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Römerstr. 164, 53117 Bonn, Germany
E-mail: strelen@cs.uni-bonn.de

KEYWORDS

Queueing Networks, Tools, Multi-Paradigm Models, Gener-
ation, Markov Chains, Monte Carlo Simulation.

ABSTRACT

A main feature of a novel tool is described, the algorthmic
translation of formal queueing network descriptions into
transition class models. Transition classes are a high-
level modelling paradigm for the structured and compact
definition of Markov chains. Transition class models can
be solved with many known solution techniques for Markov
chains, exact and approximate, and simulation, even hybrid
analysis is possible. The queueing network description
language and the translator are extensible with respect to
new network features, for example new node types. The
tool is extensible with respect to new modelling paradigms
and new solvers. Models can be multi-paradigm.

INTRODUCTION

Queueing networks (QN) are a widely and successfully used
paradigm for stochastic models of computer, communica-
tion, and manufacturing systems. In the literature, lots of
books and articles exist about modelling with queueing net-
works and about the analysis of the models. Usually, a tool
is used for the analysis of a QN model.

There exist many excellent tools for the analysis of mod-
els, for example QNA [19, 32], PEPSY [2], and DyQNtool+

[15] for queueing networks, QPN [1] for queueing networks
and coloured generalized stochastic Petri nets, SHARPE
[21] for Markov reward models, GreatSPN [4, 5], SPNP [6]
for generalized stochastic Petri nets (GSPN), UltraSAN [8]
for stochastic activity networks, a class of stochastic Petri
nets, DSPNexpress [20] for stochastic Petri nets with ex-
ponentially distributed or deterministic delays, SPN2MGM
[13] for quasi-birth-death models, PEPA [11] and TIPP [17]
for stochastic process algebras, to enumerate a few; for an
overview, see for example [14].

The results of this paper are part of the development
of a new tool which is planned to having some interesting
∗Extended Version of [29]
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features. Different modelling paradigms are supported, for
example queueing networks and generalized stochastic Petri
nets (GSPN). A model may be multi-paradigm, some parts
of it may be given as QN, others as GSPN, for example.

Basically, all supported models define Markov chains.
This has advantages and disadvantages. The class of models
is large, many model features are supported. Primarily, the
analysis provides state probabilities. Performance measures
like throughput of jobs, utilization and availability of system
components, response times, and performability indices are
calculated using the state probabilities and the transition
rates or the transition probabilities (Markov reward mod-
els). The holding times of states are independent, in con-
tinuous time Markov chains exponentially distributed, oth-
erwise constant, but general distributions can be modelled
with Coxian or phase-type (PH) distributions or Marko-
vian arrival processes (MAP), autoregressive processes with
Markov modulated Poisson processes (MMPP).

The same model can be solved with different solvers as
appropriate. Many elaborated techniques for the solution of
Markov chains are available [9, 22, 10]. For Markov chains
with a very large state space, we developed an approxi-
mation technique which we call disaggregation-aggregation
(DA) iteration [26, 24, 25, 27, 30]. For stiff Markov chains,
we developed a method of type simultaneous vector itera-
tion [22, 23], and Courtois’ approximate technique for nearly
completely decomposable systems [7] was applied.

In [28], we consider Monte-Carlo simulation for Markov
chain models. Markov chains with very large state spaces
can be analyzed, many simulation runs can be executed
in parallel, and Courtois’ method is adapted to simulation
models with rare events. Hybrid solution is possible using
two different solvers for parts of the same model.

The tool is extensible with respect to new model features,
for example a new node type for queueing networks, exten-
sible with respect to more modelling paradigms - the second
paradigm which we are introducing is generalized stochastic
Petri nets, and extensible with respect to new solvers.

It is planned that submodels can be bound together into
models, and we hope that it will be possible to analyze
qualitative properties of models as well.

How is all this obtained? The key idea is as follows: The
high-level models are translated into lower-level models, in
one or two steps (for the notion of models in different lev-
els of abstraction see [16, “General Modelling Tool Frame-



work”]). As output of the first translation step, we propose
a modelling technique which we call transition classes (TC)
[24, 25]. TC models define Markov chains, but they are
more abstract, more readable, more structured, and smaller
than state space descriptions and transition probability or
generator matrices. TC models can be simulated directly,
or the Markov chain can be generated, or other numerical
representations which are suited for approximate techniques
like DA iteration.

