
The Genetic Algorithm is Useful to Fitting Input Probability

Distributions for Simulation Models

Johann Christoph Strelen
Rheinische Friedrich–Wilhelms–Universität Bonn

Römerstr. 164, 53117 Bonn, Germany
E-mail: strelen@cs.uni-bonn.de

KEYWORDS

Stochastic Simulation, Fitting Probability Distri-
butions, Genetic Algorithm

ABSTRACT

The genetic algorithm can be applied to selecting
theoretical probability distributions so as to be rep-
resentative for observed data. Two aspects are con-
sidered here: Using the genetic algorithm, one can
decide which one of some different families of prob-
ability distributions is best suited, and parameters
can be estimated.

INTRODUCTION

Many simulation models use random input which
models influences from outside such as interarrival
times, demand sizes, or times between failures of
components. The distributions of these random
variables must be chosen carefully since they in-
fluence the accuracy of the results and hence their
trustworthiness. Typically, data are gathered in
some real system, and a theoretical distribution is
searched which is representative for them i.e. from
which the data could be realizations. Usually this
is done in three steps: In the first step, a spe-
cific family of distributions is hypothesized. Meth-
ods for this are histograms and the inspection of
quantile summaries (“box plots”). In the second
step, distribution parameters are estimated, usu-
ally using maximum-likelihood estimators. These
are different for different families of distributions,
and sometimes nonlinear equations must be solved.

In the third step, one must decide if the found dis-
tribution is representative for the data: Graphic
methods and goodness-of-fit tests can be applied
like the chi-square test, the Kolmogorov-Smirnov
test, or others.

This three-step procedure [6] applies if the data
are statistically independent which can be decided
with independence tests like the chi-square test. If
the data are not independent, stochastic processes
must be considered instead of single random vari-
ables which is much more difficult and hence not
so common in simulation.

The genetic algorithm [2, 4, 5] is a stochastic
global search method that mimics the metaphor
of natural biological evolution. Genetic algorithms
operate on populations of individuals applying the
principle of survival of the fittest. Individuals are
tuples of decision variable values. They are approx-
imations of the desired solution, and their fitness
measures the accuracy. At each generation, a new
population is created by a randomized process of
selecting individuals according to their level of fit-
ness and breeding them together using operators
borrowed from natural genetics: Properties of in-
dividuals mutate and are recombined in a random
fashion. This process leads hopefully to the evo-
lution of populations of individuals that are better
approximations to the solution than their parents.

The genetic algorithm differs from traditional
search and optimization methods. Significant dif-
ferences are:

• Genetic algorithms search generations of ap-
proximations in parallel, not a single sequence

• Genetic algorithms require only the objective



function, no derivatives

• Genetic algorithms use probabilistic transition
rules, not deterministic ones

• Genetic algorithms work on an encoding of the
parameter set rather than the parameter set
itself except for real-valued parameters

We applied a genetic algorithm on some tasks
of the quoted steps one and two of the three-step
procedure, and we remarked that this works very
well and has some advantages compared to the tra-
ditional way via maximum-likelihood estimators:
Here one has only two different algorithms, one
for closed-form distribution functions and one with
numerical integration of densities or with summa-
tion of discrete probabilities - on the other hand,
maximum-likelihood estimators require individual
solutions for different distributions. Many param-
eters can be considered, and the genetic algorithm
can be used for the selection of different theoretical
distributions.

For the numerical calculation we used MATLAB
[1] with the Genetic Algorithm Toolbox [3] which
provides very comfortable functions for genetic al-
gorithms. It remains mainly to specify the number
of decision variables (parameters), their type (inte-
ger or real), their degrees of accuracy (number of
binary digits), and an objective function. Further
specifications concern the features of the genetic al-
gorithm like the number of generations, the number
of individuals in a population, and others.

1 FITTING INPUT PROBA-
BILITY DISTRIBUTIONS

The problem which is to be solved can be described
as follows. Some data are given which were mea-
sured for a specific aspect of a real system. The
modeller assumes that the data can be modelled
as independent realizations of a random variable
with a distribution chosen from about one and a
half dozen different theoretical distributions which
are known to be usefull for this purpose.

One of these distributions must be selected, and
some parameters must be calculated. For, more
precisely, each theoretical distribution is a whole

family of distributions which differ with respect to
some parameter values.

