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ABSTRACT

Input modeling software tries to fit standard probability
distributions to data assuming that the data are inde-
pendent. However, the input environment can generate
correlated data. Ignoring the correlations might lead
to serious inaccuracy in the performance measures. In
the past few years, several dependence modeling pack-
ages with different properties have been developed. In
this paper, we explain how to fit non-Gaussian autore-
gressive models to correlated data and compare our ap-
proach with similar dependence modeling approaches
that already exist.

INTRODUCTION

Data measured on many real-life systems might exhibit
correlations (dependencies) among themselves. Ignor-
ing the correlations might lead to serious inaccuracy in
the performance measures. For example, important sta-
tistical properties of the Internet traffic are burstiness
and self-similarity (Klemm, Lindemann and Lohmann
2002). To illustrate this, consider for example pack-
ets arriving at an Internet server. If the average num-
ber of packets in a single burst increases, while spacing
the bursts farther, the arrival rate of packets can be
kept constant. On the other hand, the waiting times
for the packets will increase considerably. Not taking
the burstiness into account results in predicting opti-
mistic performance measures. The main reasons behind
burstiness and self-similarity are the correlations and
the heavy-tails present in the interarrival process.
Before we proceed in our introduction, we will define
some terms. The Correlation of two random variables
X and Y, denoted as ρ(X,Y ), measures how much one
random variable depends linearly on the other. The
correlation is defined as the covariance standardized to
the range [-1,1]:

ρ(X,Y ) =
cov(X,Y )
σXσY

,

where σX and σY are the standard deviations of X and
Y, respectively. The covariance of two random variables

X and Y is defined as:

cov(X,Y ) = E[X − E(X)][Y − E(Y )],

where E is the expectation. A series of random variables
at successive times is called a time-series. The Autocor-
relation is the correlation between two random variables
of a time-series. The autocorrelations can be modeled
using the autoregressive (AR) models of (Box and Jenk-
ins 1976) (see below.) The autocorrelation between the
two random variables in a time-series Xt which are lag
h apart is denoted as ρX(h). The autocorrelations in a
stationary time-series depend only on the lag h, not on
the time when the random variables are generated.
A stochastic process is said to be strongly stationary if
all random variables of the process have the same dis-
tribution. On the other hand, a weakly stationary sto-
chastic process is a process, in which the first and sec-
ond moments (the mean and the variance) exist and do
not change over time. In non-Gaussian processes (see
below), neither strong stationarity follows from weak
stationarity, nor weak stationarity follows from strong
stationarity (Chatfield 1996). To be able to fit an AR
model to a time-series, the time-series must be either
strongly or weakly stationary. We refer to a strongly
and/or weakly stationary time-series simply as a sta-
tionary time-series.
ARTA, NORTA, and VARTA processes, described be-
low, have some similarities to our approach, but still
have different advantages and disadvantages. The ab-
breviations stands for autoregressive to anything, nor-
mal to anything, and vector autoregressive to anything,
respectively. From now on, we will call these processes
as ARTA-like processes. The approaches of ARTA
and VARTA try to model the dependencies in a time-
series by transforming a Gaussian AR process to a non-
Gaussian process. The later processes has similar sta-
tistical properties as the time-series. The NORTA ap-
proach in turn depends on transforming Gaussian ran-
dom variables to ”any” non-Gaussian random variables.
The later random variables have some desired statis-
tical properties ( distribution and correlation. Unlike
the approach of the ARTA-like processes, our approach
depends on fitting non-Gaussian AR models (see be-
low) to dependent time-series, by first transforming it



to (nearly) independent data. After the transformation,
a probability distribution is fitted to the data using any
input modeling approach.
In comparison with the other dependence modeling ap-
proaches, Our approach gives the modeler more flexibil-
ities. For example, it enables the modeler to fit heavy
and power tailed processes and non-linearly correlated
processes to time-series. Moreover, our approach can be
easily integrated with already existing input modeling
software.