In our tool, the TC models are the common interface
between high-level models and the solvers. If a translator
for a new modelling paradigm is provided which generates
TC models, these models can be solved with all the available
solvers, and if a new solver for TC models is included,
all models can be solved with it if the restrictions of the
solver are observed. For the extensibility of a specific high-
level class of models like queueing networks, the model
description language and the translator are designed to be
extensible.

Most of the mentioned features were tried in prototypes
for the tool.

In this paper, we deal with the description of the queue-
ing networks, and with the translation of QN models into
TC models. The algorithmic transformation of queueing
networks into transition class models needs a formal de-
scription of the network. We propose a formal queueing
network description language for that. It would be very te-
dious to collect all known features of queuing networks from
the literature, all types of nodes, all scheduling algorithms,
all types of customers, and so on. Moreover, it may happen
and is likely that new things will be devised soon. Therefore
we propose an extensible description language. The genera-
tor is some kind of translator of this language which is also
extensible. The number of different kinds of nodes are very
large due to the fact that this variety is some kind of carte-
sian product of the different arrival processes, different kinds
and numbers of waiting rooms, different kinds and numbers
of servers, different scheduling algorithms, different kinds
of customers, and so on. To cope with this problem, the
description of the networks not only provides types of com-
plete nodes but also types of building parts (mini nodes) like
arrival processes, waiting buffers, servers, and so on which
can be combined into complex nodes. The expressive power
of the queueing network description language and, in turn,
of the generator, is shown to be quite strong.

In the first section, the most important features of TC
models are depicted in short. The second section describes
the ideas of this paper, the formal queueing network descrip-
tion language, and the algorithm for the generator which is
a translator into transition class models. The expressive
power of the method is indicated.

TRANSITION CLASSES

Irreducible aperiodic Markov chains, homogeneous in time,
with finite state space ZT , |ZT | = n ∈ IN , are con-
sidered. Either they are aperiodic and discrete in time,
(Z(t), t ∈ IN) (DTMC), or continuous in time, (Z(t), t ∈
IR) (CTMC). They stem from stochastic models of com-

puter, communication, or manufacturing systems which
consist of interacting subsystems, their (system) compo-
nents. At every moment, each component is in one of its
possible component states, and we denote the whole system
state by state tuples z = (z1, . . . , zK), where zk indicates
the state of the elementary component k. More complex
system components are composed of some elementary com-
ponents. Their states are given as tuples of natural num-
bers. Sometimes virtual system components are also useful,
for example a “component” which indicates the number of
jobs in an open queueing network.

Example. In a queueing network with blocking, Poisson
arrivals, if any, and ·/M/1/νk/FCFS nodes, the system
components are the nodes. Their states are the numbers
zk of jobs in them, zk ≤ νk, k = 1, . . . ,K. A system state
is given by the K−tuple z = (z1, . . . , zK). 2

Submodels can be understood as (complex) components;
their states are given by some elements zk, zk′ , ... of the state
tuple.

Transition classes (TC) structure the design of the
Markov models, provide a concise description of the state
space, and typically the transition probability or genera-
tor matrix is given by only a few rules, even for huge state
spaces. Transition class models can be simulated immedi-
ately, it is possible to generate the Markov chain automati-
cally, and transition classes are useful for approximate meth-
ods and aggregation/disaggregation techniques: the num-
bering of the states is not essential, things like row or col-
umn interchanges of the transition probability matrix are
not needed.

In general, a transition class describes many state tran-
sitions, e.g. job arrivals in a specific node of a queueing
network which may occur in different states.

In many interesting models, e.g. performance or reliability
models, there is only a moderate number of transition
classes due to similarity of transitions and small numbers
of states which are reachable in one transition (sparsity).
This is important for efficiency.

Transition classes are triplets τ = (U , u, α). A transition
according to transition class τ from state y into state z may
occur only if y ∈ U , where U denotes the source states set of
this transition class. U ∩ZT is the set of feasible old states,
from where the transitions can occur (U may additionally
contain some infeasible state tuples for the sake of a simple
description of U , for example in programs). The destination
state function u : ZT → ZT defines the new states, i.e. a
transition of class τ leads from state y ∈ U into state u(y).
u may depend on the old state y. The function u is given
by functions uk, u(y) =

(
u1(y), . . . , uK(y)

)
. Transitions of

class τ occur with probability or rate α(y). α may depend
on the old state y.