In the literature, for example in [6], a three-step
procedure is proposed for selecting input proba-
bility distributions. In the first step, a specific
family of distributions is hypothesized. Instead
of the graphical methods which are mentioned in
the introduction, we propose here to try to fit a
weighted sum of different distributions to the data
using a genetic algorithm, see purpose five in the
sequel. Only if this yields a substantial value for a
weight, the according distribution is accepted. In
the second step, the distribution parameters are
estimated. We propose to accomplish this with a
genetic algorithm. In the third step, one must de-
cide if the found distribution is representative for
the data, usually with goodness-of-fit tests. This is
not a topic of this paper, but a hypothesized distri-
bution is thrown away if it turns out to not being
suited to fit observed data accurately. Accuracy
can be measured as follows.

The given data are sorted with respect to their
values, x1 is the smallest, and so on. Thus one
obtaines the sorted sample x = (x1, x2, . . . , xn)
and the empirical distribution function F̂ (x) =
i/n, xi ≤ x < xi+1, i = 0, . . . , n, where x0 =
−∞, xn+1 =∞.

Our objective function for the genetic algorithm
is

Z(d) =
n∑
i=1

[F̂ (xi)− Fd(xi)]2

where d denotes the tuple of decision variables,
and Fd(x) is the selected distribution function with
the parameter tuple d. This objective function
measures how accurate the distribution function
Fd(x) fits the given data.

We identified five more or less different purposes
concerning step one or step two of the three-step
procedure for which a genetic algorithm can be
applied to advantage.

Purpose 1, parameter estimation: Given data
and a family of distributions, parameter values are
calculated such that the distribution fits the given
data. The number of different parameters is not
so crucial as with nonlinear equations. Hence, a
location parameter and/or a scale parameter can
be added if not present anyhow.

Purpose 2, similar to purpose one but with



multi-mode distributions. Here one takes a dis-
tribution function

F (x) = p1F1(x) + p2F2(x) + . . . ,

p1 + p2 + . . . = 1,

where F1, F2, . . . belong to the same family of
distributions but may have different parameter
values.

Purpose 3, similar to purpose two but with
mixed different distributions. The distribution
function for fitting the data is as above but
F1, F2, . . . belong to different families of distribu-
tions, for example F1 is Weibull, F2 is Lognormal
and so on.

These three purposes concern step two of the
general procedure, the estimation of parameter val-
ues, where the families of distributions are given.
But the genetic algorithm can also be used for step
one, the selection of a suited theoretical distribu-
tion:

Purpose 4, falsification of a selected theoretical
distribution: If one tries to fit a distribution to
the data, and even with the best parameter values
the found distribution differs a good deal from the
empirical distribution, one can conclude that the
selected distribution is a wrong one.

Purpose 5, automatic selection: If one tries to
fit data with a mixed distribution, and one finds
p1 ≈ 1, p2 ≈ 0, p3 ≈ 0, . . ., and the found
distribution function F1(x) is close to the empirical
distribution function, one may conclude that F1(x)
is representative but the other ones are not. If
more than one probability pi is significantly greater
than zero, one may accept the according mixed
distribution function if it is close to the empirical
distribution function.

Sometimes there is no closed form of the distri-
bution function available, for example if the dis-
tribution is Gamma or Lognormal. Here we use
the density fd(x) of the distribution and calcu-
late the distribution function Fd(x) at the values
xi, i = 1, . . . , n, approximately with simple numer-
ical integration. In particular, we take

F̃ (x1) = 1/n,

F̃ (xi) =
i∑

j=2

(xj − xj−1)fd(xj−1), i = 2, . . . , n,

Fd(xi) ≈ F̃ (xi)/F̃ (xn), i = 1, . . . , n.

2 THE GENETIC ALGO-
RITHM

As stated in the introduction, the genetic algorithm
[2, 4, 5] is a stochastic global search method that
mimics the metaphor of natural biological evolu-
tion. Genetic algorithms operate on populations
of individuals applying the principle of survival of
the fittest. Individuals are tuples of decision vari-
able values which are encoded as strings over the
binary alphabet or other alphabets. The individu-
als are approximations of the desired solution, and
their fitness measures the acuracy which is fixed by
an objective function. At each generation, a new
population is created by the process of selecting
individuals according to their level of fitness and
breeding them together using operators borrowed
from natural genetics. The recombination operator
is used to exchange parts of the strings between
pairs, or larger groups, of individuals, according to
some probabilistic rule. Mutation will cause a sin-
gle bit to change its state with some probability, in
the binary string representation. Selection serves
the purpose to select individuals for the next gen-
eration.