GAUSSIAN AND NON-GAUSSIAN AR
PROCESSES

The autocorrelations and underlying distribution of a
time-series can be modeled with the help of AR models.
A parameterization of a univariate linear Gaussian AR
model of order p is:

Zt = α1Zt−1 + α2Zt−2 + ...+ αpZt−p + Yt, (1)

where p is the longest lag, and the Yt are IID normal
(Gaussian) random variables with mean zero and vari-
ance σY

2 carefully chosen such that the Zt are standard
Gaussian (Law and Kelton 2000). The AR coefficients
αh, h = 1, 2, ..., p, uniquely determine the autocorrela-
tions of the Zt, ρZ(h). The αh are chosen such that the
AR process is stationary.
Our parameterization of an AR model differs from that
given in (1). We allow the Yt to be drawn from any
distribution. The Yt can be even drawn from power-
tailed distributions like the Pareto distribution. We call
such models non-Gaussian AR (nGAR) models. nGAR
models apply the same stationarity condition as the
Gaussian AR models.
The nGAR models have the property that the distrib-
ution of the Zt differs from that of the Yt. This means
that the input modeler, who does not have a sample of
a time-series, can not generate an nGAR process which
has a specific distribution and autocorrelation structure.
However, if a modeler has a sample of a time-series, an
nGAR process can be fitted. The fitted process will have
similar statistical properties as the original time-series.
In reality, it is common to have only a sample of a time-
series which should be fitted to a distribution or to a
stochastic process.

ARTA, NORTA, AND VARTA PROCESSES

ARTA processes use as a base process a standard
Gaussian AR process described above. It then uses Zt

to generate a series of autocorrelated uniform random
variables, Ut, by using the probability-integral trans-
formation, Ut = Φ(Zt), where Φ is the standard nor-
mal distribution. ARTA applies then the inverse trans-
formation method, Xt = F−1

X [Ut], to generate random
variables having a specific distribution, FX . Please note

that the Gaussian property of the Yt in (1) ensures not
only that the Zt are standard Gaussian, but also that the
autocorrelation coefficients of the base process, ρZ(h),
determined by the AR coefficients αh, h = 1, 2, ..., p,
uniquely determine the autocorrelation coefficients of
the Xt, ρX(h).
ARTA processes of (Cario and Nelson 1996) are able
to generate random variables having a specific distri-
bution and autocorrelation structure, which should in
turn be given explicitly. A complementary work to that
is the work described by (Biller and Nelson 2002). They
describe how to fit ARTA processes to univariate time-
series. This will enable the user to provide a time-series
and to get as a result a fitted ARTA process that has
similar statistical properties as the original time-series.
Another research in this area are the NORTA processes
of (Cario and Nelson 1997). NORTA processes can be
used to generate IID finite vectors of random variables.
The random variables within the vectors can have ar-
bitrary marginal distributions and correlation matrix.
The idea behind this work is to transform a standard
multivariate normal vector Z = (Z1, Z2, ..., Zd)′ into a
vector X = (X1, X2, ..., Xd)′, where Xi = F−1

i [Φ(Zi)].
Fi, i = 1, 2, ..., d, may be different distributions. More-
over, Xi, i = 1, 2, ..., d, can exhibit correlations among
themselves.
A generalization of ARTA and NORTA processes are the
VARTA processes of (Biller and Nelson 2003). VARTA
can be fitted to multivariate time-series by considering
the AR base process as the standard Gaussian vector
AR process of order p. Similar to the case of ARTA,
the autocorrelation structure of the base process, de-
termined by the AR coefficients, specifies uniquely the
target autocorrelation structure of the resulted VARTA
process.
ARTA-like processes depend on a transformation of a
base process into a specific process. Let us consider
for example the ARTA processes. The autocorrelations
in the base process of ARTA, ρZ(h), do not match the
autocorrelations of the ARTA process, ρX(h). However,
(Cario and Nelson 1996) have shown that ρX(h) is a
continuous non-decreasing function of ρZ(h):∫∞
−∞