Example. We consider a closed queueing network which
consists of K ∈ IN nodes. In each node k ∈ [1..K] is a single
exponential server, service rate µk. Buffer space is available
for no more than νk jobs. When the service of a job in node
k is finished the job tries to go to node l with probability
tk,l, l ∈ [1 : K]. If there is no buffer space available, the
job remains in node k and instantaneously receives another
service (repetitive-service with random destination policy).
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State transitions occur when a job leaves node k for node
i, i 6= k. In node k, there must be at least one job, and in
node i buffer space must be available. Therefore, the source
states set is U = {z ∈ ZT | zk > 0, zi < νi}. Only the states
of the nodes k and i change, uk(z) = zk − 1, ui(z) = zi + 1,
and the transition rate is α = µktk,i. 2

A transition class model consists of T C, the set of tran-
sition classes, and a single feasible state y. In our example,
there is a TC for each pair of connected nodes.

Submodels can be used for abstraction and modulariza-
tion. Let zk, zk′ , ... denote the elements of the state tuple
which indicate the states of a submodel S. Some transition
classes τ1, τ2, ... belong to S: First all TCs τ = (U , u, α)
where zk or zk′ or ... restrict the source state set U , for
example U = {z ∈ ZT | zk 6= 0}, and secondly, all TCs
τ = (U , u, α) which change one of the elements zk, zk′ , ...,
for example uk(z) 6= zk. Clearly, a TC may belong to more
than just a single submodel: some submodels may change
their states with the same state transition.

The following theorem states that the transition class
paradigm is quite general.

Theorem 1. For each irreducible Markov chain with
finite state space, there is an equivalent transition class
model.

Sketch of proof. Consider an irreducible Markov chain
with finite state space Z and generator matrix [qy,z]y∈Z, y∈Z
or transition probability matrix [py,z]y∈Z, y∈Z . We build an
equivalent transition class model as follows. For each pair
(y, z) ∈ Z2 of states with qy,z > 0 or py,z > 0, respectively,
a transition class TC = (U , u, α) is established where

U = {y},
u(y) = z,

α = qy,z or α = py,z, respectively.

Together with a state y ∈ Z, this is a transition class model
which is obviously equivalent to the considered Markov
chain. 2

In [25, 24, 27], transition classes are presented for differ-
ent interarrival and service time distributions, for different
service disciplines, for fork-join synchronization.

Due to similarities between stochastic process algebras [3,
18, 12] and transition classes, we conjecture that transition
class models offer the possibility to analyze qualitative
properties, namely safety properites, progress properties,
and lifeness. This will be investigated later.

THE GENERATOR

A formal description must be given for a queueing network
which is to be transformed by an algorithm into a transition
class model. Now we are describing the elements of such a
formal queueing network description.

Queueing networks consist of nodes. Jobs (customers)
may be created in a source according to an arrival process
or are existing at the beginning, visit the nodes, wait there
in waiting rooms (queues), are selected for service according
to a strategy, get service which may be interrupted, and go

to another node or leave the network. Jobs may split or
join. Jobs may belong to different job classes.

If a job may go from node k to node k′, there is an edge
(k, k′) of the network.

A node is modelled with a composed system component
which consists of elementary components; we will say, the
node is the owner of these elementary components. As
a special case, a node may have only one or even no
elementary component at all. For example, a node may
be modelled with an elementary component which indicates
the number of waiting jobs.

A node may be the owner of transition classes which per-
form state transitions concerning this node. For example,
a node may have a transition class for arrivals from outside
of the network, and a transition class for the completion of
a service after which the job goes to another node or leaves
the network.

Any pair (k, k′) of different nodes may have a common
interface. For example, if there is an edge from node k to
node k′, these nodes have an interface. A standard feature of
this interface concerns jobs which are finished in node k and
are sent to node k′. Such an action is caused by a transition
class of node k, and the state of both nodes is altered. The
state change within node k is done directly, but in node k′

it is accomplished using an interface operation.
Interface features other than the sending of jobs are

optional, that is they are not used at all interfaces.

Nodes

A node is an instance according to a node type. A node type
has a name and is a prototype of nodes with certain features.
Instances have these features but may differ with respect to
some attributes which must be specified in the declaration of
the nodes. A node type is defined by patterns for transition
classes, for components, and for interface features, and
some rules define in which way the actual attribute values
influence the generation of concrete items. When a node
is translated, according to these patterns transition classes,
components, and interface features are generated, using the
actual attribute values.

