32. stuxnet dossier,” Symantec
Security Response.

[3] McAfee Labs, “Mcafee threats report: Fourth quarter 2011,” 2011.
[4] Symantec, “The downadup codex,” Symantec, Tech. Rep., 2009.
[5] F. Leder and T. Werner, “Know your enemy: Containing conficker,” The

Honeynet Project, University of Bonn, Germany, Tech. Rep, 2009.

[6] Kaspersky, “Flame: Bunny, frog, munch and beetlejuice. . . .” [Online].
Available: https://www.securelist.com/en/blog?weblogid=208193538#
w208193538

[7] J. Larimer, “Beyond autorun: Exploiting vulnerabilities with removable
storage,” Blackhat, 2011.

[8] Microsoft, “Microsoft security intelligence report.” [Online]. Available:
http://www.microsoft.com/sir

[9] “dionaea – catches bugs.” [Online]. Available: http://dionaea.carnivore.it/
[10] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling, “The

nepenthes platform: An efficient approach to collect malware,” in Recent
Advances in Intrusion Detection. Springer, 2006, pp. 165–184.

[11] T. Werner, “honeytrap - a dynamic meta-honeypot daemon.” [Online].
Available: http://honeytrap.carnivore.it/

[12] G. Portokalidis, A. Slowinska, and H. Bos, “Argos: an emulator for
fingerprinting zero-day attacks for advertised honeypots with automatic
signature generation,” ACM SIGOPS Operating Systems Review, vol. 40,
no. 4, pp. 15–27, 2006.

[13] DAEMON Tools, “Daemon tools lite.” [Online]. Available: http:
//www.daemon-tools.cc/deu/products/dtLite

[14] B. Brantén, “Windows driver examples.” [Online]. Available: http:
//www.acc.umu.se/~bosse/

[15] Microsoft, “Introduction to wdm.” [Online]. Available: http://msdn.
microsoft.com/en-us/library/ff548158%28v=VS.85%29.aspx

[16] ——, “Ramdisk.” [Online]. Available: http://msdn.microsoft.com/en-us/
library/ff544551%28v=vs.85%29.aspx

[17] Y. Namestnikov, “Kaspersky security bulletin. statistics 2011,” 2011.
[18] Microsoft, “Device simulation framework design guide.” [Online].

Available: http://msdn.microsoft.com/en-us/library/ff538293%28v=vs.
85%29.aspx

[19] J. Dolinay, “Detecting usb drive removal in a c# program.” [Online].
Available: http://www.codeproject.com/KB/system/DriveDetector.aspx

[20] Microsoft, “Device object example for a usb mass storage device.”
[Online]. Available: http://msdn.microsoft.com/en-us/library/ff552547%
28v=VS.84%29.aspx