∫∞
−∞ F−1

X [Φ(zt)]F
−1
X [Φ(zt−h)]ϑρZ(h)(zt, zt−h)dztdzt−h − µ2

σ2
,

where h is the current base process autocorrelation lag,
and ϑ is the bivariate normal pdf.
NORTA and VARTA depend also on transformations
similar to the above one. Current researches show that
this kind of transformations has a drawback, that is,
there are some random vectors, Xt, with feasible covari-
ance matrices, CovX , which are transformed to non-
feasible base process covariance matrices, CovZ . In
other words, for some desired CovX matrices, the trans-
formation results in non-positive definite CovZ matrices.
Non-positive definite covariance matrices are invalid co-
variance matrices (Fishman 1978). These CovX ma-



trices, that are transformed into non-positive definite
CovZ matrices, are called defective matrices.
This drawback is discussed by (Ghosh and Henderson
2001), (Ghosh and Henderson 2002a), and (Ghosh and
Henderson 2002b) in detail for the NORTA processes.
The papers provide an example of a defective covari-
ance matrix CovX . They suggest a modified NORTA
process that can detect such defective matrices, and
generate CovZ matrices that are positive definite and
”close” to the desired ones. VARTA processes, which
are generalizations of the NORTA processes, are sup-
posed to have the same drawback. ARTA is not yet
proved to suffer from the defective matrices problem, as
the defective matrix given by (Ghosh and Henderson
2002a) and (Ghosh and Henderson 2002b) is not a valid
ARTA covariance matrix. However, (Biller and Ghosh
2004) suggest that ARTA can also generate defective
matrices, but they do not provide detailed information.
Our method does not apply the kind of transformations
mentioned above, and thus can not generate defective
matrices.
Another drawback of the above transformation shows
up when trying to fit ARTA-like processes to time-series.
Let us consider ARTA for example. Fitting an ARTA
process to a time-series, which have the distribution FX

with the parameters p and the autocorrelation ρX(h),
requires estimating FX along with p and ρZ(h) in par-
allel. In other words, the fitting procedure assumes a
distribution FX having the parameters p, and try to es-
timate ρZ(h) using an optimization procedure. Having
ρZ(h) estimated for specified FX and p, p and maybe
FX must be estimated using an optimization procedure.
The procedure iterates until ”convergence”. This results
generally in a relatively time consuming fitting proce-
dure. Our approach does not perform such kind of par-
allel fitting. It handles the correlations and distributions
separately.
The procedures of (Biller and Nelson 2002) and (Biller
and Nelson 2003) fit ARTA and VARTA processes to
time-series. The distributions considered in these two
papers are only those from the Johnson translation sys-
tem (Johnson 1987). This means that the current
ARTA and VARTA approaches can not generate heavy-
tailed ARTA and VARTA processes. Moreover, ARTA-
like processes can not fit non-linear AR models to time-
series. An example of non-linear AR models is

Zt = α1Zt−1
p + α2Zt−2

p−2 + ...+ αpZt−p + Yt. (2)

In our paper, we explain how heavy-tailed and non-
linear nGAR processes can be fitted to time-series.

THE GENETIC ALGORITHM

The genetic algorithms of (Chipperfield et al. 1994)
and the programs of (Strelen 2003) are applied to help
fitting distributions to IID samples, and to estimating

their parameters. We also use the genetic algorithm for
the purpose of optimizing some objective function in our
independence method.
The genetic algorithm is a stochastic global search
method that mimics the natural biological evolution.
It operates on populations of individuals applying the
principle of the survival of the fittest. The genetic algo-
rithm uses operators borrowed from the natural genetics
like the recombination, selection, and mutation.
The first step of a genetic algorithm procedure is to ini-
tialize a population randomly from a pre-specified range.
The population consists of individuals who are assigned
fitnesses according to an objective function. Fitter in-
dividuals have higher probability to propagate to the
next generation and higher probability to be selected to
produce the individuals of the next generation.
The individuals of a population can represent the pa-
rameters of a distribution. The objective function
might then depend on the mean absolute distance prin-
ciple and established as follows: Having samples y =
(y1, y2, ..., yn), one sorts y to get the order statistics
yr = (y(1), y(2), ..., y(n)). The piecewise-constant em-
pirical distribution function is then built as FY = r/n,
and the objective function for the genetic algorithm is

Z(p̂) = (
n∑

r=1

∣∣∣FY − FŶ (p̂, y(r))
∣∣∣)/n, (3)

where FŶ (p̂, y(r)) is the value of the selected distribution
function with the parameter(s) p̂ at the point y(r). The
objective function Z(p̂) measures how accurately FŶ (p̂)
fits y.