For example, the node type MM1 loss describes nodes
with a waiting buffer (queue), a Poisson arrival process,
FCFS scheduling, an exponential server, and jobs are lost
if they try to go to a neighbour node in which no buffer
space is available. A transition class is provided for arrivals,
and for each outgoing edge there is a transition class which
finishes a service and tries to send the finished job to its
neighbour node but the job is lost if the target queue is full.
Parameters are λ, the rate of the Poisson process, µ, the
rate of the server, ν, the capacity of the buffer, and some
transition probabilities for the random selection of target
nodes for ready served jobs. A node of the MM1 loss type is
the owner of one elementary component in which the state
of the queue is stored. This state variable has the identifier
Length.

If Node1 is an instance of this node type MM1 loss, the
attributes and state variables can be accessed with dot
notation, for example Node1.lambda is the service rate of
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the node Node1, and Node1.Length is at every moment the
number of jobs in its queue.

Formal queueing network descriptions consist in node
declarations, one feasible state, and, optional, interface
definitions.

Each node has a name. A node declaration begins with
the node’s name, the node type follows, and attribute value
definitions, in general.

We present a nearly complete formal queueing network
description, only the declarations of two more nodes, Inner
and Sink, are omitted. By default, on all edges, the interface
feature of type send is adopted, hence the interface operation
I send and the inquiry may I send can be used. Later on,
we will describe another interface feature type, and give an
interface definition as an example.

(* A node, name Source, type MM1 loss *)
Source: MM1 loss
( mu = 1 (* Service rate *)

nu = 3 (* Buffer capacity *)
lambda = 0.8 (* Arrival rate *)
t[Inner] = 0.5 (* Transfer probability

to node Inner *)
t[Sink] = 0.5 (* Transfer probability

to node Sink *)
)

Initialize: (* One possible state *)
( Source.Length= 0 (* Number of jobs in the queue *)

Inner.Length= 0 (* Number of jobs in the queue *)
Sink.Length= 0 (* Number of jobs in the queue *)

)

Interfaces

A transition class of a node may change the state of its
own components directly, but if components of other nodes
are also to be altered, this must be accomplished using
interface operations. The state changes of a transition class
τ = (U , u, α) are defined by the destination state function
u. Hence, the destination state functions apply interface
operations.

Interface features belong to interface features types. For
example the standard feature which handles the sending of
jobs from a node to another node has the type send.

For any other interface feature type, say x, there is
a set Ix which containes the interfaces which adopt this
interface feature. That means, the interface feature of typ
x is adopted at the interface between nodes k and k′ iff
(k, k′) ∈ Ix. Example: Consider two nodes Q2 and Q3
with blocking-after-service. If in node Q2 a job is served
completely, it tries to go to node Q3. But, if there no buffer
space is left, the job remains in node Q2, and blocks the
server there. Immediately if a ready served job leaves node
Q3, the blocked job of node Q2 goes to node Q3. This action
is executed by node Q3 using the interface operation I take.
In the formal queueing network description, the interface
feature of type take is adopted by a declaration: (Q3,Q2):
take

Each interface feature type defines interface operations

and interface inquiries. An interface operation usually
causes an action in a node, namely a state change. For
an interface feature type, say act, the operation is called
I act. If this interface feature is adopted at (k, k′), this
operation may be used in node k when the state of node
k′ is to be altered. An interface inquiry asks at a node if
the according interface operation can be executed or not.
The answer is 0 for “no” or a number n > 0 for “yes”, and
the reason is given, namely the states of some elementary
system components are indicated which allow or forbid the
action. For an interface feature type, say act, the operation
is called may I act. If this interface feature is adopted at
(k, k′), this operation may be used in node k. For example,
if node k wants to send jobs to node k′, node k asks at node
k′ if space is left there using the inquiry may I send. If the
answer is 3, up to 3 jobs may be sent using the operation
I send.

The source state set U of a transition class (U , u, α) is
the set of states in which the transition can take place.
Using the generator, this source state set is calculated by
the owner node of the transition class. To this end, the node
considers the states of its own elementary components and
uses interface inquiries for the others.