This process leads hopefully to the evolution of
populations of individuals that are better approxi-
mations to the solution than their parents.

In each problem which is to be solved here,
the genetic algorithm is applied to searching for
a minimum of the objective function. The result
is a tuple of values of the real valued decision
variables di, i = 1, . . . , N (var). For each decision
variable, a minimum and a maximum is given in
advance, and the values are encoded with PRECI
binary digits. Grey coding is used, hence adjacent
values differ in just one digit. An N (var)-tuple
of decision values is an individual, and N (ind)

individuals are a population. The encoded values
of an individual are concatenated, hence form a
binary string of N (var) ∗ PRECI digits which is
termed the chromosome of the individual. The
chromosomes of all individuals of a population are
the matrix CHROM with N (ind) rows, each a
chromosom.



The genetic algorithm works as follows. The
matrix CHROM is initialized with uniformly dis-
tributed random numbers. For each individual, its
chromosome is decoded into a decision variable tu-
ple d, and the objective function Z(d) is calcu-
lated.

In a loop, MAXGEN populations are calcu-
lated, one after the other: For each individual, the
fitness with linear ranking is calculated according
to the value of the objective function Z(d) of its
decision variables, as follows. The individuals are
sorted according to descending values of their ob-
jective function values, i.e. the best individual gets
the position pos = N (ind). Each individual on posi-
tion pos gets the rank 2(pos−1)/(N (ind)−1), rank
2 is the best, rank 0 the worst.
GGAP, 0 < GGAP ≤ 1, is the generation gap:

The (1−GGAP )∗N (ind) individuals with the best
fitness values remain unchanged, and the other
GGAP ∗N (ind) individuals are selected for breeding
offspring with the method of stochastic universal
sampling: Each individual i gets a probability pi
which is proportional to its fitness value. The
selection is according to these probabilities where
individual i is selected at least bpiN (ind)GGAP c
times and at most dpiN (ind)GGAP e times (b.c
means the floor, and d.e the ceil).

The selected chromosomes are pairwise recom-
bined with the single-point crossover operator, each
pair with probability 0.7, and with probability 0.3,
the two individuals of a pair remain unchanged
with respect to recombination. If the number of
selected individuals is odd, one more remains un-
changed.

For this crossover, a position within the two
chromosomes of a pair is selected at random, and
the left part of one chromosome is concatenated
with the right part of the other, and vice versa.
The result are two new chromosomes.

Now on all chromosomes, the mutation operator
is applied. Each binary digit flips with probability
0.7/L(ind) where L(ind) = N (var) ∗ PRECI is the
number of binary digits in each chromosome.

The objective function values are now calculated
for offspring.

The reinsertion step performs insertion of off-
spring into the current population, replacing least
fit parents with offspring.

Now the next population is ready and the process
continues if the number of populations is less than
MAXGEN .

The individual with the best objective function
value is the result, and this value measures the
accuracy of the fitted probability distribution.

3 EXAMPLES

Now we present some numerical examples which
indicate the capabilities of the genetic algorithm
technique for fitting distributions. In each of these
experiments, an independent sample x is generated
according to a known distribution which is two-
mode in example 2. In the examples 1, 2, and
3, this known theoretical distribution is fitted to
the sample. In example 4, an other distribution
is fitted, and the result is very inaccurate. This
indicates that the tried distribution is not suited.
In example 5, a distribution which is mixed from
two different theoretical distributions is tried to fit.
The result indicates that one of them is suited,
the other one is not. The value of the objective
function is given for all fitted distributions as a
measure of the accuracy.

Example 1, Fitting Data Drawn from a
Weibull Distribution. The sample consists in
800 realizations of a Weibull random variable with
the distribution function F (x) = 1− exp[−(x/β)α]
where α = 2 and β = 3. After 200 generations
in the genetic algorithm, the best approximated
parameters where 2.047 and 3.031, respectively,
and the accuracy is Z(2.047, 3.031) = 0.0293.