THE MODEL AND THE FITTING PROCE-
DURE

Our goal is to approximate a stationary (multivariate)
time-series Xt, t = 1, 2, .., n, by a (multivariate) nGAR
process, Zt, specified by

Zt = ψ(Zt−1,Zt−2, ...,Zt−p,Σα)+Yt,

where Zt = (Z1,t, Z2,t, ..., Zd,t)′ is a d-vector of random
variables observed at time t. Yt = (Y1,t, Y2,t, ..., Yd,t)′

is a d-vector of independent random variables. For each
i = 1, 2, ..., d, the Yi,t, t = 1, 2, ..., n are independent
and have the probability distribution FYi

. Σα is a set
of numerical parameters, e.g. a d× p coefficient matrix,
and p is the longest lag. Σα, p, and ψ are assumed such
that Zt is stationary for any t = 1, 2, ..n. The function
ψ, the parameters Σα, and the longest lag p, determine
the autocorrelation structure of the Zt. We assume that
the nGAR process Zt is stationary. Therefore, we ignore
the first elements generated by the model.
In the case of linear nGAR models, ψ is simply a matrix-
multiplication:

Zt = [Zt−1,Zt−2, ...,Zt−p]×Σα
′. (4)



In the case of non-linear nGAR models, ψ is more gen-
eral. An example of non-linear nGAR models is shown
in (2).
Fitting an nGAR model to a time-series corresponds
to estimating the parameters Ω = {ψ,Σα, p, FYi , i =
1, 2, ..., d}. Here, the function ψ is chosen out of a finite
set of given functions. In real world problems, the value
of d is usually 1 or 2 and the value of p is ≤ 5.
As a first main step of our approach, the numerical para-
meters Σα are estimated for one or several ψ functions,
and one or several p values. When ψ is linear in the
Zt as in (1), this step can be accomplished by means
of the Yule-Walker or Burg method (parametric meth-
ods) or by the independence method explained below. If
non-linear functions ψ are considered, only the indepen-
dence method can be used, as the parametric methods
work only when the correlations are linear in the random
variables Zt.
In the second main step of our approach, the Ŷt are
estimated for each (ψ, p) pair and their corresponding
estimated Σ̂α:

Ŷt = Zt − ψ(Zt−1,Zt−2, ...,Zt−p, Σ̂α), (5)

and then the independence of the Ŷt is postulated. The
pair (ψ, p) which results in independent Ŷt is considered
to be the ”optimal” one. However, more than one pair
can be considered. Next, for each i = 1, 2, ..., d, a distri-
bution is fitted to the Yi,t, t = 1, 2, ..., n, which resulted
from the best (ψ, p) pari(s). This can be accomplished
with a tool like ExpertFit, Arena input analyzer, or with
the technique described in (Strelen 2003). At the end
of step 2, estimated Σ̂α and F̂i will be available for each
(ψ, p) pair. This means that different estimated nGAR
model parameters Ω̂ will be available. In the third main
step of the procedure, the best set of model parameters
is chosen according to one or several statistical tests.
More detail about the procedure is given in the follow-
ing two subsections.

Fitting Linear nGAR Processes

Let us consider fitting a linear univariate nGAR Model
similar to that given in (1), where the Yt are drawn
from a specific probability distribution. As mentioned,
a sample of a time-series should be available. More-
over, an nGAR model order, p, should be assumed. The
known methods for estimating the AR orders like the
Akaike or Schwarz information criterion do not work in
this case, as the provided samples are usually not nor-
mally distributed. Instead, an order, p̂test, is chosen,
and a parametric method is used to estimate the AR
coefficients α̂h, h = 1, 2, .., p̂test.
If p̂test is higher than the actual order, p, the estimated
α̂h will contain ”small” AR coefficients for lags higher
than p. In the case that the sample is highly correlated
and p̂test is smaller than p, α̂p̂test will not be small. The

term small AR coefficient in linearly correlated models
like those given in (1) might mean any value smaller
than 5%.
In general, the actual order, p is unknown. In this case,
one can test whether p̂test is large enough by applying
an independence test on the Ŷt estimated by (6). The
dependent sample of the time-series is transformed to
(nearly) independent one using:

Ŷt = Zt − α1Zt−1 − α2Zt−2 − ...− αpZt−p̂test
. (6)

Having the independent Ŷt, a distribution can be fitted.
At this point, the parameters Ω̂ of the nGAR model
(1) are estimated, an nGAR process can be generated,
and statistical goodness-of-fit tests can be applied to
compare the original time-series with the nGAR process.