In the above example, consider the following situation:
In another node Q1, a job is blocked which tries to go to
node Q2. In node Q2, a job is blocked which tries to go to
node Q3. In node Q3, a service finishes. Hence node Q3
executes I take in order to fetch a job from node Q2. There,
a buffer is freed, and, in turn, Q2 executes I take in order to
fetch a job from node Q1. This indicates that an interface
operation may trigger others. The same holds for interface
inquiries.

Extensibility

The generator must be extensible because obviously not all
thinkable types of networks can be foreseen. New node types
and new interface feature types can be added, or nodes can
be put together out of mini nodes, see next subsection.

For the addition of a new node type, its name is made
known within the generator. Its data structure is designed.
In general, some elementary system components are planned
for waiting buffer states, server states, scheduling informa-
tion etc., and patterns for transition classes are defined.

Each time when a node of the new type is established, an
instance of the data structure is provided for the attribute
values. The elementary system components are added to
the state tuple, and the transition class model is augmented
by transition classes.

The three elements of each transition class τ = (U , u, α)
are defined with functions. These functions must be pro-
vided for the new node type. They use the states, attributes,
and interfaces.

The functions for the calculation of the source state set
U decide for a given state if the transition is possible. With
respect to the elementary system components of the node
itself, this decision is made directly, with respect to other
components via interface inquiries which are sent to other
nodes.
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Similarly, the destination state function u uses the ele-
mentary system components of the node and interface op-
erations which are sent to other nodes, for the change of
their components.

The probabilities or rates α are calculated from the at-
tribute values, using the node’s state and interface inquiries
which are used to obtain information about the state of
other nodes.

On the other hand, a node of the new node type may
receive interface inquiries or interface operation requests.
The reaction are answers about the own state or changes
of the own state, respectively. Hence, the existing interface
inquiries and interface operations must be provided in the
new node type.

As an example, let us consider the new node type
MM1 PR loss. The service discipline is preemptive-resume,
service times are exponential, the blocking discipline is of
type loss. For each priority exists a waiting buffer, jobs
of priority p belong to job class p. In each waiting buffer,
Poisson arrivals occur.

The attributes are as follows: The number of priorities,
the capacity of each waiting buffer, the service rate, the
rate of each arrival process, the number of exits to other
nodes and their waiting buffers, the branching probabilities
to these exits and to the exit out of the whole network.

For each queue, there is an elementary system component
the state of which counts the number of jobs in it.

For each waiting buffer, there is a transition class which
models the arrival process. For each exit and each priority,
there is a transition class which models the transition of a
job to the target queue and the losses if the target queue
is full. For each priority, a transition class models the
transition of jobs to the exit out of the network.

The node may receive an interface inquiry may I send
which asks if in the queue for priority-p-jobs space is left.
The answer is 0 or the amount of available buffer space,
and the number of the elementary system component which
models the queue. Similarly, the node may receive an
interface operation I send which demands to change the
state according to the receipt of a job for a specified queue.
If buffer space is left in the queue, the elementary system
component which models the queue is augmented, if not,
nothing happens.

If a new interface feature type is introduced into the
generator, all existing models without this new type remain
correct but it happens that an existing node type must
be modified. This modification consists in the addition of
the new interface operation and inquiry. Usually, a new
interface feature type is needed togehter with a new node
type.

As an example, consider the new interface feature type
take and a node of the existing type MM1 loss. If in a
node with blocking-after-service discipline a blocked job
is waiting to go to the next node with the existing type
MM1 loss, this node must fetch the job using the new
interface operation I take as soon as buffer space becomes
free. Obviously, the new interface operation must be made
available in the old node type.

A new interface type is realized as follows. Its name, say

cause, is made known within the generator. In each model,
the set Icause of interfaces which adopt the new interface
feature is generated, initialized to be empty. If a declaration
(k, k′): cause is encountered in a network description, the
node pair is added to the set Icause. For all nodes which may
be the receiver of may I cause or I cause, this new interface
inquiry and operation is implemented.

Expressive Power

Here quite a general class of queueing networks is defined
and it is shown that these networks can be described with
the QN description language and, in turn, can be translated
into transition class models. The only purpose of this class
of queueing networks is to point out the expressive power
of the QN description language and the tool, we do not
recommend to use the generator for these general queueing
networks which are defined only for theoretical purposes.