In the figures, the smooth curve is the fitted
theoretical distribution function, and the scribbling
curve is the empirical distribution function. In
figure 1 for this example, a smaller sample size is
considered for the figure in order to have the two
curves clearer separated: the sample size is 200 and
the number of generations 800.



Figure 1: Fitted Weibull Distribution Function

Example 2, Fitting Data Drawn from a
Two-Mode Weibull Distribution. The sample
consists in 800 realizations according to the mixed
distribution function F (x) = 1−0.5 exp[−(x/3)2]−
0.5 exp[−(x/17)5], the fitted distribution function
(figure 2) is F (x) = 1 − 0.51 exp[−(x/2.95)2.05] −
0.49 exp[−(x/16.98)5.14]. The accuracy is 0.024.

Figure 2: A fitted two-mode Weibull distribution
function

Example 3, Gamma Distribution with Nu-
merical Integration. The sample consists in 800
realizations of a Gamma random variable with the
density

f(x) = β−αxα−1 exp[−(x/β)]/Γ(α)

for x ≥ 0 where α = 3 and β = 3. The fitted
distribution functions are obtained with numerical
integration, for each parameter set. After 100 gen-
erations in the genetic algorithm, the best approx-
imated parameters where 3.01 and 2.94, respec-
tively, and the accuracy is Z(3.01, 2.94) = 0.031.
See figure 3.

Figure 3: Fitted Gamma distribution using numer-
ical integration

Example 4, Fitting a Wrong Distribu-
tion. The sample consists in 3200 realizations of
a Weibull random variable with the parameter val-
ues α = 2 and β = 3. It is tried to fit these data
with a Gamma distribution. After 800 generations
in the genetic algorithm, the accuracy is only 0.76;
that means, the Gamma distribution is not suited
for these data, see figure 4.

Example 5, Decision between Gamma and
Weibull Distribution. The sample consists in
400 realizations of a Weibull random variable with
the parameter values α = 3 and β = 3. It is tried
to fit these data with a distribution function, mixed
Weibull and Gamma,

F (x) = pF1(x) + (1− p)F2(x)

where F1 is Weibull and F2 is Gamma. After
400 generations, the best parameters are p =
0.998, α = 3.00, β = 2.96 where the accuracy
is 0.047, see figure 5. That means, the genetic al-
gorithm found out that the data should be fitted
with the Weibull distribution, not with the Gamma
distribution, and calculated the parameters.



Figure 4: Gamma distribution fitted to Weibull
data - not accurate

Figure 5: Decision in favour of a Weibull distribu-
tion

References

[1] MATLAB - http://www.mathworks.com/.

[2] T. Bäck, D.B. Fogel, and Z. Michalewicz, edi-
tors. Handbook of Evolutionary Computation.
Oxford University Press, Bristol, New York,
1997.

[3] A. Chipperfield, P. Fleming, H. Pohlheim,
and C. Fonseca. Genetic Algo-
rithm Toolbox for Use with MATLAB.
http://www.shef.ac.uk/∼gaipp/ga-toolbox/.

[4] L. Davis, editor. Handbook of Genetic Algo-
rithms. Van Norstrand Reinhold, New York,
1991.

[5] D.E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley, Reading,MA, 1989.

[6] A. M. Law and W. D. Kelton. Simulation
Modeling and Analysis. McGraw-Hill, New
York, third edition, 2000.

Johann Christoph Strelen was born in Wies-
baden, Germany, in 1941. He received the Dipl.-
Math. and Dr. rer. nat. degrees in mathematics
and the Habilitation degree in Computer Science
from the Technische Hochschule Darmstadt, Ger-
many, in 1968, 1973, and 1981, respectively. There
he was affiliated to the Computing Center (1968-
1973), and assistant at the Computer Science De-
partment (1974-1982). In 1973 he was a post doc-
toral fellow at the IBM Scientific Center, Greno-
ble, France. Since 1982 he has been a Professor
of Computer Science at the Rheinische Friedrich–
Wilhelms–Universität Bonn, Germany. His re-
search interests include performance evaluation,
distributed systems, and simulation. Dr. Strelen is
a member of the Gesellschaft für Informatik (GI).