The Independence Method

Another way to fit nGAR processes to time-series can be
accomplished with the help of the Chi-square indepen-
dence test. This procedure is used if the above described
procedure is not applicable due to non-linear correla-
tions in the time-series. In our independence method,
the set of nGAR model parameters Ω̂ = {ψ̂, Σ̂α, p̂, F̂i}
are estimated by first estimating the parameters Σ̂α for
each (ψ, p) pair.
The estimation of Σ̂α is accomplished for one pair (ψ,
p) by building the random variables Ŷt using (5). Next,
the independence of the Yt is tested. If the Yt are depen-
dent, the parameters Σ̂α must be adjusted. This results
in an optimization procedure according to an objective
function of independence.
Two vectors of realizations X and Y can be tested for in-
dependence using the chi-square test. The test requires
in addition to the vectors a degree of freedom ν and a
significance level (of rejection) α. If the test statistics
calculated exceeds a value specified in the chi-square ta-
ble under the selected ν and α, the vectors are said to
be dependent.
The Test statistics are calculated as follows: Having
X and Y vectors, the corresponding pairs (x, y)’s are
sorted in different regions (u, v), u = 1, 2, ..., k, v =
1, 2, ..., l. The number of (x, y) pairs in each region
(u, v) is then denoted as Nuv. Nu• denotes the number
of pairs in the regions (u, v) for all v = 1, 2, ..., l. N•v

denotes the number of pairs in the regions (u, v) for all
u = 1, 2, ..., k. The Chi-square test (7) is then applied to
get a positive test value, Q. The smaller the test value
is, the more independent X and Y are:

Q = n[(
k∑

u=1

l∑
v=1

Nuv
2

Nu•N•v
)− 1] (7)

In the case of univariate time-series Zt, the indepen-
dence of the lag-h apart random variables Ŷt must be



postulated. This means that the vectors of random vari-
ables (Ŷt, Ŷt−h), h = 1, 2, .., p must be tested for inde-
pendence. This requires applying (7) p times, one time
for each h. The values Qh, h = 1, 2, ..., p, are then aver-
aged and considered as the objective function value for
independence.
For the purpose of testing a d-variate Ŷt with a tar-
get lag p for independence, each process in the Ŷt, and
the different processes in the Ŷt, must be tested for
independence. This means that for all t = 1, 2, ..., n,
the pairs (Ŷi,t, Ŷj,t+h) are tested for independence for
each h = 1, 2, ..., p, and i, j = 1, 2, ..., d. Let Qi,j,h(Σ̂α)
denote the test statistics corresponding to i, j, and h
having specific values, then, the objective function of
independence might be defined as

Q(Σ̂α) =
d∑

i,j=1

p∑
h=1

Qi,j,s(Σ̂α)/pd2.

Different Σ̂α values result in different values for Q(Σ̂α).
The ”optimal” Σ̂α is calculated as:

Σ̂α,best = arg min
Σ̂α

Q(Σ̂α).

If more than one ψ function or more than one p value
are considered, Σ̂α,best and the distributions F̂Yi

, i =
1, 2, ..., d are searched for each (ψ, p) pair. Ŷi are then
built and tested for independence. The best (ψ, p)
pair(s) are considered and different sets of nGAR pa-
rameters Ω̂ will be available. The best set of parame-
ters Ω̂best is then chosen with the help of goodness-of-fit
tests. In other words, the original time-series is tested
against the fitted nGAR processes that have the dif-
ferent parameters Ω̂. The set of parameters Ω̂ which
delivers the best test statistics (TS) is chosen to be the
”optimal” one. More than one test can also be consid-
ered.