In such a queueing network with K nodes, each node
k may be in one of a finite number of states, say Sk =
[1..Nk], Nk ∈ IN . Hence, the state space of the whole
model is a subset of the cartesian product of the node state
spaces, ZT ⊆ S1 × . . .× SK .

The state transitions of the network may change the
states of one or more nodes, may depend on the states of
many nodes, may refer to the transitions of jobs from nodes
to others, to splitting or joining of jobs, to the modification
of job priorities, may change internal states of nodes like
service time phases, served queues of multiqueue nodes, and
so on. We allow all state changes which can be expressed
in a Markov chain over the state space ZT . That is, the
queueing networks class is as general as it can be expressed
with such a Markov chain.

The following theorem states the universality of the gen-
erator.

Theorem 2. Any queueing network of the just defined
general class of queueing networks can be described with
the QN description language and can be translated into
transition class models using the generator.

Sketch of proof. For each pair of (k, k′) of different
nodes, an interface of type change is provided with the
following properties. If node k calls may I change(k′), the
answer is the local state of node k′. Thus a node may come
to know the other nodes states. Together with its own state,
afterwards the node knows the whole networks state.

If a node k calls I change(k′, z), z ∈ Sk′ , the new state
of node k′ becomes z. Thus a node may change the states
of any other node, and the node may change its own state
immediately. Hence a node may change the state of the
whole model.

For each transition of the Markov chain, a transition class
TC is provided, as it is indicated in the proof of theorem
1. For each of these transition classes, a node is selected as
owner. This is possible since the overall state is available
in every node, and since every node is able to change the
state.

The type of every node is defined by all the transition
classes which the node owns. 2
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Mini Nodes

The introduction of a new node type into the generator
is not very simple, quite a lot of programming work must
be done. On the other hand, there is a very large variety
of node types applied in queueing networks, differing with
respect to the arrival processes, the waiting rooms, the
service discipline, the service time distribution, the number
of servers, the blocking discipline, and so on. By means of a
smaller number of building parts which we call mini nodes,
many different node types can be realized. Mini nodes are
similar to nodes but less complex.

A mini node is an instance according to a type, may
have attributes, may be the owner of elementary system
components and of transition classes. Two mini nodes may
be connected via an edge and may have a common interface.

Arrival processes are a class of mini nodes. An arrival
process has an edge to another mini node, a queue. Arrival
processes are active nodes, they have at least one transition
class. An arrival can occur if in the connected queue buffer
space is left. The node knows this via an interface inquiry
may I send and sends the new job to the queue with the
interface operation I send. A Poisson arrival process, type
M arrival, has an attribute, namely the arrival rate, but no
state, hence no elementary system component. A Marko-
vian arrival process needs an elementary component for the
internal states, has some attributes and transition classes
for internal transitions without arrivals and a single tran-
sition class for arrivals; details are given in [24]. Markov
modulated Poisson processes are similar to Markovian ar-
rival processes. They are used for dependent arrivals. Mini
nodes for arrivals can also provide bulk arrivals.

Waiting buffers (queues) are passive mini nodes, they do
not have transition classes. Their states are modified with
interface operations: Jobs are put into with I send by other
nodes or by arrival processes. Jobs which are ready served
are fetched by a server with the operation I take. The well-
known simple queue of a MM1-node, for example, has a
single elementary component which counts the number of
jobs in the queue. The buffer capacity is the only attribute.
We call the type of this queue simple queue.

More complex are servers. They differ with respect to the
service time distribution, the service discipline, the blocking
discipline, they may have multiple service facilities.

The most simple server is of type M FCFS loss server. It
is state-less, the service time is exponential, the service rate
is an attribute. The server works if in the waiting room
is at least one job; the server knows this by means of the
interface inquiry may I take. The transition classes model
the completion of a service and the transition of the served
job to a specific succeeding node (waiting room). The state
transition in the queue where the job was during the service
is caused by the interface operation I take, and in the target
queue by I send. This last operation has no consequence if
the queue is full - this means the job is lost.

Other service time distributions are approximated with
phase-type distributions, see [24]. Here, an elementary
component is used for the states of the inner Markov chain,
and some transition classes perform the state transitions

between these states without ending the service time.

Autocorrelated service times can be modelled with
Markov modulated Poisson processes. The details are very
similar to Markovian arrival processes.