EXAMPLES

In this section, we give examples that show results of
our fitting procedure. The realizations used in the first
three examples are generated artificially from nGAR
processes with known parameters. We call these real-
izations as empirical time-series. Our goal is to find out
how well the fitting procedure recovers the original pa-
rameters (Ω) of the true processes. The samples used
in the four example are real measurements done on an
Internet server by (Klemm, Lindemann and Lohmann
2002).

Fitting Linear Univariate nGAR Processes

We consider an nGAR process with the following para-
meters Ω: The function ψ is the matrix-multiplication
shown in (4). Σα is a 1× 2 matrix [α1, α2] = [0.4, 0.2].

The random variables Yt are Pareto distributed having
p1 (shape parameter) = 1.7 and p2 (scale parameter) =
3.7. This specifies FŶ (p̂).
An empirical time-series with 10000 realizations from
the above described nGAR process is generated. The
large sample size is considered due to the property of
the Pareto distribution under the specified shape para-
meter p1. Pareto distributions with a shape parame-
ter p1 < 2 have infinite variance, which results in that
the generated random variables are disperse along wide
range. Therefore, a relatively large sample size is needed
to capture enough information about the true process.
nGAR processes are fitted to the empirical time-series
as follows: A function ψ (linear multiplication) and an
nGAR order p = 3 are considered. Next, Σ̂α = [α̂1,
α̂2, α̂3] is estimated using the independence method.
Noticing that α̂3 is small and that the Ŷt are (nearly)
independent, we suggest that an order p̂ = 2 is suitable.
Having [α̂1, α̂2] and p̂ estimated for ψ, Ŷt is built using

Ŷt = Zt − α̂1Zt−1 − α̂1Zt−2. (8)

Next, the distribution, FŶ , and its parameters, p̂, that
fit Ŷt best are estimated using the techniques of (Stre-
len 2003). The test statistics used to select the best
fitted distribution FŶ and its parameters p̂ is the mean
absolute distance shown in (3). We call this statistic as
MAD(FŶ ). The three distributions that fit Ŷt best and
their corresponding MAD(FŶ ) statistics are shown in
table 1.
Having specific sets of parameters Ω̂, nGAR processes
can be generated and compared with the empiri-
cal time-series. MAD(process) test is similar to the
MAD(FŶ ) test. MAD(process) and the Kolmogorov-
Smirnov (KS) tests compare realization from the fit-
ted nGAR processes and from the empirical time series.
KSS(process) is the Kolmogorov-Smirnov test statistics.
Table 1 summarizes the results of the fitting procedure
considering the three distributions FŶ that delivers the
best (smalles) MAD(FŶ ) values. [α̂1,α̂2] are the fitted
AR coefficients. [p̂1, p̂2] are the best fitted parameters of
the Pareto, Weibull, and Lognormal distributions. We
notice that all test statistics tend to be smaller (better)
in the case of choosing FŶ to be the Pareto distribution.

Table 1: Results summary of fitting univariate linear
nGAR processes to empirical time-series

[α̂1,α̂2] [0.401, 0.198]

FŶ Pareto Weibull Lognormal

[ p̂1, p̂2] [1.69, 3.68] [2.59, 6.99] [1.75, 0.45]

MAD (FŶ ) 0.007 0.0618 0.037

MAD (process) 1.4 6.8 6.0

KSS (process) 0.047 0.334 0.206

The scatter plots show whether the fitted nGAR
processes and the empirical time-series have similar pat-
terns. Fig. 1, Fig. 2, and Fig. 3 show the scatter plots



(Zt, Zt+1), (Zt, Zt+2) from the empirical time-series and
two fitted nGAR processes. We notice that realizations
from the fitted nGAR process with FŶ of Pareto have
similar patterns as the empirical time-series.

Figure 1: Plots from the empirical time-series

Figure 2: Plots from the fitted nGAR process with
Pareto FŶ

Figure 3: Plots from the fitted nGAR process with Log-
normal FŶ

Fitting a Linear Bivariate nGAR Process

We Generate a bivariate empirical time-series of size
1000 from the following linear bivariate nGAR process:

At = α1At−1 + α2At−2 + α3Bt−1 + α4Bt−2 + YAt

Bt = β1Bt−1 + β2Bt−2 + β3At−1 + β4At−2 + YBt

where α=[0.2,0.15,-0.15,0.10], β=[0.2,-0.10,0.15,-0.1].
The YAt are Weibull distributed with the parameters a1

= 2 (shape), and b1 = 10 (scale). The YBt are Weibull
distributed with a2 = 1 and b2 = 6.
A bivariate nGAR process is fitted as follows: A func-
tion ψ (linear multiplication) and nGAR order p = 4
are assumed. Next, Σ̂α = [α̂; β̂] is estimated using the
Yule-Walker method. Having Σ̂α estimated for ψ and
p, (nearly) independent bivariate time-series (ŶAt

, ŶBt
)′

are built using (5). Next, the distributions and the para-
meters that fit ŶAt

and ŶBt
best are estimated. For the

purpose of comparison, we fit the empirical time-series
directly to theoretical distributions neglecting the fact
that the empirical time-series is correlated. The best
fitted distribution and parameters are shown in table 2.
We notice from table 2 that an empirical time-series with
relatively small size can recover the parameters of the
true process with satisfying accuracy. This is due to the
fact that YAt and YBt are not heavy-tailed. α̂ and β̂ are
the fitted AR coefficients (Σ̂α). The fitted distributions
to the ŶAt

and ŶBt
are Weibull. They are marked with

* in the table to distinguish then from the distributions
fitted to the whole process. [â1, b̂1] and [â2, b̂2] are the
fitted parameters. MAD1 and MAD2 are the mean
absolute distance between the bivariate empirical time-
series and the fitted bivariate processes, while (KSS1,
KSS2) are the Kolmogorov-Smirnov statistics.
The test statistics MAD and KSS are only somewhat
smaller in the case of fitting an nGAR process to the
empirical time series. This show that the fitted theo-
retical distribution fit the distribution of the empirical
time-series relatively well. However, the theoretical dis-
tributions can generate only independent data and the
correlations of the time-series can not be modeled. This
is notices by the correlation coefficients ρA(1) and ρA(2)
and AR coefficients α̂ and β̂.

Table 2: Results of fitting bivariate nGAR process
and theoretical distributions to bivariate empirical time-
series

AR Process Theoretical Distr.

α̂ [ 0.19, 0.15, -0.13, 0.08] [0, 0, 0, 0]

β̂ [0.19, -0.10, 0.13, -0.10] [0, 0, 0, 0]

F (â1, b̂1) Weibull∗ (2.02, 10.17) LogN (2.5, 0.45)

F (â2, b̂2) Weibull∗ (.99, 6.06) Weibull (1.36, 7.43)

ρA(1), ρA(2) [0.22, 0.185] [-0.010, 0.011]

(MAD1, MAD2) (0.20, 0.18) (0.84, 0.34)

(KSS1, KSS2) (0.024, 0.019) (0.040, 0.031)

Fig. 4, Fig. 5, and Fig. 6 show the plots (At, At+1)
and (At, At+2) from the empirical time-series, the fit-
ted AR processes, and the fitted independent process
(distribution), respectively. We notice that the plots of
the fitted nGAR process is more similar to the empirical
time-series than those from the independent process.

Fitting a non-Linear nGAR Process

An empirical time-series of size 3000 is generated from
a non-linear nGAR process:

Zt = α1Zt−1
2 + α2Zt−2 + Yt (9)

where α =[0.034, 0.2]. Yt are Weibull distributed with
the parameters [p1, p2] = [2.7, 4]. The linear correlations
of the empirical time-series, ρZ(1) and ρZ(2) have the
values 0.56 and 0.46, respectively.



Figure 4: Plots from the empirical time-series

Figure 5: Plots from from the fitted nGAR process

Figure 6: Plots from the fitted theoretical distribution

We consider fitting linear and non-linear nGAR
processes. The assumed maximum lag p = 2. The as-
sumed functions ψ are as follows:

ψ1(Zt+1, Zt+ 2) = α1Zt+1 + α2Zt+2,

and
ψ2(Zt+1, Zt+ 2) = α1Zt+1

2 + α2Zt+2.