In polling systems and priority nodes, the server is con-
nected with some queues, and in general, the state of an
elementary component indicates which of them is served at
every moment. In priority nodes, every queue is dedicated
to a priority class. A transition class for the end of a service
moves the job out of the node and decides which is the next
queue for service. The state is changed accordingly. The
service rate, the number of queues, and transition probabil-
ities are attributes.

Let us consider three special mini node types. Mini
nodes of the first type only change job classes. Either, an
incoming job receives a given class, or there is a function
which calculates the new class from the old. The job leaves
immediately to the next node, that means the node is
immediate. Moreover, these nodes are stateless, they do
not have components, and they are passive, they do not
have transition classes. Predecessor nodes use the operation
I send for sending the jobs, and these nodes forward the jobs
with I send as well.

A mini node Fork of type fork loss splits an incoming
job into n jobs and sends each of them to a queue. If
in one of the receiving queues not enough buffer space is
available, the incoming job is lost and no splitted jobs are
generated. This information is obtained with the inteface
inquiry may I send. All transitions are effectuated by the
operation I send. These nodes are immediate, stateless, and
passive. n is a attribute.

A mini node Join of type join loss consists of n queues.
Every time when in a queue a job arrives, the other queues
are inspected if jobs are there. If no queue is empty, one job
is taken from each, and a single job is sent to a successor
node by means of the operation I send. This job may be lost
if the target node is full. These mini nodes are immediate
and passive.

As an example, we combine some mini nodes to a fork-
join system in which the jobs are duplicated:

(* Fork node *)
Fork: fork loss
( Multiplier = 2 (* Number of queues *)

t[Q1] = 1 (* Transfer probability to node Q1 *)
t[Q2] = 1 (* Transfer probability to node Q2 *)

)

(* Queue of the first subnode *)
Q1: simple queue
( nu = 3 (* Buffer capacity *)

t[Server1] = 1 (* Transfer probability to the
server of the first subnode *)

)

Q2: (* Queue of the second subnode, similar *)
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(* Server of the first subnode *)
Server1: M FCFS loss server
( mu = 0.1 (* Service rate *)

t[Join,1] = 1 (* Transfer probability to the join node,
local queue 1 *)

)

Server2: (* Server of the second subnode, similar *)
(* Join node *)
Join: join loss
( Multiplier = 2 (* Number of local queues *)

t[Fork] = 1 (* Transfer probability to the fork node *)
)

(* In a closed model, initially some jobs must be present *)
Initialize:
( Q1.Length= 2 (* Number of jobs in the queue *)

Q2.Length= 2 (* Number of jobs in the queue *)
)

In the last part of the example, the states of the queues
Q1 and Q2 are initialized.

The reader may note that with the concept of extensi-
bility new possibilities can be introduced, for example syn-
chronization or simultaneous use of resources.

Submodels

Submodels are defined with descriptions of (sub-)queueing
networks. These descriptions contain names of nodes which
are not part of the submodel, i. e. external names. For
example, a job may be sent from a submodel to an external
node. External and internal nodes have common interfaces,
and there may be interface feature declarations for them.
On the other hand, internal node names can be exported,
they can be external names in other submodels.

The development of a preprocessor which binds together
submodels into complete models seems to be straight-
forward - we did not yet do this.

Mobile Components

Mobile components are planned. They are jobs with at-
tributes which visit nodes like usual jobs. In the QN descrip-
tion language and in the generator, they are quite similar
to nodes: Mobile components have names, attributes, they
may possess elementary components and transition classes,
they may have interfaces with other mobile components and
with nodes. The nodes to which mobile components go are
slightly different to other nodes: Their waiting rooms are
not counters but real queues.

G. Wegener [31] developed a prototype of the generator
which is able to generate queueing network models with
nodes of three types: MM1 loss, MM1 PR loss, and nodes
with HOL priority scheduling. This generator is integrated
into an experimental tool for the evaluation of Markov chain
models which are given as transition class models.

CONCLUSION

Some ideas, we hope useful and novel, for a tool for Markov
chain models were presented. Future research concerns
the further development of the tool which supports the
whole technique including modularization, mobile compo-
nents, new solvers, methods for the analysis of qualitative
properties of transition class models like safety properties,
progress properties, and liveness, and a similar generator
for stochastic Petri nets is being developed. An interesting
question is whether the transition classes can be used to
automatically detect some special structure, for example a
matrix-analytic structure of the Markov chain or a product-
form solution.
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