In both cases of ψ, the parameters α1 and α2 are first
estimated with the independence method. Next, the
(nearly) independent Ŷt are estimated and the distribu-
tion of the Ŷt, FŶ , is determined. Table 3 summarizes
some results of the fitting procedure.

Table 3: Results summary of fitting linear and non-
linear nGAR process to empirical time-series

Linear nGAR Non-linear nGAR

[ α̂1,α̂2] [0.42 , 0.20] [0.033, 0.202]

FŶ (p̂1, p̂2) Weibull(1.8 , 2.7) Weibull∗(2.8, 3.9)

ρA(1), ρA(2) [0.59, 0.49] [0.55, 0.45]

MAD(process) 0.51 0.2

KSS(process) 0.11 0.03

The entries of the table are similar to those described in
the previous examples. We notice that the correlations
of the linear and non-linear nGAR processes are similar
to those of the empirical time-series. An example of
these correlations are ρA(1) and ρA(2). However, the
test statistics MAD (process) and KSS (process) of the
non-linear nGAR process are better than the linear one.
Hence, one would select the non-linear nGAR process
as the process which fits better. We also noticed that
the plots of the fitted non-linear nGAR process and the
plots of the empirical time-series are alike. This is not
the case considering plots of the linear nGAR process.
The plots are not shown because of space limitations.

Fitting Models to Real Measurements

In this example, we fit theoretical distributions and a
linear nGAR process to 20000 measurements taken by
(Klemm, Lindemann and Lohmann 2002). The mea-
surements describe the interarrival times of packets ar-
riving at an Internet server. The measurements are cor-
related with AR coefficients α of [0.07, 0.05, 0.04] and
correlations ρ of [0.08, 0.07, 0.07].
For the fitting procedure, a function ψ of linear multi-
plication and an nGAR order p = 3 are considered. The
AR coefficients α are estimated using the Burg method.
Next, the Ŷt are estimated using (6). Noticing that the
Ŷt are (nearly) independent, we suggest that an order
p = 3 is suitable. For the purpose of comparison, the
real measurements are fitted directly to the theoretical
distributions, neglecting the fact that the measurements
are correlated. The statistical results of the two fittings
are summarized in table 4.

Table 4: Results summary of fitting a theoretical distri-
bution and a linear nGAR process to real measurements

Theoretical distr. Linear nGAR

[ α̂] [0, 0, 0] [0.07 , 0.05, 0.055]

F (p̂1, p̂2) Weibull (0.64, 0.01) Weibull∗ (2.14, 0.02)

ρ̂ [0.006, -0.002, 0.002] [.08, 0.065, 0.07]

MAD(process) 1.27 1.046

KSS(process) 0.2 0.288

α̂ are the fitted AR coefficients. F (p̂1, p̂2) are the fit-
ted distributions and parameters. The best fitted dis-
tribution to the real measurements is Weibull, whereas
the best fitted distribution to the estimated independent
data Ŷt when we fit an nGAR process is Weibull∗. The
MAD test statistics and the KSS statistics of the fitted
theoretical distribution and of the nGAR process are of
the same order. This imply that this statistics gives no
information about the model that fits the real measure-
ments better. However the realizations from the nGAR
process has similar correlations to that of the real mea-
surements, whereas realizations from the fitted distrib-
ution are not correlated. This implies that the (correla-



tions of) the nGAR process fits the real measurements
better than the theoretical distribution.

CONCLUSION

Most dependence input modeling packages are based
on Gaussian AR processes and random variables, be-
cause the behavior of Gaussian processes and random
variables is mathematically well understood. However,
most of the statistical estimators (e.g. covariance and
correlation) and statistical methods (e.g. Yule-Walker
method and test of independence of random variables)
can be applied to Gaussian as well as to non-Gaussian
AR (nGAR) processes. Unlike the other dependence
modeling approaches, our approach can be easily inte-
grated with the already existing input modeling tools
for independent data. The approach also eliminates
the Gaussian non-Gaussian transformations and pro-
vides higher flexibilities for the input modeler. This en-
ables fitting heavy-tailed or non-linear nGAR processes
to time-series.
The use of other optimization algorithms instead of the
genetic algorithms and more detailed study of non-linear
nGAR models are topics of future research.
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